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et al., 2005). Our appreciation of the structure and function of the 

SC can therefore help provide insights, first, into how the basal gan-

glia might contribute to shifting the direction of gaze (which may 

serve as a general model), and second, how the SC might contribute 

to general functions performed by the basal ganglia.

TECTO-BASAL GANGLIA CONNECTIONAL ARCHITECTURE

PARALLEL LOOPS

Alexander et al. (1986) were the first to appreciate the parallel-loop 

configuration of the connections between the cerebral cortex and 

the basal ganglia. These parallel, partially segregated loops, pass 

sequentially through the basal ganglia nuclei and return to cortical 

regions of origin via a relay in the thalamus (Joel and Weiner, 1994; 

Groenewegen et al., 1999; Haber, 2003). Although the loops originate 

from functionally diverse regions of cerebral cortex, the internal 

micro-circuits of the basal ganglia with which they make contact 

are qualitatively similar in terms of cell-type, neurochemistry, and 

intrinsic connectivity (Voorn et al., 2004). Much experimental 

evidence now supports the concept that cortico-basal ganglia-

 thalamo-cortical channels have an important anatomical and func-

tional significance (Alexander et al., 1986; Parent and Hazrati, 1995; 

Middleton and Strick, 2000). Consequently, they have been incor-

porated into many contemporary conceptual and  computational 

The basal ganglia are one of the fundamental processing units of the 

vertebrate brain. As such they have evolved multiple connections 

with most regions of the cerebral cortex, limbic system, thalamus, 

and numerous structures in the hindbrain. An important, although 

not exclusive, component of the basal ganglia connectional archi-

tecture are the parallel looped projections that originate in and 

return to external structures. The most prominent examples of 

this configuration are the looped projections connecting the basal 

ganglia with the cerebral cortex (Alexander et al., 1986). However, 

prior to the evolutionary expansion of the cerebral cortex, it was 

probably the co-evolution of the basal ganglia with subcortical 

sensorimotor structures that established basic looped circuitry onto 

which the cortex was later grafted (Reiner, 2010). The purpose 

of the present article is to detail the functional anatomy of con-

nections between one of the evolutionary primitive sensorimotor 

structures of the brainstem, the superior colliculus (SC), and the 

basal ganglia. The SC was chosen as a template structure because 

its anatomy (Grantyn and Moschovakis, 2004; May, 2006), electro-

physiology (Boehnke and Munoz, 2008), and especially its role in 

the re-direction of gaze (Sparks, 1986; Dean et al., 1989; Stein and 

Meredith, 1993; Grantyn and Moschovakis, 2004), are compara-

tively well understood. The connections between the SC and basal 

ganglia are also well characterized (Hikosaka et al., 2000; McHaffie 
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models of the basal ganglia (Mink, 1996; Redgrave et al., 1999a; 

Gurney et al., 2001a,d; Frank and Claus, 2006; Humphries et al., 

2006; Frank et al., 2007). However, it is likely that the cortico-basal 

ganglia loops were pre-dated by looped projections connecting sub-

cortical structures with the basal ganglia (Figure 1).

This idea was originally proposed with specific reference to the 

SC by May and Hall (1984) and later expanded upon by McHaffie 

et al. (2005). Thus, in addition to descending projections to the 

pons and the medulla (Redgrave et al., 1987), both the superficial 

and deep layers of the SC have ascending connections with targets 

in the thalamus, including the lateral posterior nucleus (Lin et al., 

1984; Abramson and Chalupa, 1988; Berson and Graybiel, 1991; 

Harting et al., 2001b) and the midline/intralaminar nuclear com-

plex (Chevalier and Deniau, 1984; Krout et al., 2001). Significantly, 

the ascending projections of the SC specifically target regions of 

the thalamus that provide major afferents to the striatum and 

STN (Takada et al., 1985; Feger et al., 1994; Van der Werf et al., 

2002) (Figure 2). This arrangement suggests the SC is an impor-

tant afferent source of sensory and motor information, as well 

as being a principal recipient of basal ganglia output (McHaffie 

et al., 2005).

A detailed examination of tecto-thalamic projections suggests 

there are at least two functionally segregated systems, one originat-

ing from the superficial layers and the other from the deep layers. 

Output from the exclusively visual superficial layers is directed to 

the extrageniculate visual thalamus (lateral posterior/pulvinar com-

plex) (Lin et al., 1984; Abramson and Chalupa, 1988; Berson and 

Graybiel, 1991; Harting et al., 2001b). In addition to its efferent con-

nections with extrastriate visual cortex (Updyke, 1981; Raczkowski 

and Rosenquist, 1983), this lateral posterior region of the thala-

mus also projects extensively to localized regions of the striatum, 

including lateral aspects of the body and tail of the caudate and 

dorsal putamen (Lin et al., 1984; Takada et al., 1985; Harting et al., 

2001a,b; Cheatwood et al., 2003). This tecto-thalamic projection 

therefore provides a fairly direct route by which early visual input 

can be made available to the striatum (Lin et al., 1984; Takada 

et al., 1985; Harting et al., 2001a,b). The next link of this loop is the 

“direct” striatonigral projection which relays information from the 

visual thalamus to the ventrolateral aspects of substantia nigra, pars 

reticulata (Deniau et al., 1996; Gerfen and Wilson, 1996; Deniau 

et al., 2007). It is within these nigral regions that signals related to 

visual orienting are most frequently encountered (Hikosaka and 

Wurtz, 1983) and from which the final nigrotectal link of the visual 

loop returns to the SC (May and Hall, 1984; Harting et al., 1988; 

Redgrave et al., 1992a).

The ascending projections from the SC deep layers are to the 

 thalamic intralaminar nuclei; the caudal intralaminar complex 

(centromedian and parafasicular nuclei) and the rostral intralami-

nar thalamic group (central lateral, paracentral, and central medial 

nuclei) (Chevalier and Deniau, 1984; Krout et al., 2001). Since both 

the caudal and rostral intralaminar thalamic nuclei provide topo-

graphically ordered projections to all functional territories within 

the striatum (Mengual et al., 1999; Van der Werf et al., 2002; Smith 

et al., 2004), the colliculo-thalamo-basal ganglia-collicular projec-

tions involving these sub-regions of the intralaminar thalamus may 

themselves represent sub-components of functionally independ-

ent parallel loops. The “direct” and “indirect” components of the 

tecto-thalamo-basal ganglia-tectal loops that project between the 

intrinsic nuclei of the basal ganglia are well known and have been 

reviewed extensively elsewhere (Tulloch et al., 1978; Deniau et al., 

1996; Gerfen and Wilson, 1996; Smith et al., 1998). Similarly, the 

projections from both basal ganglia output nuclei (substantia nigra 

pars reticulata and the internal globus pallidus) back to the SC 

have also been described in detail (Graybiel, 1978; Harting et al., 

1988; Deniau and Chevalier, 1992; Redgrave et al., 1992a,b; Takada 

et al., 1994).

Together these observations provide strong evidence for a primi-

tive pattern of looped connections which originate in different parts 

of the SC, project in parallel via the thalamus through the basal 

ganglia and return to the same regions in the SC. Before leaving this 

A B

FIGURE 1 | Cortical and subcortical sensorimotor loops through the basal ganglia (modified with permission from McHaffie et al., 2005). (A) The position of 

the thalamic relay is on the return arm of cortical loops, while for subcortical loops, the thalamic relay is on the input side. (B) Predominantly excitatory regions and 

connections are in red; inhibitory regions and connections are in blue. GPi, internal globus pallidus; SN, substantia nigra; Thal, thalamus.
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Together these results suggest that phylogenetically older structures 

such as the SC established direct access to the basal ganglia output 

nuclei via a subcortical “hyperdirect” projection.

A DIRECT TECTO-NIGRAL PROJECTION

A further important input to the basal ganglia occurs via afferents 

to DA cell groups in the ventral midbrain (substantia nigra pars 

compacta, SNc and the ventral tegmental area, VTA) (Lindvall 

and Bjorklund, 1974). Inputs to DA containing regions of the 

ventral midbrain from several brainstem structures, including the 

pedunculopontine tegmental nucleus (Mena-Segovia et al., 2004; 

Winn, 2006), the lateral dorsal tegmental nucleus (Omelchenko 

and Sesack, 2005), the dorsal raphe (Benarroch, 2009), the rostro-

medial tegmental nucleus (Jhou et al., 2009), the periacqueductal 

gray (Omelchenko and Sesack, 2010) and the parabrachial nucleus 

(Coizet et al., 2010), have been described. However, given the sen-

sitivity of DA neurones to unexpected biologically salient events 

(Schultz, 1998; Redgrave et al., 1999b; Horvitz, 2000; Redgrave and 

Gurney, 2006; Redgrave et al., 2008) it is the direct connections 

with sensory structures such as the SC that has attracted much 

recent interest.

A direct tectonigral pathway (Figure 3) was first described in 

rodents by Comoli et al. (2003) and later confirmed in cat (McHaffie 

et al., 2006), and monkey (May et al., 2009). Using anterograde and 

retrograde tracing techniques supported by ultrastructural analysis 

in the rat, Comoli et al. (2003) showed that the tectonigral path-

way comprises several functionally distinguishable components. 

Anterogradely labeled tectonigral boutons formed both asymmet-

ric (presumed excitatory) and symmetric (presumed inhibitory) 

synapses with both tyrosine hydroxylase-positive and -negative 

elements in substantia nigra pars compacta. The projection is 

also broadly topographical with neurones in lateral SC project-

ing strongly to lateral SNc while more medial regions of SNc and 

VTA receive predominantly from the medial intermediate layers 

(Comoli et al., 2003) and periaqueductal gray (Omelchenko and 

Sesack, 2010).

A particularly important feature of SC projections to SNc is that 

many tectonigral cells-of-origin also appear to send an ascending 

axon collateral to the thalamus (Figure 4). In a double retrograde 

tracing study (Coizet et al., 2007), significant double-labeling was 

reported after injections involving tectonigral fibers and ascend-

ing tectothalamic projections. Separate injections into the rostral-

 intralaminar, caudal-intralaminar, and ventromental thalamic 

nuclei each double-labeled between 15 and 30% of tectonigral 

neurones in the lateral deep SC. However, whether the double 

labeling associated with different targets in the thalamus are part 

of the same or separate projection systems is unresolved. If they 

are separate, the proportions of double labeled cells added together 

could potentially give a total of ∼70%.

This brief anatomical overview confirms that the SC, one of the 

primitive sensorimotor structures in the brainstem, is not only an 

important recipient of basal ganglia processed information but is 

also a critical source of input. Direct afferent connections target 

both the STN and DA cell groups in the ventral midbrain while 

indirect input to the striatum occurs via relays in the thalamus. 

The functional implications of such this sub-cortical architecture 

will now be considered, first, in terms of how the basal ganglia 

topic, it is worth noting that to view the sub-cortical basal ganglia 

loops as segregated closed channels of communication is undoubt-

edly simplistic (cf. Joel and Weiner, 1994; Haber, 2003) for similar 

comments about the cortico-basal ganglia loops). The synaptic 

relays between the different parts of each loop (in the structures of 

origin, the thalamus, and the various basal ganglia nuclei), represent 

nodal points whereby signals originating from outside the loop can 

modulate activity circulating within the loop.

A SUB-CORTICAL “HYPER-DIRECT” PROJECTION

In recent years, evidence has accumulated that the STN should 

be considered as an important entry point to the basal ganglia 

(Nambu et al., 2002), in addition to being an intrinsic relay in the 

classical “indirect-projection” (Albin et al., 1989). Thus, cortical 

afferents arising mainly from prefrontal and motor areas make 

direct contact with the STN (Afsharpour, 1985; Nambu et al., 2002). 

However, since the basal ganglia, including the STN, were present 

prior to the evolutionary expansion of cerebral cortex (Reiner, 

2010), we might expect the STN also to receive inputs from ancient 

brainstem structures.

Evidence consistent with this suggestion for the SC was initially 

provided by Tokuno et al. (1994) and further emphasized by Coizet 

et al. (2009). In the latter study, tracer injections into the lateral 

deep SC layers produced dense anterogradely labeled terminals 

in the STN (Figure 3). Ultrastructural examination of the tecto-

subthalamic projection revealed a high proportion of asymmetrical 

synaptic contacts suggesting that the projection is predominantly 

excitatory. In contrast, the STN was virtually devoid of terminal 

labeling when injections were directed to the medial SC. Injections 

of retrograde tracers into the STN confirmed small- to medium-

sized multi-polar neurones concentrated in the lateral deep lay-

ers of the SC were the source of the tecto-subthalamic projection. 

FIGURE 2 | The tecto-thalamo-striatal projection. Thalamo-striatal neurones 

in the central medial nucleus of the thalamus labeled with CTb (purple) 

retrogradely transported from the striatum, surrounded by terminal boutons 

labeled with biotinylated dextran (brown) anterogradely transported from the 

deep layers of the superior colliculus.
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FIGURE 4 | A schematic illustration of the proposed convergence of 

short-latency phasic inputs to the striatum elicited by an unpredicted 

visual event. Direct retinal input to the superior colliculus could be 

re-directed, via branched projections to the intralaminar thalamic nuclei and 

to the substantia nigra pars compacta. At present, the identities of the 

neurotransmitters used in branched connections from the superior 

colliclus are unknown. Consequent, potentially converging phasic inputs 

to the striatum from intralaminar nuclei (GLU, glutamate) and substantia 

nigra (DA, dopamine) are likely to play a critical role in 

reinforcement  learning.

FIGURE 3 | The tecto-subthalamic and tecto-nigral projections in rat 

(modified with permission from Coizet et al., 2009). A large injection of 

the anterograde tracer PHA-L into the deep layers of the lateral superior 

colliculus (SC) produced dense fiber and terminal labeling in substantia 

nigra pars compacta (SNc) and subthalamic nucleus (STN). Note the 

dense clusters of terminal boutons, presumably surrounding neuronal cell 

bodies in STN (see inset). The tecto-thalamic projection was also confirmed 

in this case with terminal labeling evident in the parafasicular thalamic nucleus 

(PF). ic, Internal capsule; SNr, substantia nigra pars reticulate; ZI, zona incerta.
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what seems to be a simple reflex redirection of gaze. Note that 

the initiation of gaze-shifts to un-predicted sensory events is typi-

cally preceded by a pause in inhibitory nigrotectal output activity 

(Hikosaka et al., 2000). The looped architecture connecting the SC 

to the basal ganglia via the dorsal thalamus is a candidate mecha-

nism to perform the pre-attentive selections required to deter-

mine whether gaze should be shifted, and if so, to which stimulus 

(McHaffie et al., 2005).

INTERRUPT?

The “hyper-direct” connections from the SC to the STN could pro-

vide a mechanism whereby early visual signals can influence basal 

ganglia output in advance of information circulating in  tecto-basal 

ganglia loops. Because the subthalamo-nigral projection is excita-

tory (Smith et al., 1998) and the nigrotectal pathway is inhibitory 

(Chevalier and Deniau, 1990), a burst of activity in the STN trans-

mitted to nigrotectal neurones would deliver a pulse of inhibitory 

signals to the SC. Two potential, although not necessarily exclusive, 

functions for such signals have been proposed. First, a vital part 

of the process by which attention is switched and gaze redirected 

is to interrupt or close down currently open/selected channels. A 

short-latency burst of inhibitory nigrotectal activity initiated by 

the STN could interrupt or break current gaze-fixation (Gillies and 

Willshaw, 1998; Redgrave et al., 1999a). Alternatively, Mink (1996) 

has proposed that a widely broadcast excitatory signal from the 

STN to basal ganglia output nuclei could be part of a mechanism 

to suppress motor programs that would otherwise interfere with 

desired movements. However, our finding in the rat that “hyper-

direct” input to the STN comes only from the lateral SC (Coizet 

et al., 2007) raises problems for both suggestions. First, the ecology 

of the rodent is such that threatening stimuli are most frequently 

detected in the upper visual field, which according to the retinoc-

entric map, is represented in the medial SC (Dean et al., 1989). In 

the class of stimuli that required the ongoing behavior of rodents 

to be interrupted, overhead predators would certainly be included. 

Similarly, it is not immediately apparent why selection mechanisms 

required to distinguish between multiple visual events in the upper 

field might require a radically different, non-STN associated archi-

tecture. The question of why typically non-threatening events in the 

lower visual field of rodents have direct access to the basal ganglia 

via the STN, whereas defense-related circuitry of the medial col-

liculus appears to operate through a different architecture remains 

to be answered.

REINFORCEMENT

Insofar as reinforcement operates to bias future behavioral selec-

tions, the association between reinforcement learning and the basal 

ganglia is to be expected (Wickens, 1993; Schultz, 1998; Wise, 2004; 

Arbuthnott and Wickens, 2007). The mechanisms proposed for 

adjusting the sensitivities of the striatum to “reinforced” and “non-

reinforced” inputs are long term potentiation (LTP) and long term 

depression (LTD) (Centonze et al., 2001; Reynolds and Wickens, 

2002; Calabresi et al., 2007). Selectivity is achieved by reinforce-

ment acting specifically on recently or concurrently active inputs 

(Redgrave and Gurney, 2006; Arbuthnott and Wickens, 2007). In 

this model, reward-related inputs from the cerebral cortex are 

reinforced by signals from DA neurones in the ventral midbrain 

modulates SC-mediated gaze shifts, and second, how aspects of 

basal ganglia function might benefit from short-latency sensory 

input from the SC. 

FUNCTIONAL IMPLICATIONS

Despite suggestions implicating the basal ganglia in a wide range of 

functions, accumulating evidence points to a generic role in selec-

tion (Mink, 1996; Redgrave et al., 1999a; Hikosaka et al., 2000) and 

reinforcement learning (Schultz, 1998; Wise, 2004; Berridge, 2007). 

Selection would be an emergent property of the parallel looped-

architecture that connects the basal ganglia with most external 

structures (Alexander et al., 1986; McHaffie et al., 2005). Output 

signals from the basal ganglia are tonically active and inhibitory 

(Chevalier and Deniau, 1990). Selective suppression of inhibitory 

output in some loops while maintaining or increasing it in others 

(selective disinhibition Chevalier and Deniau, 1990) would select 

the targets of disinhibited loops (Redgrave et al., 1999a). Selection as 

a property of basal ganglia macro-architecture has been confirmed 

computationally in biologically constrained simulations (Gurney 

et al., 2001b,c; Humphries et al., 2006) and the control of robot 

action selection (Prescott et al., 2006). In addition, the basal ganglia 

have also been associated with reinforcement learning, in particular, 

instrumental conditioning (Schultz, 1998; Wise, 2004; Berridge, 

2007). Insofar as reinforcement acts to bias future selections, by 

increasing or decreasing the probability that reinforced selections 

will be re-selected (Thorndike, 1911), reinforcement learning is 

likely to be closely associated with the mechanism(s) of selection 

(Wickens et al., 2007; Redgrave et al., 2008). We will now consider 

how connections between the SC and the basal ganglia could con-

tribute to these two important functions.

SELECTION

Faced with competing motivations and multiple sensory inputs, early 

vertebrates, like their modern relatives, required a means to select the 

most pressing stimuli and adaptive responses while suppressing less 

favored options. As the primary structure responsible for re- directing 

gaze toward or away from unexpected novel events (Dean et al., 1989; 

Stein and Meredith, 1993), the SC has always been confronted by 

pressing problems of selection. The situation arises because the 

retinotectal visual system can simultaneously represent numerous 

events, each one of which could potentially initiate a change of gaze. A 

selection architecture that can evaluate which of multiple simultane-

ously presenting stimuli is the most urgent, is essential.

One possibility would be to solve the problem locally with 

mutually inhibitory connections between all elements in the SC’s 

sensorimotor maps (Snaith and Holland, 1990). However, on what 

basis would this reciprocally connected inhibitory network oper-

ate? Simple rules (e.g., size/speed/contrast) would run the risk of 

ignoring the near threshold sensory stimuli (which often foretell 

the beginning of life-or-death events, e.g., a small movement in 

the bushes or the snap of a twig), in favor of physically salient but 

innocuous stimuli, or on other occasions, miss the obvious. An 

alternative would be to have a system fully appraised of the range 

current motivational, contextual, and sensory variables perform 

selections according to the most pressing needs of the organism 

(Mink, 1996; Redgrave et al., 1999a). Perhaps it is for this reason 

the SC requires a contribution from the basal ganglia to perform 
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