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Abstract

Both biophysical and neurophysiological aspects need to be considered to assess the impact of electric fields induced by
transcranial current stimulation (tCS) on the cerebral cortex and the subsequent effects occurring on scalp EEG. The
objective of this work was to elaborate a global model allowing for the simulation of scalp EEG signals under tCS. In our
integrated modeling approach, realistic meshes of the head tissues and of the stimulation electrodes were first built to map
the generated electric field distribution on the cortical surface. Secondly, source activities at various cortical macro-regions
were generated by means of a computational model of neuronal populations. The model parameters were adjusted so that
populations generated an oscillating activity around 10 Hz resembling typical EEG alpha activity. In order to account for tCS
effects and following current biophysical models, the calculated component of the electric field normal to the cortex was
used to locally influence the activity of neuronal populations. Lastly, EEG under both spontaneous and tACS-stimulated
(transcranial sinunoidal tCS from 4 to 16 Hz) brain activity was simulated at the level of scalp electrodes by solving the
forward problem in the aforementioned realistic head model. Under the 10 Hz-tACS condition, a significant increase in
alpha power occurred in simulated scalp EEG signals as compared to the no-stimulation condition. This increase involved
most channels bilaterally, was more pronounced on posterior electrodes and was only significant for tACS frequencies from
8 to 12 Hz. The immediate effects of tACS in the model agreed with the post-tACS results previously reported in real
subjects. Moreover, additional information was also brought by the model at other electrode positions or stimulation
frequency. This suggests that our modeling approach can be used to compare, interpret and predict changes occurring on
EEG with respect to parameters used in specific stimulation configurations.
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Introduction power was reported after tACS was applied over the occipital
cortex at individual alpha peak frequency [5]. Similarly, tACS
applied transorbitally at alpha frequency in patients with partial
blindness succeeded in restoring visual function and concomitantly
increased the alpha power on EEG posterior electrodes [6].

Over the past 10 years, transcranial current stimulation (tCS)
has emerged as a very popular tool for non-invasive brain
stimulation as witnessed by its increasing use in the fields of
cognitive neuroscience, neuropsychology and clinical neurology
(for recent reviews see [1,2]. It is now well established that tCS
either with direct (tDCS) or alternating (tACS) current can induce
both immediate and long-lasting effects on brain activity, in a
polarity- and frequency-dependent manner.

Nevertheless, the relationship between changes in EEG and the
biophysical and physiological aspects involved during tCS needs to
be better understood. A first step is to determine the spatial
distribution of the electric field generated in the brain when the
transcranial induced currents flow through head tissues. This
To quantfy these effects in humans, EEG is an ideal tool estimation is complex and relies on the physical and geometrical
properties of the electrodes and of the different head tissues [7,8].
Another step in understanding the effects of tCS relates to the
impact of electric fields on the activity of neuronal populations
within the cerebral cortex. These effects depend on many
stimulation parameters such as the intensity or duration of the

especially when stimulation is expected to interact with on-going
brain rhythms. Recent human studies have shown that tACS
applied at low frequency during sleep [3] or wakefulness [4]
improved memory consolidation or encoding, while EEG delta
activity was increased. In addition, an increase in EEG alpha
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Figure 1. Generation of alpha-like cortical activity in the neuronal population model. A: Typical alpha-like signal (alpha peak around
10 Hz) produced by the model at the level of a single population for appropriate setting of parameters (see table 1) B: An example of signals
obtained in the model with N populations (same set of parameters as in A) when no connectivity is present among populations. Alpha-like activity is
generated at the level of each population. This activity is desynchronized among populations. C: An example of signals obtained in the model with N
populations (same set of parameters as in A), when a “vertical” connectivity pattern is used. In that case, an additional population (N+1™) is added as
a common synchronizer. This population called “subcortical” is unidirectionally coupled with the N other populations in order to mimic the thalamic
input. The “sub-cortical” population also receives a direct low frequency input in order to mimic the synchronizing effect of cortical delta oscillations
on the thalamus. Under these conditions, alpha-like activity is synchronized among the N populations.

doi:10.1371/journal.pone.0057330.g001

current, but also on the orientation of the pyramidal cells in the
cortical layers [9,10].

Computational models have recently brought insight into the
manner in which electrical fields affect the activity of a neuronal
assembly and its response, as observed in local field potentials
(LFPs), and how these effects relate to the applied electric field
parameters [11,12]. The demand for integrating these aspects into
a global modeling approach is high, as it would foster a link
between tCS parameters and the effects of stimulation on cerebral
activity.

In the present paper, we propose a model of EEG generation
that integrates the effect of tCS on brain activity. Our modeling
pipeline combines (1) the construction of physical models for
current propagation in the brain in order to account for a realistic
distribution of the electrical field on the cortex, (2) the use of
neurophysiological mean field models to describe the local effect of
applied currents on the activity of cortical populations of neurons

PLOS ONE | www.plosone.org

(as reflected in local field potentials) and (3) the subsequent forward
calculation in the realistic head model in order to reconstruct scalp
EEG activity that reflects the global effects of tCS on brain
neurodynamics.

After reporting the entire pipeline from stimulation configura-
tion (head model, electrode size and position, current stimulation
parameters) to generation of scalp EEG signals, we initially
evaluate the face value of the model by attempting to reproduce
the results of one of the studies mentioned earlier [5] and,
secondly, question the predictive validity of our simulation
approach.

Materials and Methods

Model of Neocortical Activity
Model description. In order to simulate signals generated in
the cerebral cortex either spontaneously or under the influence of
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an externally-applied electrical field, we used a physiologically-
plausible computational model recently developed in our team
[12]. The level of modeling we used is that of the neuronal
assembly. This model is composed of three subpopulations of cells
(principal pyramidal cells and two types of interneurons) which
Interact via excitatory and inhibitory synaptic connections. The
model accounts for the main types of cells present in the cerebral
cortex, namely: 1) Pyramidal cells which are identified as type P sub-
population in the model, ii) Axon-, soma- and proximal dendrite-
targeting cells (basket cells and chandelier cells) that mediate
GABA, fas currents on #ype P cells and that are identified as type [
interneurons, and iii) Dendrite-targeting cells (bitufted, bipolar and
double bouquet cells) that mediate GABA g, currents on fype P
cells and that are identified as #pe I' interneurons. Interactions
between the three sub-populations are characterized by the
connectivity constants Cpp, Cpr, Cip, Cpr, Crp, Cip, and Cry
which account for the average number of synaptic contacts (or
“connection strengths”) between sub-populations. The temporal
dynamics of the model signal output directly compare with those
reflected in real signals (local field potentials or LFPs) recorded
with macro-electrodes located in the cerebral cortex.

Neuronal population models were originally developed to study
the mechanisms underlying the generation of alpha activity in the
cortex [13]. It is well-known that these models can easily reach an
oscillating behaviour after appropriate setting of i) connectivity
parameters and ii) rise and decay times of excitatory (glutamater-
gic) and inhibitory (GABAergic) average post-synaptic potentials
(PSPs). In particular, at the level of a single population, when these
parameters are properly adjusted, oscillations around 10 Hz
become prominent in the model signal output [14]. These
oscillations closely resemble real alpha activity (Figure 1A).

Model parameters used to simulate this alpha-like activity are
provided in Table 1. Besides parameters controlling the kinetics of
PSPs, the ratios between connectivity parameters (average number
of synaptic contacts between sub-populations) were set according
to physiology. In brief, the number of synaptic contacts among
pyramidal cells and from pyramidal cells to interneurons was set to
be greater than the number of synaptic contacts among
interneurons and from interneurons to pyramidal cells. Readers
may refer to appendix A of [15] for a literature review about the
cellular organization of cerebral cortex with special emphasis on
synaptic connections among pyramidal cells and interneurons.

Table 1. Parameters values by which the alpha like activity is
obtained.

Synaptic gains A=55
B=8
G=10

PSP rate constants a,=40, a,=80
b,=20, b,=60

91=150, g,=200 5"

Cpp=55, Cp;=80, Cpy=90
Cp=20, C;=15

Crp=25, Cy=20, Cyp=40
€0p_10, 0,10, €0,=10 s '

v0p_1, v0,_4, vOI'_4 mV
r0p_0.7, r0,_0.7, r0,_0.7 mV"'

Connectivity parameters

Wilson-Cowan sigmoids

tCS effect (gain ratios) Pyramidal neurons: 1
Fast interneurons: 0

Slow interneurons: 0

doi:10.1371/journal.pone.0057330.t001
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As reported in [16,17], a number NV of neuronal populations can
be coupled to model the activity over NN interconnected brain
structures. We followed this approach to obtain a “realistic” (i.e.
relatively correlated) alpha-like activity over the entire neocortex
(see Section 1.4 for practical details). Indeed, in the absence of any
connectivity pattern, we could verify as expected that the N
populations of the model generate uncorrelated alpha activity
(Figure 1B) which is not compatible with real data. A way to
overcome this difficulty is to account for the influence of the
thalamic system which intervenes both in the generation and the
control of alpha/spindles observed in EEG signals [18,19]. It is
noteworthy that our intent was not to develop a complex thalamo-
cortical model but instead, to increase the ‘realism” of the
simulated alpha-like neocortical activity. To proceed, in the
model, we introduced an M+I™ population, referred to as the
“sub-cortical population”, that was unidirectionally connected to
the NV neocortical populations. Using this “vertical connectivity”-
pattern, the model could include a common input (mimicking, to
some extent, the thalamic input) to neocortical populations. In
order to also account for the periodicity of alpha bursts, a direct
glutamatergic input was added to the sub-cortical population
(periodic trapezoid pulse, 2.5 s period, i.e. 0.4 Hz). Under these
conditions, we could qualitatively verify that the model generates
“more realistic” alpha-like activity, as illustrated in Figure 1C.

Effect of tCS at neuronal population level. Neurons are
sensitive to externally-applied electric fields in a geometry-
dependent manner [10,20,21]. Their response depends on the
orientation of the electric field with respect to the somato-dendritic
axis on neuronal cells. More particularly, the field effects are
maximal when the field orientation is parallel to the cells’ main
axis. Conversely, field effects are null for orthogonal orientation.
In addition to the orientation, it has been shown that the direction
is also an essential factor. A field aligned with the orthodromic
direction (dendritic tuft to axon) would result in a positive
(depolarizing or excitatory) perturbation of the membrane
potential at the soma. Conversely, a field in the antidromic
direction would have a negative influence (hyperpolarizing or
inhibitory). In accordance with these considerations, the influence
of tCS was represented in the neuronal population model of as a
perturbation on the mean membrane potential. Two main
assumptions were made at this level. First, based on results
reported in [10], it can be reasonably hypothesized that this
perturbation is linear and direction-dependent within a certain
range of magnitude. Second, we recently showed that the electric
field induced by tCS has an impact on both pyramidal cells and
interneurons [12]. Nevertheless, for the purpose of this study and
in order to limit the number of free parameters, we neglected the
field effects on interneurons since the impact is lower compared
that on pyramidal cells [12].

Formally, we added a DC-offset voltage vP€S to the mean
membrane potential vy where Xe{P,I,I'}. This DC-offset may
have either a depolarizing or a hyperpolarizing effect on the sub-
population of pyramidal cells, depending on its polarity. As a
consequence, the firing rate of the corresponding sub-population
described by the wave-to-pulse sigmoid function directly increases
or decreases accordingly. It is worth mentioning that this effect on
the firing rate is also consistent with results reported experimen-
tally [10], as the applied field also modifies the action potential
threshold.

Physical Model for Current Propagation

In order to map the spatial distribution of the electric field on
the cortical surface, we built a physical model for current
propagation using a three-step approach.
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First MR images were segmented. For this purpose we used T'1
and Proton Density (PD) phantom images based on the Colin27
template (http://www.bic.mni.mcgill.ca/brainweb). Segmentation
was performed using the BrainSuite software (http://www.loni.
ucla.edu/Software/BrainSuite, [22-25]). White matter (WM),
gray matter (GM) and cerebrospinal fluid (CSF) were segmented
from the T1 images whereas the skull and scalp were obtained
from the PD images. The resulting masks were used to generate
surface meshes representing the boundaries between the different
tissues. The mesh of WM-GM interface had 189494 triangles and
94743 vertices (average area of triangles 1.036 mm?2, maximum
3.832 mm2, minimum 0.008 mm2) and is shown in figure 2B.
Secondly, a volume mesh representing the whole head was
generated from the surface meshes using MIMICS (http://www.
materialise.com/). At this stage, virtual tDCS electrodes were also
incorporated into the model. The anode and the cathode could be
placed at any of the positions defined in the 10-10 International
System. The resultant mesh comprised more than 1.9x10°
tetrahedral second order Lagrange elements (Figure 2A). Thirdly,
the volume mesh was imported into a finite element program to
calculate the electric field (Comsol 3.5a, www.comsol.com). The
upper surface of each electrode was set to uniform electrical
potential and the potential difference between them was adjusted
to reach the desired custom amplitude of injected current through
the anode. All the remaining outer boundaries of the model were
considered to be insulating, (/% =0), and continuity of the normal
component of the current density was imposed on all the inner
boundaries. The electric field induced in the brain was obtained by
solving Laplace’s equation

V-(cV®) =0,

(where ® denotes the electrostatic scalar potential and ¢ the
electrical conductivity) and taking the gradient of the scalar
potential. This procedure assumes that the quasi-static approxi-
mation [26] is valid for the low stimulation frequencies used in
tCS. In this approximation the tissues are considered to be purely
resistive with no capacitive components. The different tissues in
the head model were modeled as having electrical conductivities
with values close to the average ones reported in the literature for
the DC/low frequency range [27-29]: 0.33 S/m, 0.008 S/m,
1.79 S/m, 0.33 S/m and 0.15 S/m for the scalp, skull, CSF, GM
and WM, respectively. The electrodes were modeled as having a
conductivity value arbitrarily taken to be equal to that of the scalp.
All media were modeled as having isotropic conductivities and, as
such, the current density could be found simply by multiplying the
scalar electrical conductivity by the electric field.

All calculations were performed in Comsol, using its Conductive
Media DC package. Given the large number of degrees of freedom
in the model (more than 5x10%), an iterative linear system solver
(GMRES) was chosen. This iterative solver required that a
preconditioner be used (Incomplete LU with a drop tolerance of
0.003). The calculation took less than 3 hours to complete in a
workstation with a quad-core i7-860 processor running at
2.8 GHz and 16 GB of RAM memory.

Following this calculation both normal and tangential compo-
nents of the electric field were mapped on the WM mesh. The
magnitude of the electric field on the WM surface is shown in
(Figure 2C). The radial component of the electric field is
discontinuous across the WM-GM boundary. Here we have
always used the values obtained in the GM side of this interface.
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Generation of EEG Signals

EEG signals at 20 scalp electrodes (10-20 system) were
simulated following our previous modeling approach [30-32]. In
this model, EEG sources were represented as a dipole layer
distributed over the cortical surface. The geometrical description
of the cortical surface was achieved by using the same surface
mesh (obtained from the segmented WM/GM interface) as the
one used to map the electric field distribution. Each mesh triangle
was assoclated to an elementary current dipole, placed at the
barycentre of the triangle and oriented perpendicular to its
surface. The magnitude of the moment of each dipole was
proportional to the area of the corresponding triangle. In addition,
each dipole was assumed to correspond to a distinct cortical
neuronal population. Its time course, which represents the time-
varying dynamics of the associated population, was provided by
the output of a neuronal population model described in Section
1.1.

From this setup, we built a spatio-temporal source matrix §
containing the time-varying activities of all cortical dipoles of the
source space. Simulated EEG signals were generated using a
realistic head model made of three nested surface meshes
modeling the brain, the skull and the scalp with a conductivity
of each medium fixed to 0.33 S/m, 0.008 S/m and 0.33 S/m,
respectively [29]. The inter-medium surfaces were extracted from
the segmentation of the same T1-weighted 3D-MRI as for the
source space and meshed by 2440 triangles each (ASA, ANT,
Netherlands). From this head model, the forward problem was
then numerically calculated for each triangle using the boundary
element method (BEM) implemented in ASA, to obtain the
leadfield matrix A. This matrix gives the contribution of each
dipole of the mesh at the level of scalp electrodes. The spatio-
temporal matrix X of simulated EEG data was given by

X=A4S

Practical Implementation

In this section, we provide the reader with details about both the
implementation of the model and the parameter values specifically
used in this study. The proposed pipeline to simulate EEG data
under tCS is summarized in Figure 3.

Theoretically, and according to the procedure described above,
the time-course of the N dipole activities should be generated from
a model of N +/ coupled populations (N cortical +1 sub-cortical).
As mentioned in sections 1.2 and 1.3, N = 189494 if one neuronal
population is used per triangle of the mesh. In practice, the
simulation of such a big network activity can hardly be achieved
on standard PCs in a reasonable amount of time, given also that
the duration of EEG signals to be simulated can be in the order of
tens of seconds to minutes. Therefore, in order to reduce the
numerical complexity and yet preserve the anatomical informa-
tion, we regrouped the mesh triangles in 66 cortical regions (33 in
each hemisphere) following the anatomical parcellation described
in [33]. Contiguous triangles composing each of these regions were
manually selected on the cortex mesh. The activity over each
cortical macro-region was assumed to be homogenous. As
described below, this assumption allowed us to represent the
activity generated at the neocortex level by a network of 66+1
coupled neuronal populations.

To build the physical model for current propagation we
considered two virtual electrodes (7 x5 cm, thickness of approx-
mmately 0.3 cm) centred over the low occipital channels (PO9-
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Figure 2. Physical model for current propagation. A: Finite element mesh of the scalp and of the stimulation electrodes B: Finite element
mesh of the interface between GM and WM. C: Spatial distribution of the magnitude of the electric field, in V/m, induced by the injection of a current
through the anode. In this stimulation configuration, the anode and cathode virtual electrodes are centered over both occipital cortices, and the

amplitude of the injected current is set to 1.12 mA.
doi:10.1371/journal.pone.0057330.g002

PO10 locations). The amplitude of the injected current was set to
1.12 mA. This corresponded to the electrode configuration and
mean current amplitude used in the reference study [5].

Using these parameters, the field distribution was calculated as
described 1n section 1.2, and mapped on the WM surface mesh
(representing the WM/GM interface) (Figure 4A). At each triangle
of the mesh, the radial component of the externally-applied field
(i.e. component parallel to the neuron main axis) E),, was obtained
by

Ey, =AE(X) 7(X;)

where E(X;) represents the electric field vector at the 3D position
Xi, fi(X;) stands for the unit vector perpendicular to the triangle
surface (i.e. parallel to the somatodendritic axis of pyramidal cells)
and A for a calibration constant.

The E,, value accounted for the variable effect of the electric
field component at a particular location over the neocortex surface
(mesh triangle 1) orientated along pyramidal cells. The maximal
effect was obtained when E(X,) was aligned with the somatoden-
dritic axis 7#(X;) of pyramidal cells. E), values obtained for each
triangle were then averaged over each of the 66 macro-regions to
obtain the E,, coefficients accounting for the mean effect of the
electric field over each macro-region (Figure 4B).

In order to generate the cortical activity associated to each
macro-region we used a model of 67 coupled populations, in
which (1) the parameters of each population were adjusted to
generate alpha-like activity and (2) the 67" population
accounted for the thalamic input as described in section 1.1.
Fach mean value E,, was added to the average membrane
potential of pyramidal cells of each of the 66 cortical neuronal
populations in order to get a set of 66 temporal dynamics. In
order to calibrate the stimulation effect, 12 different sets of Ey,
were considered depending on the A constant. A=0 corre-
sponded to the no-stimulation condition, and
Ae{1,2,4,6,8,10,12,14,16,18,20} corresponded to the stimula-
tion conditions. The alternating aspect of tACS was simulated
by considering a sinusoidal stimulus waveform. Several tACS
frequencies were tested (4 Hz to 16 Hz in steps of 1 Hz), with
10 Hz corresponding to the stimulation at the model alpha
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frequency. For the no-stimulation condition and for each
frequency of the tACS condition, a set of 20 realizations of
cortical activities were obtained.

In order to generate the scalp EEG signals we assigned all
triangles within a given macro-region with the same time course
and solved the forward problem as described in section 1.3. For
each condition and simulation realization, at each scalp electrode,
we calculated the mean signal power P, in the alpha frequency
band as:

p—— szSD'd
a—fz_ﬁjf] ("

Where PSD(f) is the power spectral density of the signal at any
considered electrode, f; =8 Hz, and f> =12 Hz. In practice, the
PSD was estimated using the periodogram method on discrete
simulated signals.

Results

Simulated EEG under no Stimulation Condition

An example of simulated EEG in the no-stimulation condition is
displayed on Figure 5A. In the absence of tACS-like stimulation,
simulated EEG signals display alpha-like activity. These rhythms
are organised as spindles, synchronized over most of scalp EEG
channels. This aspect is similar to that observed on real EEG alpha
activity (Figure 5B). However, regarding real data, one can notice
that the amplitude of the bursts of alpha activity is higher on
parietal (P3, Pz, P4) and occipital channels (O1, O2) than on
frontal electrodes while this specific topography does not appear
on simulated data.

Simulated EEG under tACS at Alpha Frequency (10 Hz)
As mentioned in 1.4, the first step was to define the value of
parameter A. To proceed, we determined the value of A for
which an increase of the signal power in the alpha frequency
band at POZ similar to that reported in [5] was observed in the
model. More specifically, when applied at the alpha-peak
frequency of the model (10 Hz), the tACS-like stimulation
induced an elevation of the alpha power at posterior electrode
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barycenter of the triangles of this WM/GM mesh and set perpendicular to the triangle surface. This dipole layer over the cortex defines the source
space. The forward problem is computed for each dipole using the Boundary Element Method (BEM) in order to get the leadfield matrix A that
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pipeline). In order to get a physical model of the current distribution after tCS stimulation, surface meshes representing the boundaries between the
different head tissues are transformed into volume meshes. In addition, virtual tCS electrodes are also represented into the model and can be placed
at any scalp location (in our simulation protocol, we used PO9-PO10 location of the international 10-10 system). The electric field is calculated using
the Finite Element Method (FEM) and the normal component of the field £, is mapped on the surface mesh of the WM/GM interface. E,, values are
then averaged over 66 macro-regions to get the 66 E,, coefficients representing the mean field effect during tCS. We used then a model of coupled
neuronal populations, with parameters of each population being adjusted to generate alpha-like activity, and connectivity between populations
being defined in order to account for the thalamic input. E,, coefficients can be added to the average membrane potential of pyramidal cells of each
cortical neuronal population in order to mimic the de- or hyper-polarizing effect of the electric field and to get the resulting time-varying activities at
the level of each cortical macro-region (green arrows in the pipeline). The resulting spatio-temporal source matrix Sis multiplied by leadfield matrix A
to get the simulated EEG data under tCS condition.

doi:10.1371/journal.pone.0057330.g003

Distribution of
the radial
component Ey;

POZ. This elevation gradually increased when the calibration
factor A was augmented (Figure 6A). In the reference study [5],
an elevation of 14% in the alpha power was observed at POZ
electrode. In our simulation study, this percentage value
corresponded to A=8. Therefore, the following simulations
were calibrated by fixing A=8.

At the level of all scalp electrodes, the increase in alpha power
was clearly visible on left and right central, parietal temporal and
occipital contacts, while only subtle changes occurred on midline
electrodes (Figure 6B). As illustrated on (Figure 6C), the
quantitative analysis revealed that under 10 Hz-tACS simulated
stimulation, the alpha power was significantly increased on most
left and right channels. The significant increase was larger on
central and posterior channels and was maximal at the level of

PLOS ONE | www.plosone.org

temporo-parietal electrodes (T'5 or T6). Contrarily, the increase in
alpha power remained non-significant at frontopolar contacts
(Fp1, Fp2) and at the level of most anterior midline electrodes (Fz,
Cz, and Pz).

Simulated EEG under tACS at Other Frequencies

As compared to 10 Hz-tACS, 11 Hz and 12 Hz-tACS on the
one hand, and 9 Hz and 8 Hz-tACS on the other hand had a
progressively decreasing effect on alpha power density. An
illustration is given for chosen frequencies on Figure 7. No
significant effect was observed on simulated EEG when applying
tACS at frequency outside of the [8 Hz-12 Hz| range (Figure 8).
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Figure 4. Spatial distribution of the externally-applied electric field and subsequent field effects. A: Spatial distribution of the
magnitude of the electric field using two virtual electrodes over the occipital regions and after applying a 1.12 mA current through the anode. The
amplitude of the electric field is mapped on a mesh of the WM/GM interface. B: Mean field effect. The effect of the electric field depending on the
orientation of pyramidal cells within the neocortex, is accounted for by calculating the radial component of the applied field E,, (scalar product
between the electric field and the unit vector parallel to the pyramidal cell main axis) at each triangle of the mesh of the WM/GM interface. E,, values
obtained for each triangle are then averaged over each of the 66 anatomical macro-regions manually outlined according to [35]. The resulting E,

coefficients represent the mean effect of the electric field over each macro-region.

doi:10.1371/journal.pone.0057330.9g004

Discussion

The past years have witnessed significant advances in the use of
tCS as a non-invasive tool for interacting with brain activity, not
only in various brain disorders [34-38] but also during cognitive
function [1,39]. Among the many techniques that can be used to
assess and quantify tCS effects, electroencephalography still
occupies a central position, due to its excellent temporal
resolution, reasonably good spatial resolution and relative ease of
use. However, the interpretation of changes observed in EEG
signals obtained under stimulation conditions is a challenging
issue. In this study, a general modeling framework is put forward
to progress in this interpretation. A complete pipeline is proposed
to allow for the simulation of EEG signals based on 1) a realistic
description of the volume conductor features, i) an accurate
representation of the distribution of the electric field inside this
volume conductor and 1i1) a model of the field effects on neuronal
assemblies in the neocortex. To the best of our knowledge, the use
of such a pipeline has not previously been proposed.

In order to evaluate the approach, we chose to start from a
recent study conducted in humans that examined the effects of
tACS on the alpha EEG activity [5]. This choice was motivated by
both the low number of studies reporting quantified EEG changes

PLOS ONE | www.plosone.org

in response to tACS and the relative ease with which oscillations in
the alpha frequency band can be simulated with neural mass
models. Using a physiologically-plausible neural mass model of
coupled neocortical populations recently proposed by our team
[12], we generated realistic signals of both cortical and related
scalp EEG alpha activity. These signals were obtained using a very
simple description of the interaction between neocortical macro-
regions and a subcortical structure whose activity is simply
described by a neuronal population model. Since the 70’s, this
type of model has been widely used to reproduce physiological or
pathological rhythms at the level of a single neuronal assembly
[13,40-42] or in a small networks of coupled assemblies [16,43—
46]. For simplicity reasons, we implemented an unsophisticated
model for the thalamo-cortical interaction, as compared to those
already available from the literature [47—49]. Indeed, we just used
an extra neuronal population to provide common excitatory input
to those accounting for neocortical activity. This helped
pacemaking synchronized alpha oscillations over multiple cortical
regions. Then, for the periodicity of alpha bursts, this sub-cortical
population received itself a periodic excitatory input (periodic
trapezoid “ramp up”, constant and “ramp down” function). One
rationalization for this slow periodic excitatory input comes from
findings that have emerged from the study of spindle oscillations
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Figure 5. Simulation of EEG under no-stimulation condition. A: Typical signals simulated in the absence of tACS stimulation (19 scalp
electrodes, international 10-20 standard system). B: Real alpha activity recorded in a normal subject during wakefulness with eyes closed.

doi:10.1371/journal.pone.0057330.9005

during light sleep. Indeed, is has been shown, in the cat, that if the
thalamus does not receive the slow wave cortical input, spindles
are not “transmitted” to the cortex [50]. This mechanism of slow
wave has been shown to be the mechanism responsible for
synchronizing other brain activities in the brain at higher
frequencies such as gamma activity [19]. Finally, studies in
humans have also reported that slow EEG oscillations (below
1 Hz) during sleep modulated scalp EEG spindle activity [51].
Whether the same mechanism applies during wakefulness at
resting state has not been shown. However, since very low
frequency oscillations have been identified during rest in awake
humans [52] and since alpha bursts resemble spindles, the
synchronizing effect of slow oscillations on the alpha rhythm
might reasonably be considered as a possible hypothesis.

In the present study, multiple populations are coupled in order
to account for brain dynamics at a global level. Yet, our
connectivity pattern is not sufficient to obtain a realistic
topography of EEG alpha activity; in particular with respect to
the parieto-occipital distribution of alpha waves during wakeful-
ness. This can be explained by the fact that not only thalomo-
cortical but also long-range cortico-cortical interactions are
involved in the genesis of alpha activity [53]. Defining a
connectivity pattern between cortical regions in our multiple
population model is unfortunately a difficult task. While very
interesting breakthroughs have been made in humans in particular
with the use of Diffusion Tensor Imaging (DTI) data [54], it
appears that directionality in the connectivity pattern, which is not
yet available in humans, is essential for the realism of simulated
dynamics in large-scale networks [55]. Recent work based on

PLOS ONE | www.plosone.org

neuronal field models and dynamic causal modeling might be of
interest to define connectivity patterns (both degree and direction)
between cortical sources [56-58].

Despite the absence of cortico-cortical connectivity patterns,
insights could be gained from our modeling approach into the
effect of tACS stimulation on EEG alpha rhythms. Firstly, our
modeled results are in accordance with the study by Zaehle and
collaborators. Indeed, the increase in alpha power observed by
these authors on posterior midline scalp electrodes (POz, Pz and
Oz) was also reproduced in the model. In turn, the quantification
of this increase on real data provided a method to calibrate the
model. Interestingly, the value defined by the calibration process
(A=8) also corresponded to the first value of A for which
significant changes occurred at the posterior electrode POz.

Secondly, beyond the results obtained in humans at posterior
midline electrodes (POz, Pz, Oz), our modeling approach
predicted changes at the level of electrodes that were not used in
the EEG recordings by Zachle et al. Indeed, the increase of alpha
power in simulated EEGs was significant at most left and right
electrodes, more prominently in the posterior than in the anterior
and midline locations and maximal at the level of parietal and
temporo-occipital channels. Interestingly, changes of maximal
amplitude did not occur on occipital channels. This confirms that
the effect of tCS is difficult to predict from the sole position (and
area) of stimulating electrodes. In addition to the configuration of
stimulating electrodes, the electric field spatial distribution and the
mean orientation of cortical populations reached by the maximal
field are crucial parameters upon which the topography of scalp
EEG changes are dependent.
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Figure 6. Simulation of scalp EEG signals under tACS stimulation. A: Calibration of the A parameter. Scalp EEG signals were simulated for 13
coefficients. A=0 corresponds to the no stimulation condition, and
A={1,2,4,6,8,10,12,14,16,18,20} correspond to the 10 Hz-tACS stimulation condition. Boxplot are obtained after averaging the mean alpha power
at the POZ scalp electrode from 20 trials of simulated EEG for each condition. During tACS stimulation the alpha power at posterior electrode POZ
gradually increases with the calibration factorA. For A=3, a significant increase of 14% is observed and corresponds to the percentage reported in
real data at the same electrode [5]. This A =8 value was chosen for simulations. B: Typical simulated EEG signals obtained in the no stimulation (left)
or during tACS at the model peak frequency (10 Hz). C: Mean alpha power, averaged from 20 trials at each of the 19 scalp electrodes in the no
stimulation vs. 10 Hz-tACS condition. Significant increase in alpha PSD is observed during tACS stimulation at most left and right channels (except for
fronto-polar electrodes) as well as at posterior midline channels POZ and OZ.

values of parameter A involved in the computation of the E,,

doi:10.1371/journal.pone.0057330.9g006

Thirdly, we did not observe any change in the power spectral
density of alpha when stimulating the model outside the [8 Hz—
12 Hz] frequency range, which precisely corresponds to the
“individual peak frequency” (10 Hz) +/—2 Hz range described in
humans by Zaehle et al. (2010). It is worth mentioning that the
increase of power observed in simulated signals is not caused by
the superposition of the EEG with the tACS stimulation artifact.
Instead, it is caused by the fact that neuronal populations act as
nonlinear dynamical systems which intrinsic response is more
prominent when stimulated around their “natural” oscillation
frequency (typically 10 Hz, here). In other words, in the model,
the amplitude of alpha activity is enhanced when populations are
stimulated at their resonance frequency. This result suggests that
significant changes in power spectral density in a given frequency
band occur when tACS frequency is set around that given
frequency. This model-based hypothesis is indirectly confirmed by
experimental data obtained in patients suffering from partial
blindness and showing transorbital ACS at individual alpha
frequency induces a significant increase of the EEG alpha power
spectra at various scalp locations, including occipital channels [6].
Moreover, data related to the study of memory consolidation in
healthy humans are also consistent with the model predictions as

they show that 0.75 Hz —oscillatory tCS induces an increase in
endogenous cortical slow oscillations both during slow wave sleep
carly stages [3] and during wakefulness [4]. The concomitant
increase in theta activity observed in the latter study is left
unpredicted in our simplistic model as it may relate to the
complementary roles of theta and delta oscillations in the coupling
of neocortical and hippocampal systems during learning and
memory formation.

Finally, it is noteworthy that, as is, our modeling approach is
focused on the instantaneous effects of oscillatory tCS on EEG
activity while the above mentioned in vivo studies were devoted to
post-effects on EEG [3-5]. However, it should be mentioned that
these studies have considered immediate after-effects (i.e. imme-
diately after tACS is switched off). Nevertheless, our results could
certainly be further confirmed if the same stimulation protocol as
in the present paper was reproduced in healthy controls in order to
quantify instantaneous effects on EEG. At present, such an
analysis remains difficult as the artifact generated by tACS is
considerably masking recorded EEG signals. The removal of such
an artifact, which dominates in the same frequency band as the
expected changes of EEG rhythms, is a challenging issue that is
currently being addressed in our group.
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Figure 7. Example of simulated EEGs during variable frequency of tACS stimulation. A clear increase of the amplitude of alpha spindles is

visible for 10 Hz- and 12 Hz- tACS but not for 6 Hz- or 14 Hz-tACS.
doi:10.1371/journal.pone.0057330.g007
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doi:10.1371/journal.pone.0057330.g008

Author Contributions

Conceived and designed the experiments: IM BMA GR PCM FW.
Performed the experiments: IM GB RS BMA AM ASF PCM FW.

References

1.

Utz KS, Dimova V, Oppenlander K, Kerkhoff G (2010) Electrified minds:
transcranial direct current stimulation (tDCS) and galvanic vestibular stimula-
tion (GVS) as methods of non-invasive brain stimulation in neuropsychology—a
review of current data and future implications. Neuropsychologia 48: 2789~
2810.

. Nitsche MA, Paulus W (2011) Transcranial direct current stimulation—update

2011. Restor Neurol Neurosci 29: 463-492.

. Marshall L, Helgadottir H, Molle M, Born J (2006) Boosting slow oscillations

during sleep potentiates memory. Nature 444: 610-613.

. Kirov R, Weiss C, Siebner HR, Born J, Marshall L. (2009) Slow oscillation

electrical brain stimulation during waking promotes EEG theta activity and
memory encoding. Proc Natl Acad Sci U S A 106: 15460-15465.

. Zachle T, Rach S, Herrmann CS (2010) Transcranial alternating current

stimulation enhances individual alpha activity in human EEG. PLoS One 5:
¢13766.

. Sabel BA, Fedorov AB, Naue N, Borrmann A, Herrmann C, et al. (2011) Non-

invasive alternating current stimulation improves vision in optic neuropathy.
Restor Neurol Neurosci 29: 493-505.

. Salvador R, Mckonnen A, Ruffini G, Miranda PC (2010) Modeling the electric

field induced in a high resolution realistic head model during transcranial
current stimulation. Conf Proc IEEE Eng Med Biol Soc 2010: 2073-2076.

. Parazzini M, Fiocchi S, Rossi E, Paglialonga A, Ravazzani P (2011) Transcranial

direct current stimulation: estimation of the electric field and of the current
density in an anatomical human head model. IEEE Trans Biomed Eng 58:
1773-1780.

Bindman L], Lippold OC, Redfearn JW (1964) The Action of Brief Polarizing
Currents on the Cerebral Cortex of the Rat (1) During Current Flow and (2) in
the Production of Long-Lasting after-Effects. J Physiol 172: 369-382.

Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, et al. (2004) Effects of
uniform extracellular DC electric fields on excitability in rat hippocampal slices
in vitro. J Physiol 557: 175-190.

. Esser SK, Hill SL, Tononi G (2005) Modeling the effects of transcranial

magnetic stimulation on cortical circuits. J Neurophysiol 94: 622-639.

PLOS ONE | www.plosone.org

Analyzed the data: IM GB RS AM ASF PCM FW. Contributed reagents/
materials/analysis tools: GB ASF GR. Wrote the paper: IM GB BMA RS
AM ASF PCM FW.

20.

21.

22.

23.

1

. Molaee-Ardekani B, Marquez-Ruiz J, Merlet I, Leal-Campanario R, Gruart A,

et al. (2012) Effects of transcranial Direct Current Stimulation (tDCS) on cortical
activity: A computational modeling study. Brain Stimul. In press.

. Lopes da Silva FH, Hoeks A, Smits H, Zetterberg LH (1974) Model of brain

rhythmic activity. The alpha-rhythm of the thalamus. Kybernetik 15: 27-37.

. Touboul J, Wendling F, Chauvel P, Faugeras O (2011) Neural mass activity,

bifurcations, and epilepsy. Neural Comput 23: 3232-3286.

. Molaee-Ardekani B, Benquet P, Bartolomei F, Wendling F (2010) Computa-

tional modeling of high-frequency oscillations at the onset of neocortical partial
seizures: from ‘altered structure’ to ‘dysfunction’. Neuroimage 52: 1109-1122.

. Wendling F, Bellanger JJ, Bartolomei F, Chauvel P (2000) Relevance of

nonlinear lumped-parameter models in the analysis of depth-EEG epileptic
signals. Biol Cybern 83: 367-378.

. Goodfellow M, Schindler K, Baier G (2011) Intermittent spike-wave dynamics in

a heterogeneous, spatially extended neural mass model. Neuroimage 55: 920
932.

. Schurmann M, Demiralp T, Basar E, Basar Eroglu C (2000) Electroenceph-

alogram alpha (8-15 Hz) responses to visual stimuli in cat cortex, thalamus, and
hippocampus: a distributed alpha network? Neurosci Lett 292: 175-178.

. Steriade M (2006) Grouping of brain rhythms in corticothalamic systems.

Neuroscience 137: 1087-1106.

Jefferys JG (1981) Influence of electric fields on the excitability of granule cells in
guinea-pig hippocampal slices. J Physiol 319: 143-152.

Rushton WA (1927) The effect upon the threshold for nervous excitation of the
length of nerve exposed, and the angle between current and nerve. J Physiol 63:
357-377.

Dogdas B, Shattuck DW, Leahy RM (2005) Segmentation of skull and scalp in
3-D human MRI using mathematical morphology. Hum Brain Mapp 26: 273~
285.

Shattuck DW, Leahy RM (2001) Automated graph-based analysis and
correction of cortical volume topology. IEEE Trans Med Imaging 20: 1167—
1177.

February 2013 | Volume 8 | Issue 2 | 57330



24.

26.

27.

28.

29.

30.

31.

33.

34.

36.

37.

38.

39.

40.

Shattuck DW, Leahy RM (2002) BrainSuite: an automated cortical surface
identification tool. Med Image Anal 6: 129-142.

Shattuck DW, Sandor-Leahy SR, Schaper KA, Rottenberg DA, Leahy RM
(2001) Magnetic resonance image tissue classification using a partial volume
model. Neuroimage 13: 856-876.

Plonsey R, Heppner DB (1967) Considerations of quasi-stationarity in
electrophysiological systems. Bull Math Biophys 29: 657-664.

Nicholson PW (1965) Specific impedance of cerebral white matter. Exp Neurol
13: 386-401.

Baumann SB, Wozny DR, Kelly SK, Meno FM (1997) The electrical
Biomed Eng 44: 220-223.

Goncalves SI, de Munck JC, Verbunt JP, Bijma F, Heethaar RM, et al. (2003) In
vivo measurement of the brain and skull resistivities using an EIT-based method
and realistic models for the head. IEEE Trans Biomed Eng 50: 754-767.
Cosandier-Rimele D, Badier JM, Chauvel P, Wendling I (2007) A physiolog-
ically plausible spatio-temporal model for EEG signals recorded with
intracerebral electrodes in human partial epilepsy. IEEE Trans Biomed Eng
54: 380-388.

Cosandier-Rimele D, Merlet I, Badier JM, Chauvel P, Wendling I (2008) The
neuronal sources of EEG: modeling of simultancous scalp and intracerebral
recordings in epilepsy. Neuroimage 42: 135-146.

. Cosandier-Rimele D, Merlet I, Bartolomei F, Badier JM, Wendling F (2010)

Computational modeling of epileptic activity: from cortical sources to EEG
signals. J Clin Neurophysiol 27: 465-470.

Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, et al. (2006) An
automated labeling system for subdividing the human cerebral cortex on MRI
scans into gyral based regions of interest. Neuroimage 31: 968-980.

Boggio PS, Ferrucci R, Rigonatti SP, Covre P, Nitsche M, et al. (2006) Effects of
transcranial direct current stimulation on working memory in patients with
Parkinson’s disease. J Neurol Sci 249: 31-38.

. TFregni I, Boggio PS, Nitsche MA, Rigonatti SP, Pascual-Leone A (2006)

Cognitive effects of repeated sessions of transcranial direct current stimulation in
patients with depression. Depress Anxiety 23: 482-484.

Fregni F, Thome-Souza S, Nitsche MA, Freedman SD, Valente KD, et al.
(2006) A controlled clinical trial of cathodal DC polarization in patients with
refractory epilepsy. Epilepsia 47: 335-342.

Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, et al. (2008)
Transcranial direct current stimulation: State of the art 2008. Brain Stim 1: 206
223.

Fregni F, Boggio PS, Lima MC, Ferreira MJ, Wagner T, et al. (2006) A sham-
controlled, phase II trial of transcranial direct current stimulation for the
treatment of central pain in traumatic spinal cord injury. Pain 122: 197-209.
Reis J, Robertson EM, Krakauer JW, Rothwell J, Marshall L, et al. (2008)
Consensus: Can transcranial direct current stimulation and transcranial
magnetic stimulation enhance motor learning and memory formation? Brain
Stimul 1: 363-369.

Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized
populations of model neurons. Biophys J 12: 1-24.

PLOS ONE | www.plosone.org

12

41.

42.

43.

44,

46.

47.

48.

49.

50.

51.

52.

53.

54.

56.

57.

58.

Simulation of Scalp EEG under tCS

Freeman W] (1978) Models of the dynamics of neural populations. Electro-
encephalogr Clin Neurophysiol Suppl: 9-18.

Kim JW, Robinson PA (2007) Compact dynamical model of brain activity. Phys
Rev E Stat Nonlin Soft Matter Phys 75: 031907.

David O, Friston KJ (2003) A neural mass model for MEG/EEG: coupling and
neuronal dynamics. Neuroimage 20: 1743-1755.

Jansen BH, Rit VG (1995) Electroencephalogram and visual evoked potential
generation in a mathematical model of coupled cortical columns. Biol Cybern
73: 357-366.

. Freeman WJ (1987) Simulation of chaotic EEG patterns with a dynamic model

of the olfactory system. Biol Cybern 56: 139-150.

Robinson PA (2005) Propagator theory of brain dynamics. Phys Rev E Stat
Nonlin Soft Matter Phys 72: 011904.

Suffezynski P, Kalitzin S, Pfurtscheller G, Lopes da Silva FH (2001)
Computational model of thalamo-cortical networks: dynamical control of alpha
rhythms in relation to focal attention. Int J Psychophysiol 43: 25-40.
Breakspear M, Roberts JA, Terry JR, Rodrigues S, Mahant N, et al. (2006) A
unifying explanation of primary generalized seizures through nonlinear brain
modeling and bifurcation analysis. Cereb Cortex 16: 1296-1313.

Roberts JA, Robinson PA (2008) Modeling absence seizure dynamics:
implications for basic mechanisms and measurement of thalamocortical and
corticothalamic latencies. J Theor Biol 253: 189-201.

Contreras D, Destexhe A, Sejnowski TJ, Steriade M (1996) Control of
spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback.
Science 274: 771-774.

Fell J, Elfadil H, Roschke J, Burr W, Klaver P, et al. (2002) Human scalp
recorded sigma activity is modulated by slow EEG oscillations during deep sleep.
Int J Neurosci 112: 893-900.

Demanuele C, Broyd SJ, Sonuga-Barke EJ, James C (2012) Neuronal oscillations
in the EEG under varying cognitive load: A comparative study between slow
waves and faster oscillations. Clin Neurophysiol 124(2): 247-262.

Steriade M, Gloor P, Llinas RR, Lopes de Silva FH, Mesulam MM (1990)
Report of IFCN Committee on Basic Mechanisms. Basic mechanisms of
cerebral rhythmic activities. Electroencephalogr clin Neurophysiol 76: 481-508.
Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, et al. (2008)
Mapping the structural core of human cerebral cortex. PLoS Biol 6: ¢159.

. Knock SA, McIntosh AR, Sporns O, Kotter R, Hagmann P, et al. (2009) The

effects of physiologically plausible connectivity structure on local and global
dynamics in large scale brain models. J Neurosci Methods 183: 86-94.

Chen CC, Henson RN, Stephan KE, Kilner JM, Friston KJ (2009) Forward and
backward connections in the brain: a DCM study of functional asymmetries.
Neuroimage 45: 453-462.

Pinotsis DA, Schwarzkopf DS, Litvak V, Rees G, Barnes G, et al. (2012)
Dynamic causal modelling of lateral interactions in the visual cortex. Neuro-
image 66C: 563-576.

Pinotsis DA, Moran R]J, Friston KJ (2012) Dynamic causal modeling with neural
fields. Neuroimage 59: 1261-1274.

February 2013 | Volume 8 | Issue 2 | 57330



