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SUMMARY. Hepatitis C virus (HCV) infection is closely associated with lipid metabolism 

defects throughout the viral lifecycle, with hepatic steatosis frequently observed in patients 

with chronic HCV infection. Hepatic steatosis is most common in patients infected with 

genotype 3 viruses, possibly due to direct effects of genotype 3 viral proteins. Hepatic 

steatosis in patients infected with other genotypes is thought to be mostly due to changes in 

host metabolism, involving insulin resistance in particular. Specific effects of the HCV 

genotype 3 core protein have been observed in cellular models in vitro: mechanisms linked to 

a decrease in microsomal triglyceride transfer protein activity, decreases in the levels of 

peroxisome proliferator-activating receptors, increases in the levels of sterol regulatory 

element-binding proteins, and phosphatase and tensin homologue downregulation. Functional 

differences between the core proteins of genotype 3 viruses and viruses of other genotypes 

may reflect differences in amino-acid sequences. However, bioclinical studies have failed to 

identify specific “steatogenic” sequences in HCV isolates from patients with hepatic steatosis. 

It is therefore difficult to distinguish between viral and metabolic steatosis unambiguously 

and host and viral factors are probably involved in both HCV genotype 3 and non-3 steatosis. 
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INTRODUCTION 

Hepatic steatosis, defined as excessive lipid accumulation in the cytoplasm of hepatocytes, is 

a frequent histological feature in patients chronically infected with hepatitis C virus (HCV) 

(Figure 1). Before the identification and characterisation of HCV in 1989, the presence of 

steatosis was used to discriminate between so-called “non-A non-B” hepatitis and other forms 

of chronic liver disease, such as hepatitis B or autoimmune hepatitis. This suggests a probable 

direct role for HCV in the development of excess fat accumulation in the liver. However, the 

mechanisms underlying hepatic steatosis in HCV-infected patients are difficult to unravel, due 

to the possible co-existence of several confounding factors, including metabolic syndrome, 

type 2 diabetes, obesity and a high body mass index (BMI), in patients. These cofactors may 

occur together in HCV patients and may cause various degrees of hepatic steatosis through 

mechanisms similar to those of classical non-alcoholic fatty liver disease (NAFLD), mostly 

through insulin resistance [1, 2]. Furthermore, hepatic steatosis may result from other 

challenges to the liver, particularly in cases of excessive alcohol consumption. 

It has been suggested that there are two main types of steatosis in patients with hepatitis 

C. The first is a metabolic type of steatosis associated with a high BMI, hyperlipidaemia and 

insulin resistance. The second is a virally induced form of steatosis that develops in the 

absence of other “steatogenic” cofactors and that seems to be directly triggered by the virus. 

The situation is further complicated by the possible role of HCV as a cofactor in the 

development of the metabolic type of steatosis, this virus has itself been shown to induce 

insulin resistance, potentially favouring the development of hepatic steatosis [3, 4]. 

Nevertheless, virally induced steatosis is widely considered to be predominantly, and perhaps 

strictly, linked to HCV genotype 3 infection [5]. The HCV RNA genome displays 

considerable diversity, both within and between isolates, and three levels of classification 

have been adopted, grouping viral sequences into six genotypes, several dozen subtypes and 
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intra-isolate variants. Hepatic steatosis is common in patients infected with genotype 3 viruses 

and seems to be directly related to intrahepatic viral load, suggesting a direct viral effect that 

is not observed with other genotypes [6]. Moreover, following successful HCV eradication by 

antiviral therapy, hepatic steatosis resolves in most individuals infected with genotype 3 

viruses, but not in those infected with genotype 1 viruses [7]. Further evidence supporting this 

link has been provided by in vitro studies showing that the HCV core protein induces lipid 

droplet (LD) accumulation that is more pronounced with genotype 3 proteins than with 

proteins from viruses of other genotypes [8-10]. In this review, I discuss the basic and clinical 

aspects of this link between HCV diversity, including genotype classification, and steatosis 

development. 

 

MOLECULAR MECHANISMS OF HCV-INDUCED STEATOSIS 

The close association of HCV with steatosis should probably be analysed in the light of 

evidence from many basic studies demonstrating that the virus hijacks the lipid-producing 

machinery of the hepatocyte for its own benefit. In cell culture, the HCV core protein 

associates with lipid droplets (LD) [11], inducing the clustering and accumulation of these 

lipid storage organelles [12, 13]. This LD clustering and accumulation might be the 

consequence of a decrease in LD turnover induced by the interaction of the HCVcore protein 

with a host cell enzyme that synthesizes triglycerides in the ER, the diacylglycerol 

acyltransferase 1 (DGAT1) [14, 15]. HCV virions are then formed at endoplasmic reticulum 

(ER) membranes directly apposed to these clustered LD [16, 17], suggesting that virus-

induced steatosis may be a consequence of viral lifecycle strategy [18]. HCV particles are 

then secreted and circulate as very low-density lipoprotein (VLDL)-virus complexes rich in 

triglycerides [19]. These particles, which are known as lipoviro particles (LVPs), contain viral 
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RNA, viral structural proteins (core and envelope E1 and E2 proteins) and the host-derived 

apolipoproteins B and E (apoB and apoE) [19]. 

Specific mechanisms have been proposed to account for virally induced steatosis. These 

mechanisms involve decreases in the levels of microsomal triglyceride transfer protein 

(MTP), and peroxisome proliferator-activating receptors (PPARs), increases in sterol 

regulatory element binding protein (SREBP) levels, oxidative stress due to the production of 

reactive oxygen species (ROS) and phosphatase and tensin homologue (PTEN) 

downregulation (Figure 2). 

 

MTP 

MTP, which is present in the ER lumen, stabilises apoB by lipidation. Lipidated apoB binds 

triglycerides, forming VLDL for export from hepatocytes. HCV core [20] and non-structural 

proteins [21] have been shown to decrease the activity of MTP, resulting in the accumulation 

of intracellular lipids due to a decrease in VLDL export. Several studies have reported low 

serum triglyceride concentrations in patients chronically infected with HCV [22]. In human 

liver biopsy specimens, MTP mRNA levels are inversely correlated with the degree of hepatic 

steatosis, regardless of HCV genotype [23]. However, patients infected with genotype 3 

viruses have significantly lower levels of MTP activity than patients infected with other 

genotypes [23], suggesting that genotype 3 viral proteins may also directly inhibit MTP 

activity.  

 

PPARs 

The PPAR nuclear receptors belong to the steroid superfamily. PPAR is strongly expressed 

in hepatocytes, in which it regulates lipid metabolism through fatty acid import into 

mitochondria and the activation of oxidative enzymes. Decreases in PPARactivity probably 
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cause fatty acid uptake and a decrease in mitochondrial oxidation, resulting in hepatic 

steatosis. Liver biopsy specimens from patients with chronic HCV infection have been shown 

to contain lower levels of PPARand its target gene transcripts than specimens from controls 

[24]. More detailed analyses have shown that PPAR mRNA levels are even lower in patients 

infected with genotype 3 viruses than in those infected with genotype 1 viruses [25], 

suggesting that this inhibition may also involve genotype-dependent mechanisms. 

 

SREBPs 

SREBPs constitute a family of ER membrane-associated transcription factors that regulate the 

production of enzymes involved in lipogenesis. The SREBP-1c isoform is produced 

predominantly in the liver. In its inactivated form, it binds the SREBP cleavage-activating 

protein (SCAP). Low intracellular sterol concentrations lead to cleavage from SCAP, the 

resulting SREBP being translocated to the nucleus (nuclear SREBP; nSREBP), where it binds 

to the SREBP response element (SRE), up-regulating the transcription of genes involved in 

lipogenesis. Various methods accounting for the increase in lipogenesis due to SRBP 

activation by HCV have been described in cellular models in vitro. SREBP mRNA levels 

increase in cells producing the HCV core protein, resulting in an increase in fatty acid 

synthesis within hepatocytes [26]. It was shown in an in vitro study that fatty acid synthetase 

(FAS) was more strongly induced, in an SRBP1c-dependent manner, by genotype 3 core 

proteins than by genotype 1 core proteins [27]. However, these results were called into 

question by a study reporting a lack of specific increase in the expression of genes involved in 

lipogenesis following SREBP activation in the livers of patients infected with genotype 3 

viruses [28]. HCV-induced oxidative stress and the subsequent activation of the 

phosphatidylinositol 3-kinase (PI3-K)-Akt pathway and PTEN inactivation have also been 

shown to mediate the transactivation of SREBPs [29]. Again, this phenomenon was found to 
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be more marked with genotype 3 core protein than with genotype 1 core protein. Finally, the 

non-structural NS2 protein has also been shown to activate SREBPs in human hepatic cell 

lines [30]. 

 

Oxidative stress 

HCV core protein directly increases the level of ROS products by inhibiting electron transport 

and modifying mitochondrial permeability [31, 32]. This ROS production leads to the 

peroxidation of membrane lipids and proteins involved in trafficking and secretion, inhibiting 

VLDL secretion. In addition to the direct effects of HCV proteins on the mitochondria, HCV-

induced immune activation may also cause oxidative stress through cytokine release and 

macrophage activation. Moreover, the release of proinflammatory cytokines, such as tumour 

necrosis factor  (TNF), further promotes insulin resistance, which may in turn favour the 

development of hepatic steatosis. 

 

PTEN 

A new mechanism specifically attributable to the HCV core protein of genotype 3 isolates has 

recently been proposed [33]. PTEN, the intrahepatic downregulation of which has been shown 

to contribute to the development of steatosis in NAFLD, has been shown to be downregulated 

by a genotype 3 core protein in cellular models in vitro, via a mechanism involving a 

microRNA-dependent blockade of PTEN mRNA translation. By contrast, no such effect is 

observed with genotype 1 core protein. 

 

HCV AND INSULIN RESISTANCE 

Like metabolic syndrome, chronic HCV infection is associated with insulin resistance [34]. 

Glucose metabolism is modified to a significantly greater extent in the early stages of chronic 
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HCV infection than in chronic hepatitis B virus (HBV) infection. HCV infection thus causes 

insulin resistance, which can progress to type 2 diabetes mellitus in susceptible individuals 

[35]. Various mechanisms have been put forward to account for the induction of insulin 

resistance by HCV. Direct effects in hepatocytes have been attributed to viral interference 

with the insulin signal transduction pathway mediated by HCV core protein and to the ER 

stress induced by viral replication (reviewed in [36]). However, insulin resistance has also 

been shown to occur in uninfected cells, such as striated muscle cells, by unknown 

mechanisms [3]. Interestingly, the adipose tissue did not appear to be involved in the 

pathogenesis of viral insulin resistance, as free fatty acid efflux from adipose tissue responds 

to insulin in normal persons and in patients with chronic hepatitis C [3]. Liver tissues contain 

large numbers of insulin receptors. The liver controls hepatic glucose production, the 

replenishment of glycogen stores, increases in triglyceride biosynthesis and decreases in 

VLDL and apoB production and secretion. In conditions of insulin resistance, hepatic 

steatosis has been shown to occur principally due to an increase in the influx of fatty acids 

into the liver, as a result of higher levels of peripheral lipolysis and hepatic lipogenesis [37]. 

Decreases in fatty acid oxidation and fat export further contribute to hepatic steatosis [38]. 

Furthermore, hyperinsulinaemia leads to the direct activation of SREBP-1c, causing 

lipogenesis [38]. Patients with chronic HCV infection have significantly higher fasting serum 

insulin concentrations and homeostatic model assessments (HOMAR-IR, a marker for insulin 

resistance) than healthy volunteers [39, 40]. Moreover, patients infected with a genotype 3 

virus have significantly lower HOMA-IR values than patients infected with other genotypes, 

providing support for the widely held view that hepatic steatosis is virally induced in 

genotype 3 infections but metabolically induced in infections with other genotypes [39, 40]. 
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HCV SEQUENCES INVOLVED IN STEATOSIS 

Studies in early experimental in vitro expression systems and transgenic mouse models 

showed that the HCV core protein was sufficient to induce triglyceride accumulation in 

hepatocytes [20, 41, 42]. All these early reports were based on studies using constructs 

derived from a genotype 1 genome. More recent investigations have been conducted with in 

vitro cellular models expressing the HCV genotype 3 core protein that has been found to 

result in higher levels of triglyceride accumulation than the genotype 1 core protein [8]. These 

functional differences between genotype 1 and 3 core proteins may result from differences in 

their amino-acid sequences, although these sequences are very similar. The search for viral 

sequences responsible for genotype 3 core protein-specific effects on triglyceride 

accumulation led to the identification of a single amino-acid change, at position 164 [9]. A 

phenylalanine (F) residue in this position, as found in genotype 3 core sequences, has been 

shown to be specifically associated with higher levels of lipid droplet accumulation in cellular 

models in vitro. In almost all the core sequences of viruses of other genotypes, this residue is 

replaced by a tyrosine (Y) [9]. Similarly, higher levels of lipid droplet accumulation were 

observed in a study in which an HCV core protein sequence from a genotype 3 virus was 

produced in a cellular model [8]. However, the authors were unable to identify the residues 

involved in this phenomenon, and did not implicate F164. Nevertheless, this particular residue 

was directly implicated in the stronger FAS activation observed with the genotype 3 core 

protein [27]. Another study reporting the sequencing of the core gene from genotype 3 viruses 

infecting patients with or without steatosis led to the identification of two additional residues 

correlated with lipid accumulation: phenylalanine-valine (FV) or leucine-isoleucine (LI) at 

positions 182 and 186 (as opposed to FI) [10]. The production in vitro of core proteins with 

these FV or LI residues resulted in significantly higher intracellular lipid levels than the 

production of core proteins with FI residues in these positions. However, in two other 
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independent studies, analyses of the sequences of various clinical isolates failed to implicate 

the FV and LI residues in positions 182 and 186, or any other genetic differences between 

genotype 3 core proteins from patients with and without steatosis, suggesting a possible role 

for other factors in the development of steatosis in patients infected with genotype 3 viruses 

[43, 44]. In all these bioclinical studies, it was difficult to evaluate the role of the F164 residue 

in liver steatosis, because this residue was present in all genotype 3 isolates, even those from 

patients without steatosis [10, 43, 44] (Figure 3). Nevertheless, an F residue was never 

detected in position 164 in any of the genotype 1 strains associated with severe steatosis [44]. 

Overall, studies using in vitro cellular models to compare the intracellular lipid accumulation 

induced by genotype 3 and genotype 1 core proteins have not generated consistent results [8-

10, 27, 43] (Figure 3).  These differences may be due to the different cell models and lipid 

droplet quantification methods used in these studies. One might assume that human liver cell 

lines would constitute the best model, but Huh7 cells have been reported to have intracellular 

lipid levels in standard culture conditions too high for the detection of meaningful differences 

between the proteins studied [10]. This was confirmed with the HCV in cell culture (HCVcc) 

model, as viruses bearing structural proteins (the core and envelope E1 and E2 proteins) from 

a genotype 2 or a genotype 3 strain induced the accumulation of similar numbers of lipid 

droplets when propagated in Huh7 cells [45]. Furthermore, despite a polymorphism between 

the genotype 2 strains J6 and JFH1 at residue 164 (Y in JFH-1, F in J6), the propagation of 

JFH-1 and J6/JFH-1 HCVcc in Huh7 cells did not result in any significant differences in lipid 

droplet amount (unpublished personal observation). However, one study comparing these two 

viruses has shown that a virus bearing the J6 core sequence is more efficiently assembled and 

secreted from infected cells, but has lower ability to induce the LD clustering [46]. This 

suggests that the viral assembly efficiency by itself might influence the lipid storage, through 

the core protein dependent use of the LD as viral assembly platform. Thus, even if the core 
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protein is central in this process, the effect of the HCV infection on the cellular lipid load 

might also depend on the interaction between this protein and other viral partners involved in 

virion assembly. Interestingly, the binding of the core protein to the non-structural NS5A 

protein is critical for virus particle assembly [47], and this protein has been shown to also 

interact with lipid metabolism [48], inducing steatosis in a transgenic mouse model [49]. As a 

result, one bioclinical study also analysed the NS5A sequences of the viral variants circulating 

in patients with and without steatosis [44]. No differences in the sequence of the NS5A gene 

were found between patients with and without steatosis, suggesting that other viral proteins 

and, probably, host factors are involved in the development of steatosis in genotype 3 

infection. However, although recent data have suggested that the polymorphism of various 

host genes, including the PPAR, IL-28B, adiponutrin and MTP genes, may influence the 

development of more severe steatosis in chronic carriers of HCV, this phenomenon seems to 

concern principally patients infected with non-genotype 3 viruses [50-56]. 

 

OTHER POTENTIAL LINKS BETWEEN HCV GENOTYPE 3 AND HEPATIC 

STEATOSIS 

In Western Europe, genotype 3 infection is more frequent in patients with a history of 

intravenous drug use (IVDU) than in non-drug users [57]. Moreover, alcohol abuse has been 

reported to be particularly frequent in patients with a history of IVDU [58, 59]. Therefore, 

although this relationship is certainly not strict and remains speculative, these observations 

suggest that alcohol consumption may be associated with a HCV genotype 3 infection, at least 

in some patients. This is of potential importance, as ethanol metabolism also causes 

mitochondrial injury and is thought to act in synergy with HCV to produce ROS [60]. 
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CONCLUSION 

Several studies have shown an association between steatosis and the progression of liver 

fibrosis and advanced liver disease in chronic hepatitis [61]. Virally induced steatosis does not 

seem to be associated with advanced stages of fibrosis and the association described in 

previous reports may essentially be due to metabolic steatosis [62]. However, the failure to 

identify unambiguously specific “steatogenic” sequences in genotype 3 isolates from patients 

with hepatic steatosis suggests that there is no clear dichotomy between virally induced and 

metabolically induced hepatic steatosis. The overlap between the two forms of steatosis in 

chronic carrier of HCV may be greater than previously thought and further studies are clearly 

required to improve our understanding of the relationship and molecular interactions between 

these two forms. 
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Fig. 1 Electron micrographs showing the accumulation of large lipid droplets (LD) in the 

cytoplasm of hepatocytes on liver biopsy specimens from four chronic HCV carriers. (nuc = 

nucleus). Scale bars: 5 m in A, 2 m in B, C and D. 
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Fig. 2 Schematic diagram of the principal mechanisms put forward to account for lipid 

accumulation in HCV-infected hepatocytes. HCV interferes with the production and/or 

activity of microsomal triglyceride transfer protein (MTP), a luminal ER protein involved in 

very low-density lipoprotein (VLDL) assembly and export. HCV inhibits transcription of the 

gene encoding peroxisome proliferator activating receptor  (PPAR, a nuclear factor 

downregulating the synthesis of enzymes involved in fatty acid -oxidation, such as carnitine 

palmitoyltransferase I. HCV activates sterol regulatory element binding protein 1c (SREBP-

1c), a nuclear transcription factor controlling the expression of genes encoding enzymes 

involved in fatty acid synthesis. HCV leads to the production of reactive oxygen species 

(ROS), which induce the peroxidation of membrane lipids and proteins involved in trafficking 

and secretion, inhibiting VLDL secretion. Mechanisms associated with the inhibition of MTP 
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and PPAR and the activation of SREBP-1c have been shown to be more pronounced in 

cases of infection with genotype 3 viruses (red lines) than in cases of infection with other 

genotypes (white lines). HCV genotype 3 has a specific effect not observed with other 

genotypes, involving inhibition of the transcription of the phosphatase and tensin homologue 

(PTEN) gene. Arrows indicate increases or activation, whereas blunt ends indicate inhibition. 

 

 

 

 

Fig. 3 Overview of the main results obtained in studies investigating the impact of the HCV 

core protein sequence on hepatic steatosis development. LD, lipid droplets. FAS, fatty acid 

synthetase. HCVcc, HCV in cell culture. 

  


