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Summary: 

Labile blood products contain phosphatidylserine (PtdSer)-expressing cell dusts, including apoptotic 

cells and microparticles. These cell byproducts are produced during blood product process or storage 

and derived from the cells of interest that exert a therapeutic effect (red blood cells or platelets). 

Alternatively, PtdSer-expressing cell dusts may also derived from contaminating cells, such as 

leukocytes, or may be already present in plasma, such as platelet-derived microparticles. These cell 

byproducts present in labile blood products can be responsible for transfusion-induced 

immunomodulation leading to either TRALI or increased occurrence of post-transfusion infections or 

cancer relapse. In this review, we report data from the literature and our laboratory dealing with 

interactions between antigen-presenting cells and PtdSer-expressing cell dusts, including apoptotic 

leukocytes and blood cell-derived microparticles. Then, we discuss how these PtdSer-expressing cell 

byproducts may influence transfusion. 

 

Key words: Apoptotic cells; Microparticles;Macrophages; Dendritic cells; TRALI; Tolerance; 

Inflammation; Transfusion; Treg; labile blood products  
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Résumé :  

Les produits sanguins labiles contiennent des débris cellulaires qui expriment à leur surface la 

phosphatidylsérine, un phospholipide exprimé à la face interne de la membrane plasmique des 

cellules viables. Ces débris, générés durant la conservation ou la filtration des produits sanguins 

labiles, correspondent à des cellules en apoptose ou des microparticules. Ces débris peuvent donc 

influencer la transfusion et conduire à une activation du système immunitaire du patient transfusé, à 

l’origine du TRALI par exemple. Au contraire,ces débris cellulaires peuvent concourir à une inhibition 

du système immunitaire après transfusion et conduire àla survenue d’infections ou encore favoriser 

les récidivesde cancer. Dans cette revue, nous rapportons les données de la littérature et de notre 

laboratoire concernant les interactions entre les débris exprimant la phosphatidylsérine (cellules 

apoptotiques et microparticules) et les cellules présentatrices d’antigènes et nous discutons des 

éléments permettant d’expliquer le rôle pro- ou anti-inflammatoire de ces débris cellulaires lors de la 

transfusion. 

 

Mots clés : Cellules apoptotiques ;Microparticules ;Macrophages ;Cellules dendritiques ; TRALI ; 

Tolérance ; Inflammation ;Transfusion ;Lymphocytes T régulateurs ; produits sanguins labiles 
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1. Introduction 

Labile blood products contain the cells of interest (that are red blood cells [RBC], platelets) or plasma 

that exert their therapeutic effects,but also cell byproducts or cell dusts. These cell byproducts may 

play a critical role in transfusion. Here, we will discuss the influence of phosphatidylserine (PtdSer)-

expressing cell dusts on immune responses and their consequences in transfusion setting. These cell 

byproducts may activate innate immune cells (such as antigen-presenting cells [APC]) and deliver a 

pro-inflammatory response observed, for instance, in antibody-independent transfusion-related 

acute lung injury (TRALI). Today, TRALI is on the scrutiny of the transfusion community.Indeed, TRALI 

is the leading cause of transfusion-related morbidity and mortality. Recent publications have 

reported the frequency of TRALI according to the number of transfused blood products indifferent 

countries [1, 2]. However, the risk of TRALI is not equal for all blood products. Single donor plasma 

transfusion carries the highest risk of TRALI (mainly immune-mediated TRALI) [3], while RBC 

transfusion exhibits the lowest risk of all blood products for antibody-associated TRALI [4]. Among 

the blood products implicated in TRALI, half are fresh-frozen plasma (FFP)[2]. Moreover, the risk is 

higher in intensive care units where 40% of critically ill patients receive at least one unit of RBC with a 

mean of 5 units per patient [5]. A “two hit” model is used to explain the occurrence of TRALI[2, 4, 5]. 

The first hit is related to the transfused patients and several recipient-related risk factors have been 

identified[2, 4, 5]. The analysis of experimental models of TRALI suggests that factors may protect or 

attenuate TRALI, such as T cells[4]. The second hit is linked to the transfused blood product[2, 4, 5]. 

Transfusion-related risk factors have been identified or suspected for plasma, RBC and platelets[4]. 

Some of these risks have been taken into account in transfusion practice and have significantly 

reduced TRALI occurrence, such as the prevention of anti-HLA antibody infusion by using male donor 

plasma[2, 3, 6]. Depending on factors present in blood products and triggering TRALI, TRALI can be 

divided up into immune (antibody-mediated) TRALI and non immune (antibody-independent) 

TRALI[2, 4, 5]. It has been suggested that substances released during blood product storage may 

cause non immune TRALI, such as free hemoglobin, iron, nitric oxide or microparticles[5].On the 
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opposite to immune system activation, PtdSer-expressing cell byproducts present in blood products 

may inhibit innate immune cells and deliver an anti-inflammatory signal or may induce donor-specific 

tolerance. Such mechanismscan be involved in the immunosuppressive or tolerogenic effects of 

blood transfusion observed in patients. This may lead to an increased occurrence of post-transfusion 

infections [7]or cancer relapse[7, 8]. In addition, this may explain the effect of donor-specific 

transfusion (DST) in kidney transplanted patients[9-11].Thereafter, we will discuss how PtdSer-

expressing cell byproducts may participate in both sides of transfusion-related immunomodulation 

[8]: immune activation or inhibition(Figure 1). Before that, we will review publications reporting the 

presence of PtdSer-expressing cell byproducts with a special emphasis in the processes that influence 

their generation. 

 

2. Phosphatidylserine-expressing cell byproducts in labile blood products 

Several publications report the presence of PtdSer-expressing cell byproducts in blood products[12-

34](Table 1).These cell byproducts may be generated during the blood product process, such as 

filtration[19] or during storage(either cold storage for RBC [12-15, 19, 24-26, 28, 34, 35]or between 

20-24°C for platelets[16, 17, 20-22, 27, 29]). Alternatively, they may be limitedby filtration [23, 31, 

33, 36]. Phosphatidylserine-expressing cell byproducts can be apoptotic cells[13-17, 19-22, 27, 29, 

34]. Apoptotic cells have been found in different blood products: RBC units[13-15, 19, 34], platelet 

concentrates[16, 17, 20-22, 27, 29]. These apoptotic cells correspond to dying cells of interest: RBC 

or platelets[16, 20-22, 27, 29], both enucleated cells that can undergo apoptosis [37]. Residual cells 

contaminating the blood products −such as leucocytes[13-15, 19, 34], including: lymphocytes[14], 

neutrophils [14, 34] or monocytes[34]− may also become apoptotic. Leukoreductionby filtration 

reduces the absolute number of contaminating leukocytes in blood products and thus may limit the 

number of apoptotic leukocytes[38, 39].However, filtration seems also to affect leukocyte viability 

favoring apoptotic leukocyte production [19]. Otherwise, PtdSer-expressing cell byproducts can also 

be microparticles[12, 23-26, 28, 30-33, 35, 36], also known as ectosomes[40]. This corresponds to 
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particles with a diameter of less than one micrometer produced from plasma membrane by a 

mechanism called vesiculation[40]. These microparticles are generated during apoptotic process or 

after cell activation [26]and may originate from the cells of interest that are transfused(i.e., RBC[12, 

24-26, 28]or platelets[32])and be produced during storage [12, 18, 24-26, 28, 29, 35],or alternatively, 

they can already be present in the plasma as microparticles can be detected in FFP[23, 33, 36].These 

latter correspond to circulating microparticles. The major circulating microparticles found in healthy 

donors are platelet-derived microparticles (PMP)followed by red blood cell-derived microparticles 

(RMP)[41]. Overall, the different steps of blood product process,and especially storage at 20-24°C for 

platelet concentrates or at 1-6°C for RBC units, generate PtdSer-expressing cell byproducts that may 

have consequences in transfused patients. 

 

3. Immune functions of phosphatidylserine-expressing cell byproducts and potential consequences 

in transfusion 

3.1. Immune functions of apoptotic blood cells and potential consequences in transfusion 

The anti-inflammatory propertiesof early stage apoptotic leukocytes are well documentedin the 

literature(for review [42-45])(Figure 2). An early event occurring after apoptosis is the expression of 

“eat-me signals”, such as the expression of PtdSer at the external leaflet of plasma membrane[45-

47]. Phosphatidylserine expression by apoptotic cells favors their uptake by professional phagocytes, 

such as macrophages or conventional dendritic cells (cDC)(for review [42, 45]). Uptake of apoptotic 

cells induces the secretion of anti-inflammatory cytokines, such as IL-10 or TGF-β, as well as the 

inhibition of inflammatory cytokine secretion such as IL-12 or IL-1β, IL-6 and TNF (for review [42, 43]). 

Moreover, APC become resistant to Toll-like receptor (TLR) ligand activation[48, 49]. These APC do 

not express high levels of costimulatory molecules and if they interact with naive T cells they favor T 

cell anergy (for review [42]).By the release of TGF-β after apoptotic cell internalization,APC induce 

the generation of regulatory T cells (Treg)[50, 51]. In this setting, generation of Treg leads to 

tolerance against apoptotic cell-derived antigens. 
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In line with these data, we have reported that intravenous apoptotic leukocyte infusion favors bone 

marrow engraftment when apoptotic leukocytes were infused simultaneously with an allogeneic 

bone marrow allograft in irradiated mice[52]. This effect is observed whatever the origin of apoptotic 

cells: donor, recipient and third party[52]and is dependent on TGF-β[50, 53, 54]. Apoptotic cell-

induced engraftment implicates recipient macrophages, since prior depletion of host macrophages 

by clodronate liposome infusion inhibits the graft facilitating effect of apoptotic cells[50].This 

confirms previous resultson the critical role of macrophages to limit immune responses against dying 

cells [55, 56]. We also showed that plasmacytoid dendritic cells (PDC) are mandatory in the apoptotic 

cell-induced Treg both in transplantation settings, as well as in naive mice [53]. However, whereas 

PDC are influenced by factors (including TGF-β) released by macrophages uptaking apoptotic 

cells,PDC are not directly influenced by apoptotic cells [53]. 

Implication of PtdSer in the inhibition of both inflammation and specific immune responses has been 

further demonstrated using PtdSer-expressing liposomes [47, 57]and is sustained by the following 

observations:i) PtdSer-dependent ingestion of apoptotic cells induces TGF-β secretion and resolution 

of lung inflammation [57];ii) inhibition of PtdSer recognition through Annexin-V enhances the 

immunogenicity of irradiated tumor cells in vivo[58];iii) masking of PtdSer inhibits apoptotic cell 

engulfment and induces autoantibody production in mice [59]. 

Based on data from our group [52] and Peter Henson’s group [57],some authors have speculated 

that apoptotic leukocytes present in blood products may be responsible for transfusion-related 

immunosuppression[38, 60]. Thus, the first consequences of PtdSer-expressing apoptotic cells in 

blood products may be a transient immunosuppression [38, 60]−responsible for an increase in 

infection rate and of cancer relapse [8]−,or tolerance induction −as observed after DST[9-11]−when 

Treg have been generated.However, as discussed below (see Paragraph 4), apoptotic leukocytes 

become secondarily necrotic in the absence of phagocytes[45, 46]. This may certainly occur in blood 

productbags. Necrotic cells, through the release of damage-associated molecular patterns (DAMP) 

[61], may become immunogeneic [42, 61]. The same process may occur for platelets [62]. Necrotic 
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platelets may represent the procoagulant form of platelets [62]. Thus, hemostatic activation of 

platelets or their byproductsmay link thrombosis and inflammation to amplify lung microvascular 

damage during non immune TRALI [5]. 

 

3.2. Immune functions of microparticles and potential consequences in transfusion 

Cell surface PtdSer expression is a common feature of microparticles whatever their cell origin[40, 

45, 47]. Phosphatidylserineexposure at cell surface is involved in the procoagulant activity of 

circulating microparticles[41]: including PMP [63], but also RMP [64]. However, their function on 

innate immune response is less clear. We and others have addressed the effect of PtdSer-

microparticles on APC[65-72].Incubation of neutrophil-derived microparticles (NMP) inhibits 

secretion of inflammatory cytokines (IL-8, TNF) by macrophages in response to TLR4 ligand, LPS and 

TLR2 ligand, zymosan [65]. The same effect is observed using macrophages [68, 70-72] or other APC 

(i.e., cDC[67, 69, 71, 72], monocytes [66] or B cells [66]) incubated with other microparticles derived 

from different circulating cells: platelets [69, 72], neutrophils [65, 67, 71], RBC[68], T cells [69], 

endothelial cells [69] as well as tumors cells[66, 70]. Thus, PtdSer-expressing microparticles exert an 

anti-inflammatory response through PtdSer expression[65, 70] and TGF-β secretion[65, 70-

72].Moreover, the Mer receptor tyrosine kinase implicated in the binding of PtdSer ligands (GAS-6 or 

protein S) is required for alteration of APC functions by NMP[71]. Thus, PtdSer-expressing 

microparticles participate in transfusion-related immunosuppression as apoptotic cells do. 

However, data report the increase of microparticle number in stored blood products (Table 1) and 

the impact of blood product storage on TRALI occurrence [5].In line with these observations, we 

reported recently that endothelial-derived microparticles (EMP) (found in FFPand representing 

around 0.5% of microparticles [33]) induce the activation of a particular subset of dendritic cells, 

PDC[69]. PDC play a major role in immune responses against viruses by the secretion of interferon-

alpha and are implicated in autoimmune diseases, such as psoriasis or lupus[73]. Incubation of EMP 

induces the increase of costimulatory molecules on PDC and therefore polarization of naive CD4+ T 
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cells into pro-inflammatory Th1 T cells by EMP-stimulated PDC. Stimulation of PDC byEMP induces 

the production of inflammatory cytokines IL-6 and IL-8 [69]. Overall, depending on the considered 

APC, microparticles favor inflammation.This suggests thatPtdSer-expressing microparticles present in 

blood products may favor and/or sustain inflammation. 

 

4. Conclusion and perspectives 

What are the next steps to answer the question on the role of PtdSer-expressing cell dusts in the 

modulation of immune responses after transfusion?The next steps are to characterize or identify 

factors involved in the triggering of inflammation or its inhibition and produced during blood product 

storage or process.Several factors influence the immune responses against dying cells [42]. We can 

speculate on some factors,including: i) the number of PtdSer-expressing cell byproducts contained 

per blood product, as the immunogenicity of apoptotic cells may be proportional to the number of 

cells[42]; ii) the occurrence of secondary necrosis [61](see above) and sothe passive release of 

intracellular DAMP that overpasses the inhibitory signals delivered byPtdSer.One of these DAMP can 

be the hemereleased from stored RBC which signals via TLR4[74]; iii)the size of cell byproducts and 

especially microparticles, since these latter exert different functions according to their size[30, 75]. 

Moreover, APC, such as PDC, respond only to lower sized synthetic particles[76]. This may explain the 

different responses observed between “amateur” phagocytes (PDC) versus professional phagocytes 

(cDC/macrophages) after incubation with microparticles [69]. The size of cell byproducts diminishes 

during plasma filtration as assessed by dynamic light scattering from 101 to 464 nm in unfiltered 

FFPversus 21 to 182 nm after 0.2µm filtration process [36];iv) expression of the recently described 

PtdSer receptors [46]on different APC subsets may also explain the different responses between PDC 

versuscDC/macrophages[69] and may impact on the overall immune response.Finally, one has to 

evoke that microparticles are linked with apoptotic cells and that apoptotic cells and microparticles 

represent a same continuum. Indeed, PMP are generated by a loss of membrane integrity [18] and 

PMP foundin platelet concentrates are linked to platelet apoptosis rather than platelet activation 
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[16]. Apoptotic blebs released early during apoptotic process are due to microvesiculation of cell 

membrane and thus correspond to microparticles/ectosomes[47].In contrast, late apoptotic bodies 

−produced at the end ofthe apoptotic process whenapoptotic cell clearance is delayed or altered− 

differ from microparticules in size and composition, since plasma membrane has been substituted by 

membranes from internal compartments[47, 77]. The function of late apoptotic bodies is different 

from early stage apoptotic cells. While APC incubated with early apoptotic cells generate Treg [50, 

51], cDC maturated with late apoptotic blebs rather induce pro-inflammatory Th17 cells [78]. 

Concomitant analysis of cell dusts in blood products and collection of clinical data from transfused 

patients is the only way to determine the role of PtdSer-expressing cell byproduct in transfusion 

setting. 
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Table 1. Phosphatidylserine-expressing cell by products in labile blood products 

Phosphatidylserine-
expressing cell 
byproducts 

Blood products in which 
cell byproducts have 
been identified 

Process generating cell 
byproducts* 

References 

RMP RBC cold storage (day 10 to 
day15) 

Rumsby et al., 1977[12] 

Apoptotic leukocytes 
(neutrophils, lymphocytes) 

RBC cold storage (48 hours) Frabetti et al., 1998[14] 

Apoptotic leukocytes RBC cold storage Mincheff et al., 1998[13] 
microparticles** platelets cold storage (+4°C) Reid et al., 1999[18] 
Apoptotic leukocytes Platelets storage and γ-irradiation (20 

Gy) 
Frabetti et al., 2000[17] 

Apoptotic platelets Platelets storage Li et al., 2000[16] 
Apoptotic leukocytes RBC cold storage Martelli et al., 2000[15] 
Apoptotic leukocytes RBC filtration (around 50% at 

day 0), storage (day 10 
≈40% in non leukoreduced 
vs. ≈ 90%) 

Bontadini et al., 2002[19] 

Apoptotic platelets Platelets storage (37°C is also tested, 
3 hours) 

Bertino et al., 2003[20] 

Apoptotic platelets Platelets storage Perrotta et al., 2003[21] 
RMP RBC cold storage Kriebardis et al., 2008[24] 
PMP and RMP Plasma filtration (0.2µm, RMP 

decrease but not PMP 
decrease) 

Lawrie et al., 2008[23] 

Apoptotic platelets Platelets storage Leytin et al., 2008[22] 
RMP RBC cold storage (4°C, a 20-fold 

increase) 
Rubin et al., 2008[25] 

RMP RBC cold storage Salzer et al., 2008[26] 
Apoptotic platelets Platelets storage Albanyan et al., 2009[27] 
RMP RBC cold storage, modulation by 

conservation solution 
Antonelou et al., 2010[28] 

Apoptotic platelets Platelets storage Cookson et al., 2010[29] 
RMP RBC  Jy et al., 2010[30] 
microparticles FFP filtration (“high sized” MP 

removal) 
Lawrie et al., 2009[36] 

PMP RBC filtration (PMP decrease) Sugawara et al., 2010[31] 
RMP RBC cold storage Jy et al., 2011[35] 
Apoptotic leukocytes 
(neutrophils, monocytes) 

RBC cold storage (4°C – day 10-
15) 

Keating et al., 2011[34] 

PMP (> 85%) FFP storage (PMP decrease) Matijevic et al., 2011[33] 
PMP Platelets  Xu et al., 2011[32] 

Abbreviations used:FFP, fresh frozen plasma; PMP, platelet-derived microparticles; RBC, red blood cells; RMP, 

red blood cell-derived microparticles; RT, room temperature. *Conditions of storage for RBC and platelets are 

42 days at 1 - 6°C (mentioned as “cold storage” in the Table unless if specified in brackets) and 5 -7 days at 20 - 

24°C (unless specified in brackets), respectively. Some information was also added in brackets such as the time 

where cell dusts were identified or the percentage of dying/dead cells, etc. ** microparticles were not formally 

identified but platelets were labeled with a fluorescent marker and small fluorescent fragments were identified 

in supernatant. 
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Figure legends 

Figure 1. Potential consequences of phosphatidylserine-expressing cell byproducts in 

transfusion.Interactions of PtdSer-expressing cell dusts (apoptotic cells or microparticles) may lead 

to antigen-presenting cell (APC) activation or inhibition. APC activation may trigger inflammation and 

be involved in TRALI while APC inhibition may exert transient immunosuppression or tolerance. 

Blood product process or storage may influence the generation of PtdSer-expressing cell dusts (see 

table 1). 

 

Figure 2.The immunomodulatory effects of apoptotic leukocytes.Early during the apoptotic 

program, PtdSer-exposure occurs leading to apoptotic cell removal by macrophages (MΦ) or 

conventional dendritic cells (cDC). This uptake by APC induces the production of anti-inflammatory 

factors and concomitantly inhibits the synthesis of inflammatory cytokines [43]. These APC are 

refractory to TLR activation. This leads to a transient immunosuppressive microenvironment. If APC 

from this microenvironment migrate to secondary lymphoid organs, naive T cells are converted into 

inducible regulatory T cells. This leads to tolerance against apoptotic cell-derived 

antigens.Abbreviations used: HGF, hepatocyte growth factor; IL-, interleukin; NO, nitrite oxide; PGE-

2, prostaglandin-E2; TGF, transforming growth factor; TNF, tumor necrosis factor. 

 


