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Abstract

Background: Histone methyltransferase enhancer of zeste homologue 2 (EZH2) forms an obligate repressive

complex with suppressor of zeste 12 and embryonic ectoderm development, which is thought, along with EZH1,

to be primarily responsible for mediating Polycomb-dependent gene silencing. Polycomb-mediated repression

influences gene expression across the entire gamut of biological processes, including development, differentiation

and cellular proliferation. Deregulation of EZH2 expression is implicated in numerous complex human diseases.

To date, most EZH2-mediated function has been primarily ascribed to a single protein product of the EZH2 locus.

Results: We report that the EZH2 locus undergoes alternative splicing to yield at least two structurally and

functionally distinct EZH2 methyltransferases. The longest protein encoded by this locus is the conventional

enzyme, which we refer to as EZH2α, whereas EZH2β, characterized here, represents a novel isoform. We find that

EZH2β localizes to the cell nucleus, complexes with embryonic ectoderm development and suppressor of zeste 12,

trimethylates histone 3 at lysine 27, and mediates silencing of target promoters. At the cell biological level, we find

that increased EZH2β induces cell proliferation, demonstrating that this protein is functional in the regulation of

processes previously attributed to EZH2α. Biochemically, through the use of genome-wide expression profiling,

we demonstrate that EZH2β governs a pattern of gene repression that is often ontologically redundant from that

of EZH2α, but also divergent for a wide variety of specific target genes.

Conclusions: Combined, these results demonstrate that an expanded repertoire of EZH2 writers can modulate

histone code instruction during histone 3 lysine 27-mediated gene silencing. These data support the notion that

the regulation of EZH2-mediated gene silencing is more complex than previously anticipated and should guide the

design and interpretation of future studies aimed at understanding the biochemical and biological roles of this

important family of epigenomic regulators.
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Background
The currently accepted hierarchical model of Polycomb-

mediated gene repression begins with the trimethylation

of histone 3 at lysine 27 (H3-K27me3) through the

action of Polycomb repressive complex (PRC) 2, a multi-

subunit complex. The H3-K27me3 mark subsequently

recruits PRC1, leading to the propagation of the repressed

state through a variety of mechanisms, including chro-

matin compaction and recruitment of other chromatin-

remodeling enzymes, such as DNA methyltransferases [1].

However, it must be noted that alternative pathways

for PRC1 recruitment, independent of inscription of the

H3-K27me3 mark, have also been observed [2]. The en-

zymatic engine of PRC2 is enhancer of zeste homologue

2 (EZH2), which possesses the evolutionarily conserved

SET domain that confers the complex with its histone

methyltransferase (HMT) activity [3,4]. The catalytic

function of EZH2 is strictly dependent on the presence of

both WD40-repeat protein embryonic ectoderm develop-

ment (EED) and zinc finger protein suppressor of zeste

12 (SUZ12), which serve to link and stabilize the en-

zyme to its histone substrate [5-9]. A number of other

proteins, such as retinoblastoma binding proteins 4 and 7

(RBBP4/7), Adipocyte enhancer-binding protein 2 and

PHD finger protein 1 enhance the enzymatic function of

the complex [5,10-12]. Thus, within these complexes,

EZH2 proteins serve as the key histone code writers of

the H3-K27me3 mark that leads to long-term epigenetic

gene silencing.

PRC2 proteins are extremely well conserved from plants

to humans, indicating the fundamental importance of this

epigenetic mechanism to organism development and sur-

vival [13]. Interestingly, several alternative PRC2 complexes

have been identified. EED undergoes alternative translation

to yield four protein products. PRC2 complex was defined

as a complex between EZH2, SUZ12, RBBP4/7 and the

longest isoform of EED, EED1. However, a second com-

plex, PRC3, was found with the substitution of the shortest

isoforms of EED, EED3/4, that was capable of H3-K27

methylation [14]. Another alternative complex, PRC4, was

found with the substitution of EED2, an isoform normally

undetectable in differentiated cells but prevalent in embry-

onic stem cells and transformed tissues [15]. EZH1, a

homologue of EZH2 encoded at a separate locus, is also

capable of H3-K27 trimethylation and transcriptional silen-

cing. EZH1 forms a non-canonical PRC2 complex with

EED and SUZ12. However, current evidence supports the

idea that PRC2-EZH1-mediated H3-K27 trimethylation is

less widespread than for PRC2-EZH2. PRC2-EZH1, for in-

stance, has been shown to repress transcription through

chromatin compaction in the absence of methyltransferase

co-factor S-adenosyl methionine [10]. Together, these data

suggest a more intricate regulation of H3-K37me3 depo-

sition than previously anticipated.

The multiplicity of downstream biological functions

mediated by EZH2 points to a pervasiveness of Polycomb-

mediated repression well beyond development. Roles for

EZH2 have been identified in cell cycle, cellular differen-

tiation and pluripotency, among many others [16]. Patho-

logically, EZH2 has been implicated in the neoplastic

transformation of a number of cell types, including for

many solid tumors and hematopoietic malignancies.

Levels of EZH2 strongly associate with the severity of ma-

lignant progression and poor prognosis in breast and

prostate cancer [17,18]. The medical relevance of this ob-

servation is congruent with the functions for EZH2 as

revealed by experimental methods. For instance, EZH2

overexpression promotes cellular proliferation [19-24],

migration [25-27], angiogenesis [28] and survival [29,30].

Thus, both basic and translational investigations have

established a solid role for EZH2 and its partners as an

epigenetic system involved in oncogenesis (epigenetic on-

cogenes), for which detailed mechanisms underlying their

function have become an area of intensive investigation.

The current study increases our knowledge on the

complexity of EZH2-mediated processes by providing

biochemical evidence revealing extended isoform diver-

sity within EZH2 proteins that function in mammalian

cells. Indeed, our molecular and functional data indicate

that the EZH2 locus encodes a novel isoform, EZH2β.

This isoform localizes to the cell nucleus, complexes

with EED and SUZ12, and binds to promoters where it

increases H3-K27me3 levels, all properties in common

with EZH2α protein. Importantly, however, EZH2β par-

ticipates in the regulation of gene expression with a pat-

tern that is not only shared but also distinct from that

regulated by EZH2α, pointing to both redundancy and

specialization within members of this HMT family of

proteins. Combined, these results reveal that the regula-

tion of H3-K27 methylation is more complex than previ-

ously anticipated and expands our knowledge of how

cells generate and use different histone code writers to

achieve distinct biochemical and biological functions.

This new knowledge must be taken into consideration

in the design and interpretation of studies on gene ex-

pression, distinct cell functions, single target gene pro-

moters or genome-wide epigenomics, as it reveals for

the first time the need for isoform-specific tools to dis-

sect Polycomb functions.

Results
Identification of EZH2β reveals the existence of an

expanded repertoire of EZH2 isoforms widely expressed

in human tissues

The current study initiated from investigations on the

role of the EZH2 locus in the proliferative response, as

previous reports implicated overexpression of this HMT

during neoplastic transformation in a variety of cancers
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[31]. Initial western blot analyses in pancreatic cancer

cells revealed the presence of multiple EZH2-positive

bands (Additional file 1: Figure S1). To date, over 30

different EZH2 mRNAs have been validated by high-

throughput genomic sequencing efforts. One of the pro-

teins generated from this locus, EZH2α, encoded by 20

exons, is the HMT classically associated with the func-

tion of the PRC2 complex (Figure 1A and Table 1).

EZH2β, a novel isoform that the current study function-

ally characterizes in better detail, skips exon 4 of EZH2α

and utilizes an alternative 50 splice donor on EZH2α exon

8/EZH2β exon 7. At the protein sequence level, EZH2α

and EZH2β differ by 44 amino acids, measuring 751 and

707 amino acids, respectively (Figure 1B). A highly similar

third splice variant encoding five less amino acids than

EZH2α has also been cited as EZH2. Structural compari-

son of these closely related variants does not reveal any

noticeable differences that would suggest differing func-

tion and thereby have been considered interchangeable in

the literature.

For the purposes of our manuscript, we have selected

the longest transcriptional variant (751 amino acids) as

the reference sequence to provide a numbering framework

for our bioinformatics. Compared with this reference

EZH2α sequence, the shorter EZH2β displays conserva-

tion of several domains, namely the nuclear localization

signals, SANT (DNA-binding domains) and the SET do-

main. Together, the conservation of these domains should

confer this protein with the ability to localize to the nu-

cleus and function as an HMT (Figure 1B). Notably, the

regions that have previously been described to interact

with the obligate EZH2α co-factors SUZ12 and EED are

also preserved in EZH2β [7,32], suggesting that different

EZH2 gene products complex with molecules significant

to its major biochemical function. Additionally, compari-

son of all currently available genome sequences generated

by world-wide sequencing efforts revealed that alternative

splicing of the EZH2 locus is conserved from invertebrates

to vertebrates. The number of predicted EZH2 orthologs

within each of the surveyed species suggests multiple ex-

pansion and reduction events may have occurred during

the evolution of the protein as evolutionary distance in-

creases from invertebrates to higher-order mammals

(Figure 1C). We find that the EZH2α and EZH2β are pre-

dicted to be greater than 99% conserved in higher-order

mammals (Table 2), suggesting that these two proteins

may account for a large number of the functions evolu-

tionarily selected for the EZH2 locus.

Using a panel of 22 different tissues, we demonstrated

that these two transcripts share a similar expression

profile in most human organs. Additional comparative

analyses of the expression pattern for other Polycomb-

related co-factors demonstrated that tissues expressing

high levels of EZH2α or EZH2β transcripts display a

concordant enrichment of transcripts encoding other

PRC2 complex proteins, ones previously described to be

exclusive partners of the conventional enzyme, EZH2α

(Figure 2A). More importantly, we validated the exis-

tence of EZH2β at the protein level using an affinity-

purified antibody specifically generated against this novel

isoform (Figure 2B). The electrophoretic mobility of

these two isoforms as resolved by SDS-PAGE is in agree-

ment with the molecular weights predicted from the re-

spective amino acid compositions (EZH2α: 86.03 kDa;

EZH2β: 81.05 kDa). Experiments with these specific anti-

bodies confirmed that the EZH2β transcript is readily

translated into a protein that has the potential to function

as a novel member of the PRC2 complex (Figure 2C). Fur-

thermore, the pattern of expression of EZH2β as defined

by western blot was highly concordant with that predicted

by PCR-based transcript analysis with a marked enrich-

ment in testes and ovary and absence from brain. For com-

parison, we generated an antibody against EZH2α that,

similar to all commercially available tools, primarily detects

this protein but has the potential to cross-react with other

EZH2 products. Our results demonstrate that our anti-

bodies readily recognize both EZH2α and EZH2β proteins

with high specificity (Figure 2B). To our surprise, we did

not observe additional bands besides those corresponding

to EZH2α and EZH2β, suggesting that, in spite of the large

splicing potential of EZH2, these two proteins are the most

readily detected products generated from this locus in

human cells. Next, given the high degree of expression

shown for EZH2β by our transcriptional and proteomic

screens, we performed immunohistochemistry against this

protein in human testis (Figure 2D), where cell fate deter-

mination relies on two pools with different proliferative

mechanisms, namely meiosis and mitosis. Interestingly, the

EZH2β-specific antibody revealed its preferential expres-

sion in the primary spermatogonia nuclei (white arrow,

Figure 2D, left), a subpopulation of cells that are concen-

trated along the basal lamina and actively undergoing

mitosis. Staining for EZH2β was absent in the nuclei of pri-

mary and secondary spermatocytes that are located more

centrally in the tubules and divide by meiosis (white circle,

Figure 2D, left). This difference in labeling hints at differ-

ences in the function of EZH2β versus the total EZH2

pool. Comparatively, the use of a well-characterized

EZH2α antibody revealed immunoreactivity across all cel-

lular types within seminiferous tubules, including in the

nuclei of spermatogonia as well as primary and secondary

spermatocytes (white circle, Figure 2D, right).

Our combined results demonstrate that the EZH2

locus gives rise to various isoforms, confirms the exist-

ence of two major isoforms (EZH2α and EZH2β) at

both the mRNA and protein levels, and shows their

localization in tissue by immunohistochemistry. These

experimental datasets encouraged us to subsequently
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Figure 1 (See legend on next page.)
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perform functional studies to test whether these different

EZH2 isoforms play redundant or overlapping functions in

human cells by analyzing their cellular localization, co-

factor binding, and behavior as H3-K27 writers during gene

silencing on an isolated gene promoter, as well as their

genome-wide effects on gene expression. We also sought to

gain insight into their biological function by analyzing their

effect on cell proliferation, one of the best-characterized

functions attributed to the EZH2 locus in normal morpho-

genesis and cancer.

EZH2β localizes to the nucleus and interacts with SUZ12

and EED

EZH2 has been historically considered an exclusively nu-

clear protein, although previous studies have described

EZH2 immunoreactivity in the cytoplasm of cancer cells

[31]. This knowledge prompted us to better define the

cell compartment where the new EZH2 isoform func-

tions using confocal microscopy on isolated epithelial

cells. We found that although EZH2β as well as EZH2α

localize to the cell nucleus (Figure 3A), neither of our

Table 1 Comparison of EZH2α and EZH2β transcripts yielded by alternative splicing of EZH2 locus transcripts

EZH2α EZH2β

Exon Exon 50 donor 30 acceptor Intron Exon Exon 50 donor 30 acceptor Intron

size size size size

1 186 ACGAAGgtaacgc cttttagAATAAT 36,858 1 186 ACGAAGgtaacgc cttttagAATAAT 36,858

2 124 GTAAAGgtataat ttaaagAGTATG 583 2 124 GTAAAGgtataat ttaaagAGTATG 583

3 129 AGGGAGgttggtt gttttagTGTTCG 13,719 3 129 AGGGAGgttggtt ttttagGTGGAA 16,621

4 117 TTTATGgtatgta ttttagGTGGAA 2,785 4 121 ATAGAGgtgagcc gtttcagAATGTG 847

5 121 ATAGAGgtgagcc gtttcagAATGTG 847 5 141 GAGATGgtatgcc tgtttagATAAAG 1,473

6 141 GAGATGgtatgcc tgtttagATAAAG 1,473 6 103 GGAAAAgtaagaa atgtcagATATAA 531

7 103 GGAAAAgtaagaa atgtcagATATAA 531 7 164 TACATCgtaagt tttgcagCTTTTC 6,781

8 179 ATTATTgtacgtt tttgcagCTTTTC 6,766 8 92 CATTTGgtaagac ttcgtagGAGGGA 1,478

9 92 CATTTGgtaagac ttcgtagGAGGGA 1,478 9 241 CCTCTGgtaagac tttgtagAAGCAA 485

10 241 CCTCTGgtaagac tttgtagAAGCAA 485 10 170 AGACAGgtaaga ttgtcagGTGTAT 443

11 170 AGACAGgtaaga ttgtcagGTGTAT 443 11 95 ACACCGgtgagtc tttgcagGTTGTG 1,137

12 95 ACACCGgtgagtc tttgcagGTTGTG 1,137 12 41 AAAAGGgttagca tactcagACGGCT 466

13 41 AAAAGGgttagca tactcagACGGCT 466 13 126 CAGAGTgtaagta tctgaagGTCAAA 776

14 126 CAGAGTgtaagta tctgaagGTCAAA 776 14 179 AAAAAGgtgagca tctctagCATCTA 2,238

15 179 AAAAAGgtgagca tctctagCATCTA 2,238 15 96 GGAGAGgtaaggc tttttagATTATT 1,210

16 96 GGAGAGgtaaggc tttttagATTATT 1,210 16 82 ACAATGgtatgtt cttttagATTTTG 942

17 82 ACAATGgtatgtt cttttagATTTTG 942 17 81 CAAAAGgtaggta tttgcagTTATGA 154

18 81 CAAAAGgtaggta tttgcagTTATGA 154 18 85 TTACAGgttggta gtttcagATACAG 1,364

19 85 TTACAGgttggta gtttcagATACAG 1,364 19 335 TTGAATCatctctc ND

20 335 TTGAATCatctctc ND

Deposited cDNA sequences for EZH2α (NM_004456.4) and EZH2β (NM_152998.2) were aligned against the most recently published human genome sequence

(Feb. 2009 GRCh37/hg19) to determine splice donors, splice acceptors, and exon and intron sizes using the University of California, Santa Cruz BLAT tool.

ND: not determined.

(See figure on previous page.)

Figure 1 The EZH2 locus yields two major transcriptional variants: EZH2α and EZH2β. (A) Comparative analysis of the structure of EZH2α

and EZH2β transcript variants where sites of alternative splicing events are highlighted in red on the reference isoform. Details of splicing events

are described in Table 1. (B) Protein structure differences between EZH2α and EZH2β proteins shows the conservation of functional domains and

binding sites of enzymatic co-factors, represented by different colors and labeled accordingly. Labels 1 and 2 indicate the locations of deletions in

EZH2β compared with EZH2α. A comparison of the amino acid sequence highlighting the amino acid differences between the two proteins is

also presented. (C) Evolutionary dendrogram of invertebrate (blue) and vertebrate (green) EZH2 isoforms. Nodes are spaced according to

evolutionary distance. Human EZH2α and EZH2β are highlighted in red. Combined, these results reveal the potential of EZH2 to generate various

isoforms through alternative splicing mechanisms as well as highlight the conservation of EZH2 isoforms throughout evolution. Bp: base pair;

EZH2: enhancer of zeste homologue 2.
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Table 2 Conservation of the EZH2α and EZH2β isoforms across species

RefSeq Species Common name EZH2α/NP_004447.2 EZH2β/NP_694543.1

% identity % identity

NP_004447.2 Homo sapiens Human 100.0 94.0

NP_694543.1 Homo sapiens Human 94.0 100.0

XP_002923814.1 Ailuropoda melanoleuca Giant panda 98.7 92.7

XP_002923815.1 Ailuropoda melanoleuca Giant panda 92.6 98.3

NP_001179953.1 Bos taurus Cow 97.6 91.8

NP_496992.3 Caenorhabditis elegans Worm 23.8 23.4

XP_003496992.1 Cricetulus griseus Chinese hamster 96.6 92.3

XP_003496993.1 Cricetulus griseus Chinese hamster 96.2 90.3

XP_002751914.1 Callithrix jacchus Marmoset 97.9 93.5

XP_002751915.1 Callithrix jacchus Marmoset 92.6 98.3

XP_003432121.1 Canis lupus familiaris Dog 97.9 93.5

XP_003432122.1 Canis lupus familiaris Dog 96.7 92.3

XP_003432123.1 Canis lupus familiaris Dog 92.6 98.3

XP_855891.2 Canis lupus familiaris Dog 86.9 92.3

XP_855935.2 Canis lupus familiaris Dog 91.0 86.5

NP_001137932.1 Drosophila melanogaster Fruit fly 53.6 51.9

NP_524021.2 Drosophila melanogaster Fruit fly 53.6 51.9

NP_001070747.1 Danio rerio Zebrafish 84.0 80.6

XP_001504679.1 Equus caballus Horse 98.7 94.2

XP_001504681.1 Equus caballus Horse 93.5 99.4

XP_003364921.1 Equus caballus Horse 97.5 93.0

XP_003364922.1 Equus caballus Horse 91.7 87.3

XP_003640793.1 Gallus gallus Red jungle fowl 91.2 97.0

XP_418879.3 Gallus gallus Red jungle fowl 96.1 92.0

XP_001097572.2 Macaca mulatta Rhesus monkey 98.0 93.6

XP_002803555.1 Macaca mulatta Rhesus monkey 99.2 94.8

XP_002803556.1 Macaca mulatta Rhesus monkey 92.3 87.8

XP_002803557.1 Macaca mulatta Rhesus monkey 94.0 100.0

XP_003204725.1 Meleagris gallopavo Wild turkey 91.0 86.8

NP_001140161.1 Mus musculus Mouse 97.1 91.3

NP_031997.2 Mus musculus Mouse 97.6 93.3

XP_003270929.1 Nomascus leucogenys Gibbon monkey 99.2 94.8

XP_003270930.1 Nomascus leucogenys Gibbon monkey 92.3 87.8

XP_001505650.2 Ornithorhynchus anatinus Platypus 90.4 86.1

XP_001505800.1 Ornithorhynchus anatinus Platypus 92.3 98.2

XP_003428414.1 Ornithorhynchus anatinus Platypus 97.3 93.0

XP_003428415.1 Ornithorhynchus anatinus Platypus 92.3 98.2

XP_002711987.1 Oryctolagus cuniculus Rabbit 98.3 93.8

XP_002711988.1 Oryctolagus cuniculus Rabbit 93.1 99.0

XP_002711989.1 Oryctolagus cuniculus Rabbit 97.9 91.9

NP_001098571.1 Oryzias latipes Killifish 82.0 78.6

XP_002818672.1 Pongo abelii Sumatran orangutan 95.5 90.7

XP_001165949.1 Pan troglodytes Chimpanzee 92.3 87.8
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antibodies noticeably labeled the cytoplasm. Thus, al-

though it remains possible that alternative splicing can

contribute to the generation of a cytoplasmic form of

EZH2, we found no evidence for this localization with

EZH2β under the conditions studied.

We also performed co-immunoprecipitation experiments

to define whether EZH2β interacts with other members of

the PRC2 complex. We found that this protein is capable

of complexing with SUZ12 and EED (Figure 3B), previ-

ously described as obligate co-factors of conventional

EZH2 methyltransferase function, although the interaction

between SUZ12 and EZH2β is seemingly weaker than that

between SUZ12 and EZH2α. Thus, the sequences used by

various EZH2 proteins for complexing to its enzymatic

partners are not only conserved but also functional. To-

gether, the results of these biochemical studies demonstrate

that EZH2β shares with EZH2α the ability to localize to

the cell nucleus and complex with SUZ12 and EED,

suggesting that both proteins display mechanistic proper-

ties that are expected for them to participate in the regula-

tion of gene repression, an idea which was tested at higher

stringency in subsequent experiments.

EZH2β mediates H3-K27me3-associated gene silencing on

promoters for homeodomain-containing proteins in

genomically integrated reporter systems and isolated

murine T cells

The histone code hypothesis represents a useful paradigm

for understanding how histone marks deposited by writer

proteins (for example, HMTs) recruit mark readers to

gene promoters, which triggers the transition between

permissive and non-permissive chromatin that ultimately

regulates gene transcription. Currently, the conventional

EZH2 protein (EZH2α) is the most characterized writer

of the H3-K27me3 mark in organisms ranging from flies

to humans. For instance, via this mechanism, EZH2-

containing PRCs have an evolutionarily conserved role in

regulating the expression of entire families of transcrip-

tional regulators, such as those for homeobox, Sry-related

high-mobility-group box and forkhead box (FOX) families

[33]. The promoter of the human forkhead homologue,

FOXP3, has recently been described by our group as a

PRC2-regulated gene containing one of the few identified

mammalian Polycomb response elements [34]. Therefore,

we used the FOXP3 promoter as a model for assaying the

transcriptional regulatory function of EZH2β. This system

allowed us to test the hypothesis that, similar to EZH2α,

EZH2β fulfills the criteria as a writer of the H3-K27me3

known to precipitate gene silencing. Because EZH2 func-

tion associates with long-term silencing, instead of using

the typical episomally based reporter systems, we used an

integrated luciferase gene system in which the FOXP3

promoter was cloned after the cytomegalovirus (CMV)

promoter (JFOXP3-FLP). This design allowed us to mea-

sure the dominant effects of EZH2-mediated silencing

effects over the robust activation provided CMV promoter

in a highly sensitive integrated system.

Our experiments demonstrated that EZH2β alone or

when combined with obligate PRC2 complex partners

(SUZ12 and EED) significantly represses luciferase activ-

ity in JFOXP3-E1 FLP compared to transfection with

empty vector alone. Compared with empty vector, EZH2

β had luciferase expression of 26.53 ±8.53% when alone

and 28.60 ±17.23% when in complex, which is equivalent

to a 73.7% reduction in promoter activity when alone.

EZH2α was included in these experiments as a compari-

son and also repressed luciferase expression. EZH2α had

luciferase expression of 45.97 ±25.45% and 24.46 ±2.36%

compared with empty vector, alone and in complex,

respectively (Figure 4A), corresponding to a 54.03% re-

duction in promoter activity when alone. Thus, using

this engineered cell reporter system, we conclude that,

in vitro, EZH2β displays key functional properties that

are expected from a histone code writer. Equally impor-

tant, these results demonstrate that various EZH2 pro-

teins can achieve the gene silencing function previously

attributed to a single HMT protein.

In light of these results, we subsequently sought to

gain insight as to whether this process is also operational

in vivo in primary cells by evaluating the role of EZH2β

in the regulation of FOXP3 expression in isolated mur-

ine T lymphocytes. As these primary cells are noto-

riously difficult to transfect or infect with most of

the viruses used for ex vivo gene transfer, we isolated

Table 2 Conservation of the EZH2α and EZH2β isoforms across species (Continued)

XP_001166099.1 Pan troglodytes Chimpanzee 94.0 100.0

XP_001166174.2 Pan troglodytes Chimpanzee 99.2 94.8

XP_003318915.1 Pan troglodytes Chimpanzee 98.0 93.6

NP_001128451.1 Rattus norvegicus Rat 97.5 93.2

NP_001231238.1 Sus scrofa Wild pig 96.7 92.2

NP_001017293.1 Xenopus tropicalis Western clawed frog 93.2 89.0

Human EZH2α and EZH2β were aligned against all predicted EZH2 isoforms across species to determine the degree of conservation. The highest scoring

correlations for each species and the two isoforms are indicated. Global alignment with free ends gap was performed using the Geneious alignment tool with

BLOSUM62 matrix constrained by an open gap penalty of 12 and gap extension penalty of 3.
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Figure 2 EZH2β is expressed in a variety of adult human tissues. (A) Analysis of EZH2β, EZH2α, as well as associated complex co-factors

SUZ12, EED, RBBP4 and RBBP7 transcripts in 22 human tissues. RT-PCR was performed with primers designed to differentiate the two EZH2

isoforms. Analysis of glyceraldehyde-3-phosphate dehydrogenase was used as amplification control. Red box indicates tissues that possess highly

proliferative capacity and preferential co-expression of all PRC2 complex transcripts, including EZH2β. (B) Specificity of EZH2α and EZH2β

antibodies. Isoform-specific antibodies were tested using western blot of untransfected pancreatic cancer cell lines (Additional file 1: Figure S1)

and also shown here in cells transfected with histidine (HIS) epitope-tagged EZH2α, EZH2β or both isoforms (EZH2αβ). Labeling of the HIS-tag

was used as loading control. (C) Tissue distribution of EZH2β at the protein level where the presence of EZH2β was determined by western blot

analysis of human tissues with the EZH2β-specific antibody. β-actin was used as loading control. (D) Fluorescent immunohistochemistry of

samples of frozen human testis was performed by laser confocal microscopy, in sections labeled for EZH2β (left) and total EZH2 (right). The white

circle encompasses primary and secondary spermatocytes, whereas primary spermatogonia are immediately adjacent to the basal lamina (white

arrow). Nuclei are counterstained with Hoechst. Images were obtained at 10× magnification. White scale bar represents 100 μm. Together, these

results validate that the two major isoforms generated by the human EZH2 locus, namely EZH2α and EZH2β, are translated into proteins that can

be detected not only in cell lysates but also in whole tissues. EED: embryonic ectoderm development; EZH2: enhancer of zeste homologue 2;

GADPH: glyceraldehyde-3-phosphate dehydrogenase; HIS: histidine; RBBP: retinoblastoma binding protein; SUZ12: suppressor of zeste 12.
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lymphocytes from a mouse line transgenically expressing

the adenoviral receptor (CAR transgenic mouse, Taconic,

model 4285) that are amenable to adenoviral-mediated

transduction. Thus, naïve CD4+ splenocytes were isolated

from the CAR transgenic mouse and infected with EZH2β,

EZH2α or control empty adenoviruses. Primary naïve

murine CD4+ lymphocytes transduced with EZH2β did

not express FOXP3 upon stimulation when compared

with cells transduced with empty vector (Figure 4B and

Additional file 2: Figure S2), indicating that recruitment

of EZH2 to the FOXP3 core promoter results in specific

and persistent silencing of FOXP3 expression. This result

was also observed for EZH2α. Compared with 17.6 ±3.12%

of FOXP3-expressing cells under control conditions,

EZH2β overexpression reduced the number of FOXP3-

expressing cells to 3.26 ±0.94%, and EZH2α reduced

this population to 4.28 ±0.58%. Complementary qPCR

assay detected a reduction of FOXP3 transcription of

45.1 ±16.7% by EZH2β and 26.9 ±6.9% by EZH2α com-

pared with empty vector (Figure 4C). Furthermore, in

these experiments, EZH2β overexpression led to increased

levels of EZH2β and H3-K27me3 bound to the FOXP3

core promoter, which was also found with EZH2α over-

expression (Figure 4D).

Through the use of two well-defined systems specially

engineered to analyze EZH2-mediated gene silencing in

lymphocytes (Jurkat-FLP and primary CD4+ splenocytes),

we demonstrate that EZH2β is capable of gene repression

that is mediated by trimethylation of H3-K27, indicating

that EZH2β behaves as a histone code writer in a manner

which is highly similar to the conventional EZH2α pro-

tein. These results suggest that both EZH2 proteins share

mechanisms and potentially regulate similar cellular pro-

cesses and gene targets. Thus, we tested these ideas by

first performing functional cell assays, and subsequently,

through the generation of genome-wide expression pro-

files for these EZH2 proteins.

Expression of EZH2β stimulates cellular proliferation

EZH2 is among the best-characterized epigenetic regula-

tors which, when overexpressed, increases proliferation

and functions as an oncogene. Consequently, we investi-

gated whether the new EZH2β isoform is functional in

cell biological assays using cell proliferation as a model.

We performed these experiments in naïve primary lym-

phocytes transduced with empty vector, EZH2β, or EZH2α.

Figure 4e shows that overexpression of EZH2β and EZH2α

results in an increase in cellular proliferation compared

with the control empty vector. This functional analysis

is congruent with the localization of these proteins to ac-

tively proliferating cell populations (Figure 2D) and with

our data from genome-wide expression analyses, shown

below, which support that both EZH2 isoforms regulate

pro-proliferative gene targets. Taken together, these data

indicate that EZH2β is functional in well-established cell

biological assays.

Expression of EZH2β gives rise to a unique genome-wide

transcriptional profile

Expression profile experiments offer a genome-wide level

reporter assay to investigate whether EZH2α and EZH2β

possess common or divergent functions. This experiment

was chosen because EZH2β expression follows, in most

cases, the expression pattern of EZH2α in the majority of

tissue types studied. EZH2 is a known oncogene for a large

number of tissues, including pancreatic cancer. Thus, we

used a pancreatic epithelial cell system combined with

adenoviral-mediated introduction to overexpress each iso-

form in an attempt to model the effects of pathological

overexpression of each EZH2 isoform on gene repression.

For this purpose, we performed Affymetrix GeneChip

Human Gene 1.0 ST arrays, which showed that of the

28,869 well-annotated genes assessed, 366 unique targets

(36.3% of total repressed) were uniquely repressed by

EZH2β (P <0.05 and log2 fold change >−2 for EZH2β,

P >0.05 for EZH2α, Figure 5). EZH2α-generated ex-

pression profiles displayed a downregulation of 480 tar-

gets (47.6% of total repressed, P <0.05 and log2 fold

change >−2 for EZH2α, P >0.05 for EZH2β, Figure 5). Not-

ably, 162 targets (16.1% of total repressed) were repressed

by both EZH2α and EZH2β (Figure 5, P <0.05, log2 fold

change >−2 for both). Both isoforms also induced up-

regulation in the expression of a significant number of

targets, which may reflect indirect effects mediated by the

repression of upstream regulators. Of the genes assayed,

444 (39.6% of total activated) were activated by EZH2β,

382 (34%) by EZH2α and 296 (26.4%) by both isoforms.

Therefore, as demonstrated by the overall array data, the

novel EZH2β isoform described here is responsible for the

expression pattern of its own unique set of genes, in

addition to a group of common targets with EZH2α.

Repressed genes were organized into ontological cat-

egories using Ingenuity Pathways Analysis (IPA)-based

classifications (Figure 5B). Notably, EZH2β was found to

regulate genes involved in key cellular functions includ-

ing proliferation, differentiation and angiogenesis, which

were previously attributed only to EZH2 isoform. This

concept was better visualized by cross-validating our ex-

pression data with a subset of canonical EZH2-regulated

targets as identified by a previously reported EZH2 chroma-

tin immunoprecipitation-sequencing (ChIP-seq) dataset in

a different cell line [35], generated using an antibody that,

according to our data, recognizes both the EZH2α and

EZH2β isoforms. Cross-reference of significantly repressed

and activated genes parsed from our genome-wide expres-

sion data (Figure 5C) with this independent subset of

targets demonstrates a division pattern similar to that ob-

served in the transcriptional profiles. As such, from a large
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Figure 3 (See legend on next page.)
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subset of genes previously thought to be regulated by a

single EZH2 HMT, we determined the overlap between the

isoform-specific targets we identified and this subset of

canonical EZH2 targets. Figure 5A-right depicts both

occupancy and expression measured on a subset of well-

validated canonical Polycomb targets that have previously

been shown to be regulated by EZH2α. The box highlights a

subset of targets that were identified as EZH2β or EZH2α-

specific from our whole genome assay (Figure 5A-left).

Thus, although each isoform possesses similarity in terms

of ontological functions, mediation of these functions ap-

pears to be executed through the repression of primarily

unique, although sometimes common, targets.

IPA-based network analysis identified a number of

subnetworks of interdependent genes enriched for par-

ticular functions and/or participation in disease pro-

cesses. EZH2β, for instance, was able to uniquely repress

a subnetwork enriched for functions in cellular mainte-

nance and function as well as hematological system de-

velopment and function (Figure 6A). Overexpression of

EZH2α, however, led to no significant alteration of these

targets. EZH2α overexpression resulted in the significant

repression of a subnetwork of targets that associates to

the regulation of cellular growth, cell cycle and prolifera-

tion (Figure 6B). Again, EZH2α repressed many of these

targets uniquely without apparent contribution from

EZH2β. However, subnetwork enrichment for function

in cell death survival displayed equal repression by either

isoform (Figure 6C). Thus, these data indicate that al-

though biochemically quite similar at the level of nuclear

localization, transcription and interaction with critical co-

factors, each isoform displays a preferential gene expres-

sion pattern, which, according to our ontological analyses,

supports their participation in a large number of shared

biological functions.

Discussion
The human EZH2 gene was originally isolated in a screen

for proteins which interact with Vav1, a human proto-

oncogene [36,37]. Notably, although most Polycomb func-

tions have been attributed to require the enzymatic activity

of PRC2, recent data indicate that other related enzymes

may possess redundant or overlapping functions with

EZH2, such as EZH1 [10,38]. Despite these advances, most

Polycomb experiments are designed with the paradigm

that EZH2α is the sole H3-K27me3 methyltransferase.

Thus, it has become essential to explore the isoform com-

plexity of the EZH2 family of proteins. Consequently, the

goal of the current study has been to address this impor-

tant gap in the existing knowledge.

Drosophila possess only one E(z) gene, whereas verte-

brates possess two paralogs: EZH1 and EZH2, with gene

duplication occurring early in evolution, as two paralogs

have been identified in zebrafish [10]. Evidence for alter-

native splicing is evident even in the ancestral E(z) gene

with observed expansions and reductions in the progres-

sion from invertebrate to vertebrate. Although gene dupli-

cation of HMT genes, as observed with Ez proteins

and other HMTs, such as Suv4-20 h1/h2 and Suv39h1/h2

[39], appear to serve redundant functions, the early ex-

pansion of EZH2 through alternative splicing hints at a

neofunctionalization phenomenon. The preservation of al-

ternative splicing events from invertebrates to vertebrates

supports an evolutionary model in which pressures were

high to maintain a diverse pool of EZH2 proteins to facili-

tate precise regulation of repressive programs.

We have characterized the alternative splicing and

translation of the EZH2 locus to yield a minimum of

two distinct functional HMTs: EZH2α, a known enzyme,

and EZH2β, a new enzyme. Biochemical characterization

of EZH2β indicates that it exhibits a similar tissue

expression pattern as EZH2α and that this isoform is

widely expressed in human tissues with particularly high

levels of expression in tissues dependent on replenish-

ment from a progenitor pool of multipotent cells, such

as the thymus and testes. Multiple EZH2-positive bands

have been observed by Southern and western blot in

previous studies [25,40,41], but were often labeled as

artifact. However, our investigation is the first to posi-

tively confirm and characterize two distinct isoforms

using antibodies designed to distinguish between each

protein. Furthermore, we demonstrate that EZH2β is

localized exclusively to the nucleus and capable of

partnering with obligate Polycomb co-factors SUZ12

and EED to form the minimal PRC2 complex necessary

to permit enzymatic activity of the protein. Since the

identification of its mammalian homologue, a number of

EZH2 transcripts have been identified by genomic

(See figure on previous page.)

Figure 3 EZH2β is localized to the nucleus and partners with SUZ12 and EED. (A) Subcellular localization of EZH2β. Antibodies against total

EZH2, EZH2α or EZH2β were used to determine EZH2α or EZH2β localization by immunofluorescence of epithelial cells transduced with

HIS/EZH2β or HIS/EZH2α. Labeling of the HIS-tag was performed to both confirm localization and control for expression. Nuclei are counterstained

with Hoechst and cytoskeletal components labeled with phalloidin red. Images were taken at 100× magnification. White scale bar represents 10 μm.

(B) EZH2β interaction with SUZ12 and EED. Immunoprecipitation from whole cell extracts harvested from epithelial cells transduced with HIS/EZH2α

or HIS/EZH2β using an antibody against the HIS-tag were probed with antibodies against SUZ12 and EED. Five percent inputs of whole cell lysates

were included as control of transduction and expression. These results demonstrate that EZH2β localizes to the nucleus and interact with PRC2 targets,

which are two key features expected of a functional EZH2 isoform. EED: embryonic ectoderm development; HIS: histidine; EZH2: enhancer of zeste

homologue 2; EV: empty vector; immunoprecipitation; SUZ12: suppressor of zeste 12.
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Figure 4 EZH2β represses transcription through H3-K27 trimethylation of gene promoters and increases cellular proliferation.

(A) Luciferase values are shown relative to control (pcDNA) upon nucleofection of EZH2β or with co-factors SUZ12 and EED (EZH2β/S/E) in cells

with an integrated FOXP3 luciferase reporter. EZH2α alone or with co-factors SUZ12 and EED (EZH2α/S/E) is included. *P <0.05. (B) Quantification

of flow cytometry analysis of primary mouse naïve T cells transduced with empty vector, EZH2β or EZH2α for FOXP3 expression. *P <0.05. (C)

qPCR of FOXP3 expression in primary mouse naïve T cells indicates that transcription is reduced by transduction of EZH2β and EZH2α.

Glyceraldehyde-3-phosphate dehydrogenase and hypoxanthine phosphoribosyltransferase were used as expression controls. (D) ChIP assay of

H3-K27me3 on the FOXP3 promoter in primary mouse naïve T cells. Transduction with EZH2α or EZH2β increases H3-K27me3 on the FOXP3

promoter relative to empty vector control. ChIP performed using an antibody against the HIS-tag demonstrates that only the EZH2α- and

EZH2β-infected cells amplify a band to indicate their presence on the FOXP3 promoter, whereas empty vector-infected cells serve as a negative

control. A representative gel is shown from triplicate experiments with associated qPCR quantification. These results reveal that novel EZH2

isoforms can regulate gene expression through H3-K27 trimethylation of gene promoters. (E) Incorporation of 3H-thymidine in primary mouse

naïve T cells transduced with empty vector, EZH2α or EZH2β after 5 days of stimulation. Representative data shown from experiments performed

in duplicate, representing the mean and SD of technical triplicates. These results indicate that EZH2β increases cellular proliferation in a similar

fashion as EZH2α. 3HT: 3H-thymidine; ChIP: chromatin immunoprecipitation; EV: empty vector; EZH2: enhancer of zeste homologue 2; FACS:

fluorescence-activated cell sorting; H3-K27me3: trimethylation of histone 3 at lysine 27; HIS: histidine; qPCR: quantitative polymerase chain

reaction.
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Figure 5 PRC2/EZH2β governs a unique repressive program compared to conventional PRC2/EZH2α. (A) Left: Genome-wide expression

profiling was performed using epithelial cells transduced with EZH2α and EZH2β using Affymetrix Human Gene 1.0 ST Array. Significantly altered

probes (P <0.05) were selected and visualized by cluster analysis. Right: A subset of known and well-characterized Polycomb targets were

assessed by chromatin immunoprecipitation array using an antibody against HIS-epitope-tagged EZH2 isoforms in epithelial cells transduced with

either the empty vector, HIS/EZH2β or HIS/EZH2α. Levels of binding were normalized to input controls for each of the three conditions and fold

changes computed against empty vector control. Fold changes are presented according to percentile rank from 0 (unbound) to light blue (>90%

percentile) of the isoform dataset. ChIP experiments were performed in duplicate with a representative dataset shown above. Targets identified

as EZHβ- or EZH2α-specific from the whole genome experiment in Figure 5A-left are boxed and labeled. Comparison with expression data

generated by qPCR from the same samples reveals that the majority of the target bounds by each isoform are repressed. (B) Comparative

quantification of the percentage of uniquely repressed and activated gene targets regulated by each isoform individually or both isoforms is

indicated (P <0.05, log2 fold change >−2). The ontological classification of targets uniquely repressed by each isoform individually or in

conjunction with the other isoform is also shown. (C) Comparative quantification of the percentage of uniquely repressed and activated gene

targets against a subset of canonical EZH2 targets as determined by an independent ChIP-seq dataset that used an antibody predicted to cross-

react with multiple EZH2 isoforms. ChIP: chromatin immunoprecipitation; EV: empty vector; EZH2: enhancer of zeste homologue 2; qPCR:

quantitative polymerase chain reaction.
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sequencing efforts, supporting the existence of a family

of EZH2 proteins that mediate mammalian gene repres-

sion. Extensive future characterization will be required

to determine the precise role of each protein variant in

gene repression.

PRC2-EZH1 and PRC2-EZH2α regulate a largely over-

lapping set of genes, albeit through different mechanisms;

PRC2-EZH1 possesses greatly reduced HMT activity com-

pared with PRC2-EZH2α [10]. Both EZH2α and EZH2β

are capable of repressing FOXP3 expression in vitro, in a

manner that is increased by transfection with obligate co-

factors SUZ12 and EED. More importantly, using primary

mouse naïve T cells, we demonstrate that both isoforms

are able to occupy the FOXP3 promoter with resultant in-

creases in H3-K27me3 and repression of FOXP3 expres-

sion, suggesting identical mechanisms of repression. These

results highlight the importance for future studies to con-

sider the relative contributions of both isoforms in the

regulation of gene repression.

We demonstrate that EZH2β represses a predomi-

nantly unique subset of gene targets from EZH2α with

a much smaller percentage of redundant targets than

observed between EZH paralogs EZH1 and EZH2 [10].

Although ontology reveals that both isoforms participate

in a similar repertoire of biological processes, subnet-

work analysis of significantly repressed genes indicates

that each isoform regulates distinctive gene networks

within process categories. Furthermore, comparison of

EZH2α and EZH2β targets with published ChIP-seq data

performed with an antibody that fails to discriminate

between isoforms reveals a similar pattern as gene ex-

pression data, with each isoform possessing a larger sub-

set of unique rather than redundant targets [35]. The

primary difference between the two isoforms is the 39

amino acid insert absent in EZH2β compared with

EZH2α. Examination of this insert reveals the presence

of potential sites of post-translational modification, in-

cluding an (ST)-Q motif, which have the potential to be

targeted by kinases that participate in a variety of cel-

lular processes including DNA replication and repair.

Thus, these data serve as the foundation for future stud-

ies aimed at investigating how post-translational modifi-

cations can contribute to impart functional specificity

of each isoform. Coupled with biochemical data, these

studies indicate that EZH2α and EZH2β are capable

of forming distinct repressive complexes that mediate

the repression of unique gene networks within a wide

variety of biological processes already characterized for

PRC2, including proliferation, migration and differenti-

ation, among others [42].

Whole genome gene expression data reveals enrichment

for cell cycle and proliferation targets. Overexpression of

either isoform in naïve T cells results in increased cellular

proliferation. Additionally, immunohistochemistry of total

EZH2 versus EZH2β reveals that EZH2β is localized pri-

marily to developing spermatogonia whereas total EZH2

expression is localized throughout the spermatogonia and

spermatocytes. As spermatogonia undergo mitosis, com-

pared to the meiosis occurring in spermatocytes, a

potential role for EZH2β in the regulation of cell cycle

transitions is likely [43]. Thus, our studies offer a solid

rational and build the trajectory for future careful studies

aimed at deciphering the role of EZH2 isoforms at

the G1/S and G2/M transition points, as well as the type

of post-translational modifications, that can regulate

these processes.

Conclusions
Thus far, the functions of EZH2 have been ascribed en-

tirely to isoform EZH2α. The current body of literature

will require revision to address the relative contribution

of EZH2 isoforms to the biochemical, cellular and

pathobiological functions under study. Furthermore, the

contribution of alternative splicing to the regulation of

HTMs and their function furthers our understanding of

the complexity of regulatory mechanisms underlying the

(See figure on previous page.)

Figure 6 EZH2 isoforms can regulate gene expression genome-wide through defined subnetworks. To test if EZH2β- or EZH2α-specific

genes form interdependent, unique subnetworks, Affymetrix data generated in A was parsed for targets uniquely and significantly repressed

(P <0.05, log2 fold change >−2) by EZH2β, EZH2α or both compared with empty vector. No change is defined as P >0.05 and log2 fold change

between 1.5 and −1.5. Subnetworks were reconstructed using an IPA-propriety algorithm. While a multitude of subnetworks were generated, a

high scoring representative example network for each condition is shown. (A) IPA-assisted subnetwork analysis indicates that EZH2β participates

in the regulation of genes involved in several ontological categories, including cellular function and maintenance as well as hematological system

function. Overexpression of EZH2β results in significant repression whereas EZH2α overexpression fails to produce the same repressive effects in

this particular subnetwork. (B) Similar subnetwork analysis of expression data for enrichments of biological function mediated by EZH2α indicates

that this protein regulates targets associated with proliferative responses and cell cycle regulation. (C) Subnetwork analysis of expression data for

enrichments of biological function mediated by both EZH2β and EZH2α indicates enrichment of targets involved in cell death and survival and

cell signaling. Combined, these data demonstrate that that novel EZH2 isoforms can regulate gene expression genome-wide through unique and

shared targets that are interconnected to form defined subnetworks. Note that, although both EZH2 isoforms can often regulate different genes

represented by the examples (A, B and C), the subnetworks formed by these genes are ontologically known to participate in similar processes (B).

This knowledge not only is congruent with the ability of both EZH2 proteins to regulate cell growth as revealed by our cell biology assays (Figure

4E), but also expands the potential functional association of these isoforms. EZH2: enhancer of zeste homologue 2.
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operation of the histone code. As a result of these find-

ings, a new paradigm of Polycomb-mediated repression

must be considered in which cells are armed with a

multitude of repressive complexes to regulate distinct

gene networks, exponentially increasing the plasticity of

the system to meet the broad spectrum of functions re-

quired in development, growth and maintenance of bio-

logical systems.

Methods
Plasmids and recombinant adenovirus

The search for EZH2-related proteins was performed by

comparing the human EZH2 SET domain protein se-

quence (GenBank: BC010858) against the Expressed Se-

quence Tag database using the BLAST and the UniGene

programs from the National Center for Biotechnology

Information (National Institutes of Health, Bethesda,

MD, USA). This comparison indicated the presence of

the EZH2β-encoding sequence (NCBI: NM_152998.2).

The exact sequences matching this entry as well as other

PRC2 proteins, such as SUZ12 (GenBank: BC015704)

and EED (GenBank: BC068995), were verified by se-

quencing and analysis of publically deposited cDNAs.

Standard molecular biology techniques were used to

clone full-length EZH2α, EZH2β, SUZ12 and EED into

pcDNA3.1/HIS (Invitrogen, Carlsbad, CA, USA). All

constructs were verified by sequencing at the Mayo

Clinic Molecular Biology Core Facility. QuickChange

Site-Directed Mutagenesis was performed as suggested

by the manufacturer (Agilent Technologies, Santa Clara,

CA, USA). Silent mutations were made to delete endog-

enous HindIII and XbaI restriction enzyme sites to permit

passage of EZH2α and EZH2β cDNAs into pacAd5 CMV

K-N pa shuttle vector. Epitope-tagged (6XHis-Xpress)

EZH2α and EZH2β were generated as recombinant

adenoviruses by the Gene Transfer Vector Core at the

University of Iowa. Empty vector (pacAD5 CMV) was

used as the experimental control.

Human tissue RNA panel

Human total RNA for 22 major organs and tissues was

commercially obtained from Ambion (Austin, TX, USA)

and Stratagene (Agilent). cDNA was generated from 1 μg

RNA using SuperScriptT III enzyme (Invitrogen) according

to manufacturer’s instructions. cDNA concentrations were

assessed via internal housekeeping gene glyceraldehyde-3-

phosphate dehydrogenase or hypoxanthine phosphoribo-

syltransferase. PCRs were performed with the following

cycle conditions: 30 to 35 cycles of 94°C for 15 s, 50°C for

30 s, and 72°C for 2 min using 1 to 2 μl of cDNA product.

Amplified products were electrophoresed on 1.5% agarose

gels, digitally imaged, and quantified with ImageJ (National

Institutes of Health, Bethesda, MD, USA). Primers were

synthesized by Integrated DNA Technologies (Coraville,

IA, USA). PCR primers may be found in Additional file 3:

Table S1.

Western blot analysis

Samples were run on 4% to 20% (Lonza, Walkersville,

MD, USA), 6% or 10% SDS-PAGE gels and electroblotted

onto polyvinylidene difluoride membranes (Millipore,

Billerica, MA, USA). The membranes were blocked in 5%

bovine serum albumin or milk in Tris buffered saline with

Tween (TBST) for 1 h at room temperature. The blots

were incubated overnight at 4°C with primary antibody.

After repeated washes in TBST, horse radish peroxidase -

conjugated anti-rabbit or mouse IgG secondary antibody

(1:2,000 to 5,000) was added for 1 h at room temperature.

Blots were developed by Pierce ECL Chemiluminescent

Substrate (Thermo Scientific, Rockford, IL, USA). Human

tissue lysates were procured from Calbiochem (Millipore)

as a ready-to-probe INSTA-blot. Approximately 20 μg of

lysate was loaded per tissue with loading controlled via

amido black straining by the manufacturer. The blot was

incubated overnight with EZH2β (purified, 1:2,000) and

subsequently stripped and re-incubated with β-actin

(1:1,000; Sigma, St. Louis, MO, USA).

Synthesis, purification and validation of EZH2α and

EZH2β antibodies

A 21-mer peptide bridging across the large insert region

missing from EZH2β compared to EZH2α was synthe-

sized, high performance liquid chromatography-purified

and conjugated to keyhole limpet hemocyanin by the

Mayo Clinic Protein Core. For the EZH2α antibody, a

21-mer peptide was synthesized that localized to the in-

sert region. Subsequently, a rabbit was immunized with

the peptide, and test and final bleeds were performed

by Cocalico Biologicals (Reamstown, PA, USA). For

the antibody that recognizes both EZH2α and EZH2β, a

21-met peptide in a region conserved between the two

proteins was synthesized. The anti-serum was affinity

purified using the Protein A IgG Purification Kit ac-

cording to the manufacturer’s protocol (Pierce Biotech-

nology, Rockford, IL, USA). To test the specificity of the

antibodies, Chinese hamster ovary epithelial cells were

transfected with a histidine-tagged (HIS)/EZH2α and

HIS/EZH2β. Whole cell lysates (30 μl) and pancreatic

cell lines (30 μg) were resolved on 4% to 20% SDS-

PAGE gels, and probed with whole sera of EZH2α

(1:200), EZH2β (1:200) and EZH2αβ (1:200). Blots were

stripped and re-probed with Omni-probe (D-8) (1:1,000;

Santa Cruz Biotechnology, Santa Cruz, CA, USA) to

ensure equal loading.

Immunoprecipitation

Panc1 epithelial cells were plated at a cell density of 1 × 106

cells/100 mm dish and transduced with epitope-tagged
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(6XHis-Xpress) EZH2α, EZH2β or empty vector at multi-

plicity of infection (MOI) 150. Subconfluent cells were

lysed in a buffer containing 20 mM Tris-Cl at pH 8.0, 100

mM NaCl, 1 mM EDTA, 0.5% Nonidet P-40 and a protease

inhibitor tablet (Roche, San Francisco, CA, USA). Proteins

were immunoprecipitated as previously described using

10 μg of Omni-probe (D-8) (Santa Cruz Biotechnology)

[44]. Resulting complexes were resolved on a 6% or 10%

SDS-PAGE gels, using antibodies against SUZ12 (1:1,000;

Cell Signaling, Beverly, MA, USA) and EED (1:1,000; Cell

Signaling). Membranes were stripped and incubated with

Omni-probe (D-8) (1:1,000; Santa Cruz), to ensure equal

loading of precipitated EZH2 proteins. A 5% input control

of whole cell lysates under all conditions was included to

ensure the presence of uniform levels of the proteins of

interest.

Cell culture, immunofluorescence and confocal

microscopy

Cell lines were obtained from the American Type Culture

Collection (ATCC, Rockville, MD, USA) and maintained

according to their recommendations. Immunofluorescence

and confocal microscopy were performed as previously de-

scribed [44]. Panc1 cells were plated in eight-chamber

glass slides at a density of 5 × 104 cells/chamber and

transduced with epitope-tagged (6XHis-Xpress) EZH2α,

EZH2β or empty vector at MOI 150. Primary antibodies

were used at the following dilutions: EZH2α (1:50; de-

scribed above), EZH2β (1:50; described above), EZH2

(1:200; Cell Signaling) and Omni-probe (D-8) (1:250; Santa

Cruz). Images were obtained at 100× magnification. Frozen

cryosections of human testis (5 μm) were purchased from

Zyagen (San Diego, CA, USA). Sections were fixed in ice-

cold acetone for 10 min and rehydrated in PBS for 3 min.

Endogenous peroxidase activity was quenched using a 3%

hydrogen peroxide in methanol for 20 min (Sigma).

Avidin/Biotin blocking was performed using a kit from

Vector Laboratories (Burlingame, CA, USA). Tissues were

blocked in CAS Block for 1 h (Invitrogen) prior to over-

night incubation at 4°C in primary antibody. Dilutions were

as follows: EZH2β (1:200; described above) and EZH2

(1:200; Cell Signaling). Sections were subsequently washed

in PBS and incubated in biotinylated goat anti-rabbit sec-

ondary antibody (Vector Laboratories) for 30 min. Samples

were incubated in Alexa Fluor-488-streptaviding conjugate

(Invitrogen). Sections were counterstained with Hoescht.

Images were obtained at 10× magnification.

Microarray, validation and subnetwork constructions

BxPC3 epithelial cells were plated at a density of 1 × 106

cells/100 mm dish and transduced with empty vector,

EZH2α or EZH2β (Ad5CMV) at an MOI of 150. RNA

was prepared as previously described 48 h after trans-

duction [44]. Experiments were performed from pooled

biological triplicates in technical duplicates. The trans-

duction efficiency of these cells at MOI 150 is 81.3 ±

1.99% as determined by transduction with GFP adeno-

virus. Global gene expression profiling was carried out

at the Microarrays Facility of the Research Center of

Laval University CRCHUL using the Affymetrix Human

Gene 1.0 ST arrays (28,869 well-annotated genes and

764,885 distinct probes). Intensity files were generated

by Affymetrix GCS 3000 7 G and the GeneChip

Operating Software (Affymetrix, Santa Clara, CA, USA).

Data analysis, background subtraction and intensity nor-

malization was performed using robust multiarray analysis

[45]. Genes that were differentially expressed along with

false discovery rate were estimated from t test (>0.005)

and corrected using Bayes approach [46,47]. Data analysis,

hierarchical clustering and ontology were performed with

the OneChanelGUI to extend affylmGUI graphical inter-

face capabilities [48] and Partek Genomics Suite, version

6.5 (Partek Inc., St. Louis, MO, USA) with analysis of vari-

ance analysis. A cutoff of expression log2 fold change of

two and P <0.05 was set to identify molecules whose ex-

pression was significantly differentially regulated. EZH2β

and EZH2α baseline transcript levels were assessed com-

pared to overexpression by qPCR to assure that each

isoform was expressed at approximately equivalent levels

(Additional file 4: Figure S3A). Additionally, a small sub-

set of targets was validated by qPCR (Additional file 4:

Figure S3C).

Selected probes and their fold changes were loaded

into IPA Software (Ingenuity Systems. Each identifier

was mapped to its corresponding object in the Ingenuity

Knowledge Base. These molecules, called Network Eli-

gible molecules, were overlaid onto a global molecular

network developed from information contained in the

Ingenuity Knowledge Base. For the purposes of network

reconstruction, a log2 fold change of two was used.

Networks of Network Eligible molecules were then algo-

rithmically generated based on their connectivity. The

functional analysis of a network identified the biological

functions and/or diseases that were most significant to

the molecules in the network. The network molecules

associated with biological functions and/or diseases in

the Ingenuity Knowledge Base were considered for the

analysis. Right-tailed Fisher’s exact test was used to cal-

culate a P-value determining the probability that each

biological function and/or disease assigned to that net-

work was due to chance alone.

Flp-in system, transfection and luciferase assays

The human FOXP3 core promoter containing −511 bp

from transcription start site was amplified by PCR using

FOXP3 promoter sequence-specific primers from po-

sition −511 to +176. The genomic DNA extracted from

CD4+ T cells of a healthy donor was used as a template.
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The PCR product was subcloned in the pGL3 basic vec-

tor (Promega, Madison, WI, USA). Similarly, the FOXP3

core promoter plus the first enhancer (E1) containing

−511 bp to +2,738 was also amplified by PCR and

subcloned in the pGL3 basic vector (Promega). The Flp-In

system (Invitrogen) was used for the generation of a

stable human FOXP3 core promoter and FOXP core +E1

promoter Flp-In-Jurkat. Flp-In-Jurkat cells (Invitrogen)

were co-transfected with FOXP3 core or FOXP3 core + E1

in a pcDNA5/ FLP recombination target (FRT) vector

and a FLP-recombinase vector (pOG44) (pOG44:FOXP3

core or FOXP3 core + E1/pcDNA5/FRT ratio = 9:1),

resulting in a stable integration of the gene of interest

at the FRT-site in the genome. For the selective growth

test, individual cells were grown in 24-well plates. The

culture medium was supplemented with hygromycin at

250 μg /ml or 100 μg/ml. Two million FOXP3 core and

FOXP3 core + E1 Flp Jurkat cells were transfected using

the Amaxa Cell Line Nucleofector Kit V for Jurkat cells

according to the optimized protocol provided with the kit.

Two micrograms of plasmid DNA for EZH2α, EZH2β,

SUZ12 and EED were used in the nucleofection proce-

dure. Luciferase assays were done following the manu-

facturer’s recommendations (Promega). Data represent

the mean and SD of three independent experiments

(*P <0.05).

Adenoviral transduction and flow cytometry

The CAR transgenic mouse was obtained through the

NIAID Exchange Program, NIH: Balb/cJ[Tg]CARdelta1-

[Tg]DO11.10 mouse line #4285 [49,50]. Murine naïve

CD4+ splenocytes were isolated using a combination

of magnetic separation kits (Miltenyi Biotec, Auburn,

CA, USA). Sequential use of the CD4+CD25+ regulatory

T cell isolation kit and the CD4+CD62L+ T cell isolation

kit resulted in naïve FOXP3-negative T cells used for

in vitro induction of FOXP3. Naïve T cells were isolated

from the CAR transgenic Balb/cJ[Tg]CARdelta1-[Tg]

DO11. Cells were activated for 48 h with empty vector,

EZH2α or EZH2β at an MOI of 250. The transduction

efficiency of these cells as determined by flow cytometry

with propidium iodide exclusion using GFP adenovirus

is 89.4 ±2.1%. Cells were activated under the typical

stimulation conditions for 3 days and processed for

ChIP and qPCR to determine methylation of H3K27me3

marks at the FOXP3 core promoter and levels of FOXP3

expression, respectively. Flow cytometry was used to

look at levels of FOXP3 expression within the CD4+

population across four biological replicates. Intracellular

staining procedures for FOXP3 were followed using the

application notes from Alexa Fluor 488 anti-mouse/rat/

human FOXP3 (BioLegend, San Diego, CA, USA). For

qPCR analysis, biological triplicates were pooled and

analyses performed in technical duplicate. Data

represent the mean and SD of four independent experi-

ments (*P <0.05).

T cell stimulation

In vitro activation of the isolated T cells followed similar

conditions among the different cell types. Anti-CD3,

OKT3 (eBioscience, San Diego, CA, USA) for the Jurkat

cells, 145-2C11 (BD Biosciences, San Jose, CA, USA) for

the mouse T cells, and UCHT1 (BD Biosciences) for

the human T cells was platebound at 2 μg/ml. Soluble

anti-CD28 (BD Biosciences) at 2 μg/ml plus 100 units/ml

IL-2 was added to the cultures throughout the

incubation period. Human transforming growth factor

beta-1 recombinant (AUSTRAL, San Romano, CA, USA)

at a concentration of 5 ng/ml was used to generate adap-

tive Treg cells.

Chromatin immunoprecipitation assays

ChIP assays were performed as previously described

using H3-27me3 (Cell Signaling) and Omni-probe (D-8)

(Santa Cruz) antibodies [51]. Primers used to analyze the

FOXP3 promoter are listed in Additional file 3: Table S1.

For the Polycomb target screen, mRNA and ChIP sam-

ples were processed from BxPC3 epithelial cells as de-

scribed above and used with the Human Polycomb and

Trithorax Target Genes ChIP PCR Array (SA Biosci-

ences, Valencia, CA, USA). ChIP were performed in bio-

logical duplicate and of the 84 targets present on the

array, 78.6% (66 out of 84) were occupied by EZH2α,

serving as an internal positive experimental control. Ex-

pression profiling was performed in biological triplicate

with the averaged values reported.

3H-thymidine incorporation proliferation assay

Naïve T cells from a CAR D011.10 mouse were isolated

and transduced with empty vector, EZH2α and EZH2β

as described above. Cells were plated at 6.6 × 105/ml in

complete Roswell Park Memorial Institute medium

containing αCD28 at 2 μg/ml plus 100 units/ml IL-2,

and 200 μl was added per well to a 96-well round bot-

tom plate coated with αCD3 at a concentration of

2 μg/ml. Five days after plating, 20 μl of 3H-thymidine

(6.7 Ci/mmol NET-027) at a 1:20 dilution in complete

Roswell Park Memorial Institute medium (1.0 μCi) was

added to each well and incubated for approximately

18 h. Cells were harvested and counted on the micro-

titer plate counter.

Bioinformatics and statistical analysis

Bioinformatics-assisted splice-mapping of the human EZH2

locus was performed using AceView [52]. An evolutionary

dendrogram of common invertebrate and vertebrate EZH2

isoforms was created using the Geneious Tree Builder with

a BLOSUM62 matrix, free end global alignment with a gap
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open penalty of 12 and a gap extension penalty of 3 (no

outbound group selected). Predicted EZH2 splice variant

sequences were curated from National Center for Biotech-

nology Information. Statistical analyses were performed

using Graphpad Prism (La Jolla, CA, USA). Descriptive

analyses including means and SDs were performed in nor-

mally distributed data. One-way analysis of variance with

Tukey’s post-hoc test was utilized to determine statistically

significant observations. A P-value of <0.05 was consid-

ered as statistically significant.

Additional files

Additional file 1: Figure S1. Identification of multiple EZH2-positive

bands in pancreatic epithelial cells. Thirty micrograms of whole cell

extracts from a subset of pancreatic cells lines were examined for EZH2α

and EH2β expression and probed with whole sera of EZH2α (1:200),

EZH2β (1:200) and EZH2αβ (1:200). Note that while in some instances,

EZH2α and EZH2β are equally spliced, in other cases, only one isoform

predominates. β-actin is used here as a loading control. Red arrows

indicate bands of interest.

Additional file 2: Figure S2. FACS analysis of FOXP3+ cells under

EZH2β and EZH2α overexpression. Representative figure of raw data.

Primary naïve murine CD4+ lymphocytes transduced with EZH2β did not

express FOXP3 upon stimulation when compared to cells transduced

with empty vector. Bracket indicates the population of FOXP3+

lymphocytes from the total population of viable naive lymphocytes.

Quantification of results reported in Figure 4B represents the average of

four biological replicates.

Additional file 3: Table S1. PCR primers. Tables of primers utilized for

experiments described in this manuscript.

Additional file 4: Figure S3. Affymetrix microarray validation. (A) qPCR

of EZH2β and EZH2α expression in transduced BxPC3 epithelial cells was

used to assess the levels of EZH2β and EZH2α transcript at baseline

(empty vector control) and overexpression conditions (MOI 150).

Hypoxanthine phosphoribosyltransferase was used as a housekeeping

control for normalization. (B) Western blot of whole cells extracts from

the overexpression conditions described in A probed with antibodies

against EZH2α, EZH2β and HIS-tag. β-actin was used as a loading control.

(C) To validate the results of the Affymetrix GeneChip Human Gene 1.0

ST microarray, five targets were selected for validation via qPCR. Results

are presented as a scaled, comparative heatmap.
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