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ABSTRACT  

 

Myotonic dystrophy type 1 is a complex multisystemic inherited disorder, which 

displays multiple debilitating neurological manifestations. Despite recent progress in 

the understanding of the molecular pathogenesis of DM1 in skeletal muscle and heart, 

the pathways affected in the central nervous system are largely unknown. To address 

this question, we studied the only transgenic mouse line expressing CTG trinucleotide 

repeats in the central nervous system. These mice recreate molecular features of RNA 

toxicity, such as RNA foci accumulation and missplicing. They exhibit relevant 

behavioral and cognitive phenotypes, deficits in short-term synaptic plasticity, as well 

as changes in neurochemical levels. In the search for disease intermediates affected by 

disease mutation, a global proteomics approach revealed RAB3A upregulation and 

Synapsin I hyperphosphorylation in the central nervous system of transgenic mice, 

transfected cells and post-mortem brains of myotonic dystrophy type 1 patients. These 

protein defects were associated with electrophysiological and behavioral deficits in 

mice, and altered spontaneous neurosecretion in cell culture. Taking advantage of a 

relevant transgenic mouse of a complex human disease, we found a novel connection 

between physiological phenotypes and synaptic protein dysregulation, indicative of 

synaptic dysfunction in myotonic dystrophy type 1 brain pathology. 

 

Key words: myotonic dystrophy, transgenic mice, synaptic transmission, RAB3A, 
synapsin I 
 

Abbreviations: CELF = CUGBP/Elav-like factor; CNS = central nervous system; DM = 

myotonic dystrophy; DM1 myotonic dystrophy type 1; DMPK = myotonic dystrophy 

protein kinase; MBNL = muscleblind-like; PPF = paired-pulse facilitation; SYN1 = 

synapsin I. 
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INTRODUCTION  

 

Myotonic dystrophy (DM) is the most common form of adult muscular dystrophy 

(Harper, 2001). DM1 is caused by the expansion of a CTG trinucleotide repeat in 3’UTR 

of the DM protein kinase (DMPK) gene (Brook et al., 1992, Fu et al., 1992, Mahadevan 

et al., 1992). Repeat number correlates directly with disease severity and inversely 

with age of onset. The DM1 repeat shows a marked tendency towards further 

expansion in intergenerational transmissions and somatic tissues (Gomes-Pereira and 

Monckton, 2006). The prevailing model of disease pathogenesis points to a trans-

dominant effect of expanded DMPK transcripts, which accumulate in nuclear foci, 

interfering with at least two families of alternative splicing regulators: the muscleblind-

like (MBNL) and CUGBP/Elav-like (CELF) proteins. MBNL1 loss of function, through 

sequestration into ribonuclear foci (Miller et al., 2000), and CELF1 upregulation 

(Timchenko et al., 2001) disturb a developmentally regulated splicing program, 

resulting in aberrant expression of embryonic isoforms in adult skeletal muscle and 

heart (Ranum and Cooper, 2006). Missplicing explains important DM1 symptoms, such 

as myotonia (Charlet et al., 2002, Lueck et al., 2007, Mankodi et al., 2002) and insulin 

resistance (Savkur et al., 2001).  

 Although traditionally considered a muscle disease DM type 1 (DM1) presents 

many debilitating neurological manifestations. Adult-onset DM1 patients show 

prevalent hypersomnia and fatigue, as well as visuoconstructive impairment, attention 

deficits, reduced initiative and apathy (Harper, 2001, Meola and Sansone, 2007), 

suggesting executive dysfunction and the involvement of frontal lobes (Gaul et al., 

2006, Meola and Sansone, 2007, Meola et al., 2003, Sistiaga et al., 2010). Reduced 

intelligence quotients (IQ) were measured in one third of adult and in the majority of 

childhood-onset patients (Angeard et al., 2007, Meola and Sansone, 2007), while 
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moderate to severe mental retardation is a feature of congenital DM1 (Harper, 2001). 

Additional signs of personality disorder, such as increased anxiety, depression and 

anhedonia, were reported in a proportion of DM1 patients (Bungener et al., 1998, 

Delaporte, 1998, Meola et al., 2003, Winblad et al., 2005). Region-specific structural 

abnormalities (including both white and grey matter affection) and metabolic changes, 

revealed by imaging studies, may contribute to DM1 neuropsychological manifestations 

(Minnerop et al., 2011, Romeo et al., 2010, Weber et al., 2010). 

RNA foci accumulate in post-mortem DM1 brains and co-localize with MBNL1 

and MBNL2 (Jiang et al., 2004). Nevertheless, the mechanistic links between the 

genetic mutation and neuropsychological abnormalities remain elusive (Meola and 

Sansone, 2007). We previously generated transgenic mice expressing DMPK 

transcripts in multiple tissues under the control of the human gene promoter, within 

the environment of the human DM1 locus. In contrast to control DM20 lines 

(overexpressing short 20-CTG tracts), homozygous mice from two independent DM300 

expansion lines (carrying 500-600 CTG), expressing enough toxic DMPK transcripts, 

showed wide RNA foci accumulation in a variety of tissues and developed a 

multisystemic phenotype (Guiraud-Dogan et al., 2007, Panaite et al., 2008, Seznec et 

al., 2001). Dramatic intergenerational instability in DM300 mice generated DMSXL 

animals carrying >1000 CTG, which develop a more severe phenotype (Gomes-Pereira 

et al., 2007, Huguet et al., 2012). We now used DMSXL mice to characterize RNA 

toxicity in the brain and to identify disease intermediates and pathways affected by 

DM1 in the central nervous system (CNS). We gathered electrophysiological, 

neurochemical and molecular evidence of synaptic protein dysregulation and synaptic 

dysfunction, which translates into DM1-associated behavior deficits and most certainly 

mediates neurological symptoms.  
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MATERIALS AND METHODS 

 

Transgenic mice. The DM transgenic mice used in this study carried 45 kb of human 

genomic DNA cloned from a DM1 patient as described (Gomes-Pereira et al., 2007, 

Seznec et al., 2000). Transgenic mice were raised and kept at Centre d'Exploration et 

de Recherche Fonctionnelle Expérimentale (CERFE, Genopole, Evry, France). Animal 

housing, care and handling were performed according to the French and European 

legislations, and the ethical guidelines of the host institution. Genotyping procedures 

are described in the Supplementary Materials and Methods online. The generation, 

characterization and genotyping of Mbnl1- and Mbnl2 knock-out mice is described 

elsewhere (Charizanis et al., 2012, Kanadia et al., 2003). 

 

Quantitative real-time RT-PCR quantification of DMPK and Rab3A transcripts. 

Total RNA extraction and cDNA synthesis were performed as previously described 

(Gomes-Pereira et al., 2007). DMPK, Dmpk and Rab3A transcripts were amplified in a 

7300 Real Time PCR System (Applied Biosystems) using SybrGreen detection and 

oligonucleotide primer sequences described in Supplementary Table 1. DMPK and 

Rab3A mRNA levels were expressed relative to 18S transcripts. The quantification of 

DMPK transcript levels was performed on a cDNA sample synthesized from equal RNA 

quantities extracted from three individual DMSXL homozygous mice. Rab3A transcript 

levels were quantified in six individual DMSXL homozygotes and wild-type controls. 

Two independent replicate experiments were performed. 

 

Fluorescent in situ hybridization (FISH). Ribonuclear inclusions were detected with 

a 5’-FITC-labelled 2’-O-methyl-(CAG)10 oligonucleotide probe, or a 5’-Cy3-labelled 

(CAG)5 PNA probe, as previously described (Seznec et al., 2001). RNA foci 
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quantification was performed using Discovery Automaton (Roche) (Bassez et al., 

2008). Mouse brain regions of interest were anatomically identified and the percentage 

of cells containing nuclear foci was calculated based on the observation of >100 cells in 

each brain region, in each mouse.  

 

Immunofluorescence (IF) combined with FISH. Following the 1X SSC post-

hybridization wash of the FISH procedure, sections were incubated in primary 

antibodies overnight at 4°C (antibody references and working dilutions are listed in 

Supplementary Table 2), washed five times with PBS for 2 min, and then incubated in 

secondary antibody and 0.001% (m/v) diamidino-2-phenylindole (DAPI) for 15 min at 

room temperature. Sections were washed five times in PBS prior to mounting. 

 

RT-PCR analysis of alternative splicing. Total RNA extraction, cDNA synthesis and 

semi-quantitative RT-PCR analysis were performed as previously described (Gomes-

Pereira et al., 2007), using oligonucleotide primers described in Supplementary Table 

1. The inclusion ratio of alternative exons in each individual animal was determined in 

two replicate PCR amplifications to minimize experimental variation. The percentage of 

exon inclusion was calculated as [exon inclusion band/(exon inclusion band + exon 

exclusion band)] x 100. 

 

Behavioral analysis. Since DMSXL mice display muscle deficits (Huguet et al., 2012) 

behavioral tests were carefully selected, designed and interpreted to minimize the 

confounding effects of muscular impairment on brain functional deficits. All the 

experiments were performed according to the guidelines of the French Ministry of 

Agriculture for laboratory animal experimentation (law 87-848; Agreement N°: A-45-

234-8) and the mouse genotype was unknown to the researcher. Mouse behavioral 
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testing was conducted in order to reduce animal stress to the minimum. Three groups 

of animals were studied, in order to limit the number of tests performed on each 

animal. Group A: Open-field, Y maze, passive avoidance and sucrose intake. Group B: 

Marble-burying and Morris water maze. Group C: Saccharine intake. Further details on 

behavioral phenotyping are described in the Supplementary Materials and Methods 

online. 

 

Electrophysiological profiling. Input/output (I/O) properties, Paired-Pulse 

Facilitation (PPF), Long Term Depression (LTD) and Long Term Potentiation (LTP) were 

assessed on male DMSXL homozygotes and wild-type controls, aged seven months 

(I/O, PPF and LTD) or four months (LTP). Mice were sacrificed by fast decapitation, 

without previous anesthesia. Brains were processed in oxygenated buffer and artificial 

cerebro-spinal fluid as previously described (Steidl et al., 2006). Extracellular field 

excitatory post-synaptic potentials (fEPSP) were measured with Multi-Electrode Arrays 

(MEA) technology (100 µm distant electrodes) on 350 µm thick hippocampal slices. 

One of the electrodes stimulated Schaeffer collaterals at the CA3/CA1 interface. The 

stimulus, consisting of a monopolar biphasic current pulse (negative for 60 µs and then 

positive for 60 µs), evoked responses (field potentials: fEPSP) in the CA1 region. I/O 

properties: I/O curves were plotted by measuring the response evoked by stimulation 

intensities varying between 100 µA and 800 µA. Details on the electrophysiological 

procedures are included in the Supplementary Materials and Methods online. 

 

Two-dimensional protein electrophoresis and mass spectrometry. Ten-month-

old female mice were used to compare the global proteomic profile in frontal cortex 

and brainstem between six homozygotes carrying expanded repeats (~500-600 CTG) 

and six females carrying short 20-CTG control tracts. Isolectric focusing and mass 
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spectrometry was performed as previously described (Sergeant et al., 2003). CELF1 

and CELF2 phosphorylation was assessed by two-dimensional gel electrophoresis and 

immunodetection, using antibodies in Supplementary Table 2. 

 

Western blot analysis. Primary antibody references and working dilutions are shown 

in Supplementary Table 2.  

 

Neurosecretion assays. Neurosecretion assays in cell culture were performed as 

previously described (Lee et al., 2007). 

 

Human tissue samples. Autopsy materials were obtained from nine DM1 patients 

(mean age 60.9 years, range 32–73 years) and six non-DM1 controls (three with no 

neurologic disease, one with Charcot-Marie-Tooth disease, one with a brain tumor and 

one with Limb-girdle muscular dystrophy; mean age 68.2 years, range 53-79 years). 

Six DM1 patients (i, j, m, n, o) had signs of classical adult-onset DM1, and they all died 

of complications related to the disease (respiratory failure or heart disease). Patient 

“DM1 g” developed late onset DM1. Patient “DM1 h” carried a large CTG repeat 

expansion in blood and brain tissue; her clinical form of DM1 was not fully described by 

the clinicians, but she presented gait problems and general brain atrophy evidenced by 

neuroimaging. The clinical form of patient “DM l” was not fully described either; she 

carried large CTG repeats, presented gait problems and mild cognitive impairment, and 

imaging assessment revealed general brain atrophy. Patient “DM1 k” exhibited mental 

retardation and was diagnosed with congenital DM1. He died at the age of 32, of 

pneumonia. Neuropshychological profiling and neuroimaging was not systematically 

conducted on the majority of these patients. Further patient details are given in 

Supplementary Table 3. All experiments using human samples were approved by the 
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Ethics Committee of Asahikawa Medical Center and Okayama University. Written 

informed consent specimen use for research was obtained from all patients. 

 

Statistical analysis. Statistical analyses were performed with JMP 5, Prism 5 and 

Excel software. When two groups were compared, a two-tailed Student’s t-test for 

statistical significance was performed, unless otherwise stated. The significance level 

was set at P values less than 0.05 for all statistical analyses. All data are expressed as 

mean ± SEM, unless otherwise stated. 
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RESULTS 

 

Expression of DM1 CTG expansions results in RNA foci accumulation and 

missplicing in the CNS of DMSXL mice  

The toxic RNA hypothesis proposes that accumulation of CUG-containing transcripts is 

the initiating pathogenic event in DM1. To assess to what extent DMSXL mice recreate 

central molecular aspects of DM1, we measured DMPK transgene expression in CNS 

regions dissected from one-month-old DMSXL homozygous mice and found expanded 

transcripts in all CNS regions investigated, with some regional differences 

(Supplementary Fig. 1A): DMPK transcript levels were higher in the hippocampus, 

thalamus/hypothalamus, cerebellum and brainstem, than in frontal and temporal 

cortex and in striatum. Overall, the expression levels of the DMPK transgene in frontal 

cortex and cerebellum were approximately three times higher than those of the 

endogenous Dmpk gene (Huguet et al., 2012). Expanded DMPK transcripts 

accumulated in one to ~20 ribonuclear inclusions per cell nucleus in both neurons and 

astrocytes (Fig. 1A) and co-localized with MBNL1 and MBNL2 (Fig. 1B). Astrocytes 

showed a significantly higher frequency of foci than neurons overall (62% versus 44% 

foci-containing nuclei) (Fig. 1C). Interestingly, foci distribution was not homogeneous 

throughout DMSXL brains: they were present in 20% nuclei of striatum, up to 70% in 

brain cortex and ~80% in the dorsal raphe and raphe magnus nuclei of brainstem 

(Supplementary Fig. 1B). In addition to the accumulation of RNA foci in neurons 

previously reported in DM1 human brains (Jiang et al., 2004), we found nuclear foci in 

human astrocytes (Supplementary Fig. 1C). 

To investigate the trans-dominant effect of DMPK transcripts in the CNS, we 

studied the alternative splicing of candidate genes. We focused primarily on foci-rich 

brain regions relevant to disease manifestations: while frontal cortex is involved in 
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executive tasks (Robbins and Arnsten, 2009), brainstem is involved in the control of 

sleep cycles, respiratory and cardiac function (Izac and Eeg, 2006). Mild region-specific 

missplicing events were detected in frontal cortex and brainstem of one-month-old 

DMSXL homozygotes (Fig. 1D, Supplementary Fig. 2A).  

The missplicing of Mbnl1 exon 7 and Ldb3 exon 11, two alternative exons 

specifically regulated by MBNL1 activity (Kalsotra et al., 2008), confirmed the impact 

of the sequestration of MBNL proteins (Fig. 1B) on alternative splicing deregulation. 

Similarly, mild missplicing of CELF1-dependent exons 15 and 16 of Fxr1 predicted a 

role of CELF1 in CNS spliceopathy. To confirm this hypothesis we quantified the 

steady-state levels of CELF proteins and found significant CELF1 and CELF2 

upregulation (of about 30%) in DMSXL frontal cortex (Fig. 1E; Supplementary Fig. 

1D). In DMSXL brainstem, only CELF1 was significantly upregulated. CELF1 

upregulation was associated with mild protein hyperphosphorylation in DMSXL frontal 

cortex and brainstem (Supplementary Fig. 1E). CELF2 phosphorylation levels did not 

differ between genotypes in frontal cortex and appeared to decrease in DMSXL 

brainstem. The upregulation of CELF proteins was more pronounced in human DM1 

frontal cortex: CELF1 levels were 70% higher and CELF2 showed a four-fold increase 

relative to non-DM individuals (Fig. 1F; Supplementary Fig. 1F). 

Interestingly, wild-type splicing profiles were region-specific (e.g. 

Grin1/Nmdar1, Fig. 1D, Supplementary Fig. 2A). Regional differences were associated 

with varying steady-state levels of MBNL and CELF proteins between frontal cortex and 

brainstem in adult mice (Supplementary Fig. 1G), suggesting a determining role of the 

ratio between antagonistic splicing regulators in the establishment of adult splicing 

profiles.  

We studied the alternative splicing of alternative genes throughout wild-type 

mouse brain development (Supplementary Fig. 2B), and found that the DMSXL 
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spliceopathy in the CNS modified certain transcripts towards embryonic/newborn 

splicing profiles. For instance, the splicing patterns of Grin1 exon 21 and Mbnl2 exon 7 

in DMSXL frontal cortex, as well as App exon 8 and Frx1 exons 15/16 in DMSXL 

brainstem resembled, to a limited extent, the splicing patterns of newborn wild-type 

mice. The effect was less pronounced in other alternative exons, which displayed 

intermediate inclusion ratios in DMSXL mice, between those characteristic of the 

embryonic and adult developmental stages (e.g. Ldb3 exon 11 in frontal cortex and 

brainstem; Grin1 exon 5 in brainstem). 

 

CTG repeat expansions induce mouse behavioral abnormalities 

Following the validation of toxic RNA expression, foci accumulation and missplicing in 

DMSXL brains, we then investigated the impact of expanded DMPK transcripts on 

mouse behavior and cognition through blinded phenotyping of adult DMSXL 

homozygotes. We first assessed mouse activity in the open-field test. DMSXL mice 

displayed overall levels of horizontal (P=0.402, Student’s t-test) and vertical activity 

(P=0.355, Student’s t-test) similar to those of wild-type controls, excluding a major 

effect of muscular deficits on mouse performance in this test (Supplementary Fig. 3A). 

However, DMSXL mice showed a significant decrease in exploratory activity, shortly 

after transfer into the open-field arena. While the total number of rearings did not 

differ between the two genotypes, the percentage of rearings over the first minute out 

of the first five minutes spent in the arena was significantly lower in DMSXL mice (Fig. 

2A). This result reveals freezing behavior in response to a new and unfamiliar 

environment and indicates novelty-induced inhibition, suggestive of increased anxiety. 

This was confirmed by the assessment of obsessive-compulsive behavior using a 

marble-burying test. DMSXL mice displayed a statistically significant shift towards a 

higher number of fully buried marbles (Fig. 2B), indicative of increased anxiety. 
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We then examined if the expression of expanded DMPK transcripts resulted in 

memory impairment as observed in DM1 patients. Mouse spatial memory was assessed 

by the Morris water maze. The platform was located in the same target quadrant 

during the training period, and removed during the probe trial. DMSXL mice showed 

impaired spatial memory, illustrated by a significantly lower number of entries in the 

target quadrant during the probe trial (Fig. 2C). DMSXL swimming speed was not 

significantly different between genotypes (Supplementary Fig. 3B), excluding biases 

introduced by impaired motor performance. In the assessment of working memory, a 

component of the executive function (Robbins and Arnsten, 2009), both genotypes 

were capable of finding the platform in the acquisition trial. The apparent lower latency 

(P=0.3066, Student's t-test) and shorter distance (P=0.4490, Student’s t-test) 

travelled by DMSXL mice were not statistically different from those of wild-type 

controls. Both genotypes showed similar performances in the acquisition trial. As 

expected, wild-type mice performed significantly better in the retention than in 

acquisition trial (latency: P=0.0019; distance travelled: P=0.0148; Student’s t-test), 

indicating that working memory was present. In contrast, DMSXL mouse performance 

did not improve significantly between the two trials (latency: P=0.1916; distance 

travelled: P=0.2726; Student’s t-test), suggesting possible mild working memory 

impairment (Fig. 2D). Non-spatial long-term memory, assessed by the passive 

avoidance conditioning test, was not affected in DMSXL mice (Supplementary Fig. 3C). 

Anhedonia, previously reported in DM1 patients, was assessed by the 

consumption of a highly palatable solution of saccharine (Schweizer et al., 2009). The 

similar volume of water drank during the habituation period by DMSXL and wild-type 

mice (day 1: P=0.136; day 2: P=0.538; Student’s t-test) shows similar satiety 

between the two genotypes (Supplementary Fig. 3D). Once saccharine became 

available, both animal groups showed a pronounced initial interest for the saccharine 
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solution, showing again similar satiety over the first three days of testing (test 1: 

P=0.980; test 2: P=0.450; test 3: P=0.843; Student’s t-test). However, as the test 

progressed DMSXL interest for the saccharine solution was significantly lower, as 

compared to wild-type controls (test 4: P=0.043; test 5: P=0.037; test 6: P=0.003; 

test 7: P=0.043; Student’s t-test), suggesting an anhedonic-like behaviour (Fig. 2E).  

 

DMSXL mice exhibit deficits in short-term synaptic plasticity  

In parallel to the behavioral and cognitive phenotyping of DMSXL mice, we have 

assessed the physiological impact of toxic DMPK transcripts on synaptic function. To 

this end we performed the electrophysiological profiling of DMSXL hippocampus, a 

brain region showing foci accumulation and missplicing (Supplementary Fig. 4). We 

first examined basal synaptic transmission by stimulating hippocampal Schaffer 

collaterals at increasing intensities and generating input/output (I/O) curves from 

measures of field excitatory post-synaptic potentials (fEPSP). DMSXL homozygotes 

exhibited slightly higher fEPSP relative to wild-type controls, but the overall I/O curves 

were similar between both genotypes (Fig. 3A), indicating no major deficits in basal 

transmission. We next investigated some short-term plasticity properties through the 

quantification of paired-pulse facilitation (PPF). DMSXL slices displayed significantly 

reduced PPF ratios, indicative of presynaptic dysfunction (Fig. 3B). Finally, we 

measured long-term depression (LTD) and potentiation (LTP), which support some 

forms of learning and memory. Standard LTD and LTP protocols did not reveal overt 

abnormalities in DMSXL mice (Figs. 3C and 3D). However, early after low frequency 

stimulation, LTD amplitude was slightly lower in DMSXL than in wild-type slices 

(36±7% vs. 47±3%), which might suggest mild impairment of the post-synaptic 

response. The difference between genotypes, however, did not reach statistical 

significance (P=0.142, repeated measures two-way ANOVA). Depression stabilized 
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after 20 minutes, being similar for both genotypes at the endpoint of the experiment. 

In summary, the number of animals studied did not show marked abnormalities in 

long-term plasticity, but revealed significant deficits in short-term synaptic plasticity. 

 

DMSXL brains show abnormal levels of dopamine and serotonin metabolites  

Neurotransmitter dysregulation can cause behavioral and electrophysiological 

dysfunction. Little is known about neurochemical signaling and metabolism in DM1 

brains. To further dissect the neurological phenotype of DMSXL mice and assess 

whether behavioral and electrophysiological phenotypes were associated with changes 

in neurotransmitter levels, we measured key neurosignaling molecules in DMSXL 

brains. Adult DMSXL mice revealed a significant reduction of dopamine (DA) in the 

frontal cortex, as well as a tendency to decreased levels of its precursor (L-DOPA) and 

metabolites (DOPA, HVA). A significant decrease of 5-hydroxyindoleacetic acid (5-

HIAA, the main serotonin metabolite) was detected in the brainstem of DMSXL mice 

(Fig. 3E). 

 

Molecular abnormalities in synaptic proteins in the CNS of DMSXL mice and 

DM1 patients  

To identify pathways affected in the CNS that might contribute to the behavioral and 

electrophysiological phenotypes, we compared the proteomic profiles of adult 

homozygous mice carrying CTG expansions, with those of DM20 control mice 

overexpressing short DMPK transcripts. The use of DM20 controls excluded the 

identification of disease intermediates possibly affected by overexpression of DMPK 

protein. The proteomics analysis suggested altered expression of RAB3A and post-

translational modifications of Synapsin I (SYN1). Western blot quantification confirmed 

a statistically significant upregulation of RAB3A and hyperphosphorylation of serine 
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residues of SYN1 in DMSXL frontal cortex and hippocampus at four months of age (Fig. 

4A, Supplementary Figs. 5A and 5B). To further test if synaptic protein dysregulation 

could be mediated by overexpression of short DMPK transcripts and protein, we 

analysed DM20 mice carrying 20 CTG repeats by western blot. This DMPK 

overexpressing control line did not show RAB3A upregulation or SYN1 

hyperphosphorylation (Fig. 4B), indicating that the defects observed are mediated by 

the expression of expanded CUG RNA repeats. We extended the analysis to other 

synaptic proteins to assess the extent of synaptic dysfunction, but found no additional 

abnormalities (Supplementary Figs. 5C and 5D). Our data suggest that, rather than 

interfering with synaptic proteins in general, the repeat expansion may affect (directly 

or indirectly) a limited number of synaptic targets. 

To address the mechanisms of synaptic protein dysregulation, we first tested if 

these abnormalities were associated with missplicing of known alternative exons of 

Rab3A and Syn1 transcripts. RT-PCR analysis revealed that Rab3A and Syn1 

alternative splicing was not affected in DMSXL mice at four months (Supplementary 

Fig. 5E), an age when synaptic protein abnormalities are detected. RAB3A and SYN1 

protein changes are not mediated by spliceopathy of the candidate alternative exons 

studied. Interestingly, RAB3A upregulation was associated with a significant increase of 

mRNA transcript levels in DMSXL frontal cortex and hippocampus (Fig. 4C).  

We then tested if Mbnl1 or Mbnl2 inactivation was sufficient to dysregulate 

synaptic proteins, through the analysis of knock-out mice (Charizanis et al., 2012, 

Kanadia et al., 2003). Western blot analysis revealed that Mbnl1 inactivation (but not 

Mbnl2) resulted in a significant increase of RAB3A protein levels in mouse frontal 

cortex (Fig. 4D). Neither Mbnl1 nor Mbnl2 loss of function affected SYN1 

phosphorylation levels. To test whether SYN1 hyperphosphorylation is mediated by 

upregulation of CELF proteins, we transfected PC12 cells with expressing vectors 



Synaptic dysfunction in myotonic dystrophy 

Hernandez-Hernandez et al. 17 

encoding CELF1 or CELF2. We studied SYN1 phosphorylation by western blot and found 

protein hyperphosphorylation in PC12 cells overexpressing CELF1 or CELF2 (Fig. 4E). 

This analysis indicated that upregulation of CELF proteins is sufficient to dysregulate 

SYN1 phosphorylation levels. 

To ascertain whether RAB3A and SYN1 dysregulation in mice reflected a 

pathophysiological event of the human condition, we investigated post-mortem DM1 

frontal cortex (Fig. 4F). Western blot quantification confirmed statistically significant 

RAB3A upregulation in DM1 patients, when compared to non-DM1 subjects (P=0.0054, 

Student’s t-test). SYN1 was hyperphosphorylated in Ser9 (P=0.0282, Student’s t-test) 

and Ser553 (P=0.0032, Student’s t-test) amino acid residues in DM1 individuals. 

Abnormal phosphorylation was not accompanied by changes in protein steady-state 

levels (P=0.7658, Student’s t-test). These results show that proteins playing important 

roles in synaptic function are dysregulated in DM1. 

 

Expanded CUG-containing DMPK transcripts affect neuronal exocytosis in 

culture. 

To investigate the functional consequences of DM1 repeat expansions, and in particular 

altered expression of synaptic proteins on vesicle trafficking, we studied exocytosis in 

an established transfected cell culture model of neurosecretion. Regulated exocytosis is 

triggered by extracellular stimulus and exhibits low basal spontaneous secretion in the 

absence of stimulation (Sudhof, 2004). Basal and regulated neurosecretion can be 

measured in cultured PC12 cells transiently transfected with human growth hormone 

(hGH) (Lee et al., 2007, Sugita, 2004). The percentage of hGH secreted prior and 

following osmotic stimulation serves as an estimate of basal and regulated 

neurosecretion, respectively. To assess the effect of CTG repeats on vesicle trafficking, 

PC12 cells were co-transfected with an hGH-producing plasmid and with DMPK 
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constructs carrying a CTG expansion or no CTG repeats. Expanded CUG-containing 

RNA accumulated in the nucleus of PC12 cells, co-localized with MBNL1 and MBNL2, 

and induced mild missplicing. More importantly, transfected PC12 cells exhibited 

RAB3A upregulation and SYN1 hyperphosphorylation (Supplementary Fig. 6). The 

neurosecretion assay demonstrated that the expression of toxic RNA repeats enhanced 

basal neurosecretion in the absence of stimulation, relative to no-repeat control 

constructs (Fig. 5). The effect was observed in four independent experiments with a 

significant average basal secretion enhancement of 60±16%, during 15 minutes of 

incubation. Interestingly, CUG-containing transcripts did not disturb regulated 

neurosecretion after osmotic stimulation.  



Synaptic dysfunction in myotonic dystrophy 

Hernandez-Hernandez et al. 19 

DISCUSSION  

 

To explore DM1 neuropathology, we studied DM1 transgenic mice that reproduce key 

molecular aspects of RNA toxicity and exhibit relevant behavioral phenotypes. DMSXL 

mice display neurochemical and electrophysiological signs of synaptic dysfunction, 

which are associated with molecular abnormalities in synaptic proteins, observed not 

only in mice but also in transfected cells and post-mortem DM1 brain samples. The 

association between physiological and molecular phenotypes of the synapse indicates 

synaptic dysfunction in DM1 neuropathophysiology. 

The expression of expanded DMPK transcripts in the CNS of transgenic mice 

results in the accumulation of RNA foci in neurons and astrocytes. RNA toxicity in both 

cell types indicates that DM1 may be associated not only with neuronal dysfunction, 

but also with glial abnormalities. Interestingly, brain areas showing the highest foci 

content (e.g. frontal cortex) did not necessarily express the highest DMPK levels, 

suggesting that RNA aggregation into foci may depend on region- and/or cell type-

specific factors. Like in skeletal (Lin et al., 2006, Orengo et al., 2008) and cardiac 

(Wang et al., 2007) muscles, CUG toxicity interferes with developmental alternative 

splicing in the CNS, increasing to a limited extent the abnormal expression of 

embryonic isoforms of some transcripts in adult DMSXL brains. Splicing abnormalities 

in the CNS may contribute to DMSXL phenotype. In particular, Grin1/Nmdar1 and 

Mapt/Tau splicing defects likely participate in synaptic dysfunction detected in DMSXL 

mice. Further experiments are required to investigate how Grin1/Nmdar1 missplicing 

influences intracellular localization and function of this receptor, as well as the impact 

of Mapt/Tau missplicing on DM1 neurofibrillary degeneration. 

The missplicing of alternative exons specifically regulated by MBNL or CELF 

proteins (Kalsotra et al., 2008) indicated that MBNL loss of function by protein 
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sequestration, and CELF upregulation induce missplicing in the CNS. In support of this 

view, Mbnl1- or Mbnl2-deficient mice show abnormal splicing in brain (Charizanis et 

al., 2012, Suenaga et al., 2012). 

CELF1 upregulation in CNS appears to be mediated by mild protein 

hyperphosphorylation, as in DM1 heart (Kuyumcu-Martinez et al., 2007). It remains to 

be investigated whether PKC activity is increased in the DM1 brains. In contrast, CELF2 

upregulation in DMSXL frontal cortex was not associated with protein 

hyperphosphorylation, suggesting alternative mechanisms of protein regulation. The 

marked upregulation of CELF2 in human DM1 frontal cortex predicts a pathogenic role 

for this protein in DM1 neuropathogenesis. The modulation of CELF2 expression by 

miRNA species, recently reported in a transgenic mouse model of spinal-bulbar 

muscular atrophy (SBMA) suggests new possibilities for miRNA-mediated therapies in 

DM1 (Miyazaki et al., 2012) 

The behavioral phenotyping of DMSXL mice revealed reduced exploratory 

activity, increased anxiety, spatial memory impairment and anhedonia, which resemble 

DM1 neurological manifestations. Previous neuropsychological assessment of DM1 

patients revealed low scores in the exploratory scale (Winblad et al., 2005), a higher 

prevalence of anxiety-related behaviors (Delaporte, 1998, Meola et al., 2003), visual-

spatial impairment (Modoni et al., 2004) and anhedonia associated with emotional 

blunting and depressive symptomatology (Bungener et al., 1998). The phenotypic 

parallel between patients and transgenic mice illustrates the impact of toxic DMPK 

transcripts on CNS physiology, and corroborates the use of the DMSXL line to recreate 

DM1 brain pathology. Mild deficits in working memory were also found in DMSXL mice. 

Although not statistically significant, the initial difference between the two genotypes in 

the acquisition trial, during the working memory assessment, might confound the 

analysis, and the results should be interpreted with some caution. Alternative 
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behavioral tests (e.g. elevated or multiple arm radial mazes) might prove useful to 

provide definitive evidence of working memory deficits in DMSXL mice. 

The behavioral abnormalities of DMSXL mice are associated with deficits in 

short-term plasticity, as well as changes in neurochemicals, suggesting altered 

synaptic function and neurotransmission in response to the CTG repeat expansion. The 

neurochemical data, in particular, provide insight into the neuronal circuits affected by 

DM1. Decreased dopamine in frontal cortex may account for motivation and reward 

deficits (Arias-Carrion and Poppel, 2007), while the reduced serotonin metabolism in 

brainstem may increase susceptibility to depressive-like behaviors (Werner and 

Covenas, 2010), thereby contributing to anhedonia. The high foci content in 

dopaminergic (substantia nigra) and serotonergic (raphe nucleus) brain centers may 

contribute, at least partially, to the neurochemical deficits of DMSXL mice. In humans, 

loss of catecholaminergic neurons (dopamine is an abundant catecholamine) and 

serotonin-containing neurons was previously reported (Ono et al., 1998, Ono et al., 

1998). The involvement of dopaminergic and serotonergic pathways in DM1 

neuropathology requires further investigation, and may provide insight into future 

means of therapeutic intervention, such as the modulation of the dopaminergic and 

serotinergic circuits. 

In the search for pathways affected by the DM1 repeat mutation in the CNS, we 

found RAB3A upregulation and SYN1 hyperphosphorylation, not only in transgenic mice 

expressing large CTG expansions, but also in post-mortem DM1 brains. Transgenic 

mice over-expressing short DMPK transcripts did not show abnormal synaptic protein 

dysregulation, indicating that RAB3A and SYN1 misregulation is specifically associated 

with expanded transcripts.  

Decreased glucose metabolism (Fiorelli et al., 1992) and blood perfusion (Meola 

et al., 1999) have been previously described in the frontal lobe of DM1 patients. Since 
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abnormal glucose metabolism can alter the protein content of synaptic vesicles 

(Gaspar et al., 2010), it is reasonable to speculate that changes in the exocytocic 

machinery in frontal cortex might result (at least partially) from brain hypoperfusion 

and/or hypometabolism. Despite the possible contribution of altered glucose 

metabolism to synaptic dysfunction, cells transfected with DM1 repeat expansions 

displayed RAB3A upregulation and SYN1 hyperphosphorylation in culture, supporting 

the view that synaptic protein dysregulation is also a direct consequence of CUG RNA 

toxicity, rather than a simple indirect effect, secondary to general brain dysfunction. To 

further support this hypothesis, the analysis of complementary animal and cell models 

of DM1 revealed that RAB3A upregulation is mediated by MBNL1 inactivation, and 

SYN1 hyperphosphorylation is mediated by upregulation of CELF proteins. We propose 

that transcriptional dysregulation (Osborne et al., 2009) or altered post-transcriptional 

regulation of mRNA decay (Masuda et al., 2012) through loss of function of MBNL 

proteins could mediate RAB3A upregulation. Hyperphosphorylation of SYN1 may result 

from dysregulated kinase and/or phosphatase activities, as a result of altered CELF 

levels. Dysregulation of micro-RNAs, also reported in DM1 skeletal muscle and heart 

(Gambardella et al., 2010, Perbellini et al., 2011, Rau et al., 2011), may extend to the 

CNS, opening new avenues for future research. 

RAB3A is an abundant synaptic vesicle protein that regulates neurotransmission 

(Sudhof, 2004). Mouse Rab3a inactivation results in increased hippocampal PPF 

(Geppert et al., 1997), while RAB3A overexpression in cell culture activates 

spontaneous exocytosis (Schluter et al., 2002), similar to PC12 cells transfected with 

expanded DMPK constructs. Given the involvement of RAB3A in short-term synaptic 

plasticity and neurotransmitter release, RAB3A upregulation in DMSXL mice likely 

contributes to altered PPF and mediates the increase in basal neurosecretion in 

transfected PC12 cells. In addition RAB3A has been implicated in visual-spatial learning 
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(D'Adamo et al., 2004). Therefore, altered RAB3A expression may contribute to the 

cognitive deficits of DMSXL mice and DM1 patients. Synapsins comprise the most 

abundant proteins in synaptic vesicles. SYN1 serves as a phosphorylation-dependent 

regulator of neurotransmitter release (Rosahl et al., 1993): while non-phosphorylated 

SYN1 attaches synaptic vesicles to the actin cytoskeleton, stimulation-dependent 

phosphorylation decreases the affinity for synaptic vesicles and potentiates exocytosis 

(Fdez and Hilfiker, 2006). Consistent with a role of SYN1 in short-term plasticity 

(Fiumara et al., 2007), chemically-induced hyperphosphorylation of SYN1 in vivo was 

previously associated with decreased PPF (Tallent et al., 2009), like in DMSXL mice. 

The marked RAB3A upregulation and abnormal SYN1 hyperphosphorylation in post-

mortem DM1 brains corroborate their role in DM1 neuropathology. RAB3A and SYN1 

variability between patients may be associated with different degrees of disease 

severity, as previously reported for splicing abnormalities in skeletal muscle and heart 

(Orengo et al., 2008, Wang et al., 2007). In summary, we found RAB3A upregulation 

and SYN1 hyperphosphorylation in DM1 transgenic mice, transfected cells and in 

human DM1 brain samples. These protein defects were associated with 

electrophysiological and behavioral abnormalities in mice, as well as altered 

spontaneous neurosecretion in cell culture.  

If changes in synaptic proteins reflect greater abnormalities in the dynamics 

and microstructure of the brain cell membrane, the molecular abnormalities identified 

might have wider implications and may correlate with the prevalent white matter 

lesions reported in DM1 brains (Minnerop et al., 2011). Future MRI (magnetic 

resonance imaging) of DMSXL brain integrity will address this possibility, through the 

characterization of tissue changes in response to the DM1 mutation. Additional imaging 

measurements of regional brain blood flow and/or glucose metabolism in transgenic 

mice by PET (positron emission tomography) and/or SPECT (single-photon emission 
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computed tomography) must be performed to evaluate and localize the functional 

impact of DM1 in the CNS, and provide insight into the underlying mechanisms. 

There is currently debate whether CNS dysfunction in DM1 is 

neurodegenerative, neurodevelopmental or neurofunctional. Although clinical data are 

not enough to answer this difficult question, transgenic mice may provide significant 

insight. The molecular and electrophysiological abnormalities detected in DMSXL mice 

are consistent with functional deficits in adult brain. Future analyses of cell loss and 

the CNS investigation throughout mouse development will be required to address the 

contribution of neurodegeneration and impaired neurodevelopment, respectively, 

towards DM1 CNS dysfunction. It remains possible that these processes are not 

mutually exclusive and that they all participate in DM1 brain pathophysiology.” 

In the context of the pre-clinical assessment of future therapies, it will be 

interesting to investigate whether therapeutic schemes targeting the CNS (and in 

particular RAB3 and SYN1) will be able to reverse the behavioral phenotypes (e.g. 

visual-spatial memory impairment, increased anxiety, anhedonia) and/or 

electrophysiological profiles (e.g. PPF deficits) of DMSXL mice. In cell culture, RAB3A 

and SYN1 can modulate miniature endplate currents of neurons (Chiappalone et al., 

2009, Wang et al., 2011). It is tempting to investigate whether RAB3A knocking-down 

and/or SYN1 dephosphorylation in primary cultures can rescue the electrophysiological 

phenotype of DMSXL neurons. 

Using molecular and physiological approaches to explore the molecular 

mechanisms of a complex human disease, we generated evidence of the impact of 

DM1 on synaptic proteins, vesicle secretion, neurotransmission and synaptic plasticity. 

The validation of our molecular findings in post-mortem DM1 brains substantiate a role 

of synaptic dysfunction in DM1, through changes in proteins involved in the regulation 

of synaptic vesicle release. 
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FIGURE TITLES AND LEGENDS 

 

Figure 1. Expression of an expanded DMPK transgene induces foci accumulation and 

splicing dysregulation in the CNS. (A) Fluorescent in situ hybridization (FISH) and 

immunofluorescence (IF) revealed nuclear foci of transgenic DMPK mRNA in both 

NeuN-positive neurons and GFAP-positive astrocytes, in multiple regions of the brain of 

one-month-old DMSXL homozygotes. (B) MBNL1 and MBNL2 colocalized with nuclear 

RNA foci. No RNA foci were observed in DM20 and wild-type control animals (data not 

shown). Punctuated MBNL2 staining was occasionally detected and did not correspond 

to RNA aggregates. DAPI was used for nuclear staining. Scale bar represents 5 µm. (C) 

Quantification of the percentage of astrocytes and neurons exhibiting nuclear RNA 

aggregates (±SEM) throughout the brain of one-month-old DMSXL homozygotes (n=2) 

(**, P<0.01, Chi-square test). (D) Percentage of inclusion of alternative exons in 

mRNA transcripts encoding: GRIN1/NMDAR1 glutamate receptor, ATP2A1/SERCA1 

endoplasmic calcium ATPase, microtubule-associated protein tau (MAPT/TAU), amyloid 

beta precursor protein (APP), insulin receptor (INSR), MBNL1 and MBNL2 splicing 

regulators, LDB3/CYPHER cytoskeleton-interacting protein and FXR1 RNA binding 

protein. The analysis was performed in frontal cortex and brainstem of homozygous 

DMSXL mice (n=9) and wild-type controls (n=9) at one month of age. Splicing profiles 

were compared with those of wild-type newborns collected as postnatal day P1 (n=3). 

The graphs show the average fractional inclusion of the specified exon in triplicate 

assays (±SEM). (E) Quantification of CELF proteins in homozygous DMSXL (n=3) and 

wild-type mice (n=3) at one month. (F) Quantification of CELF proteins in frontal 

cortex of adult DM1 individuals (n=9) and non-DM controls (n=3). The graphs in (E) 

and (F) show the average steady-state levels relative to normalized controls. *, 
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P<0.05; **, P<0.01; ***, P<0.001.  

 

Figure 2. DMSXL exhibit novelty-induced inhibition, anxiety, spatial and working 

memory impairment and anhedonia. (A) Assessment of novelty-induced inhibition in 

DMSXL homozygotes (n=16) and age-matched controls (n=16). The graph represents 

the percentage of the number of rearings (±SEM) in the first minute out of the first 

five minutes spent in the first open-field session. (B) Assessment of mouse anxiety 

levels by the marble-burying test. The graph represents the average number of 

marbles (±SEM) unburied and buried by DMSXL (n=15) and wild-type mice (n=15). 

The DMSXL line shows a significant shift towards a higher number of buried marbles 

(P=0.0087, Fisher’s exact test). (C) Spatial memory assessment by the Morris water 

maze test. The graph represents the number of entries in the target quadrant (±SEM) 

during the probe trial, for DMSXL (n=15) and wild-type (n=15) mice. (D) Working 

memory assessment by the Morris water maze test. The graphs represent the average 

time and distance travelled (±SEM) to reach the platform in acquisition and retention 

trials for both genotypes (n=15 per genotype). (E) Saccharine consumption test for 

anhedonia. The graph on the left represents the average volume of saccharine solution 

(±SEM) drank by DMSXL homozygotes (n=12) and wild-type controls (n=12). The 

volume of water consumed once saccharine became available did not differ between 

the two genotypes (graph on the right). *, P<0.05; **, P<0.01. 

 

Figure 3. DMSXL mice exhibit deficits in short-term synaptic plasticity and changes in 

neurochemical levels. (A) Electrophysiological profiling of DMSXL mice and age-

matched controls. I/O characteristics in the CA1 region. Mean value of fEPSP (±SEM) is 

expressed as a function of stimulation intensity. (B) PPF in the CA1 region. The mean 

ratio of the second peak compared to the first one (fEPSP2/fEPSP1, ±SEM) is expressed 
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as a function of the inter-stimulus interval. PPF values were significantly lower in 

DMSXL hippocampal slices (repeated measures two-way ANOVA). The difference 

between genotypes was more pronounced for inter-stimulus intervals of 100, 200 and 

300 ms. (C) LTD in the CA1 region. Mean value of normalized fEPSP amplitude (±SEM) 

is expressed as a function of time. LTD amplitude was slightly lower in DMSXL slices, 

shortly after low frequency stimulation (grey box), but overall LTD amplitude was not 

significantly different between DMSXL and wild-type mice. (D) LTP in the CA1 region. 

Mean value of normalized fEPSP amplitude (±SEM) is expressed as a function of time. 

LTP did not significantly differ between DMSXL and wild-type mice. I/O, PPF and LTD 

data correspond to values averaged from 16 independent slices prepared from DMSXL 

(n=5) and wild-type mice (n=5). LTP data correspond to values averaged from 10 

independent slices prepared from four DMSXL (n=4) and five independent slices from 

three wild-type mice (n=3). (E) Quantification of neurochemicals in the brain of DMSXL 

(n=5) and wild-type controls (n=5) at four months of age. Average concentration 

(±SEM) of L-3,4-dihydroxyphenylalanine (L-DOPA), dopamine (DA), 3,4-

dihydroxyphenylacetic acid (DOPAC), homovalinic acid (HVA), noradrenaline (NA), 

serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) are plotted for frontal cortex 

and brainstem. *, P<0.05; **, P<0.01.  

 

Figure 4. Abnormal metabolism of RAB3A and SYN1 in the CNS of DMSXL mice and 

DM1 patients. (A) Average steady-state levels (±SEM) of RAB3A, and phosphorylated 

SYN1 in the frontal cortex, brainstem and hippocampus of homozygous DMSXL mice 

(n=9), relative to normalized age-matched wild-type controls (n=9) at four months of 

age. (B) Western blot analysis of RAB3A protein levels and SYN1 phosphorylation in 4-

month-old DM20 and wild-type mice (n=2 per genotype). (C) RAB3A protein 

upregulation in DMSXL brains is associated with increased transcript levels. Real-time 
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quantitative PCR of Rab3A mRNA in frontal cortex and hippocampus of DMSXL (n=6) 

and wild-type mice (n=6). The graph shows the average Rab3A relative expression 

(±SEM) at four months of age. *, P<0.05. (D) Western blot analysis of RAB3A protein 

levels and SYN1 phosphorylation in frontal cortex of knock-out mice inactivated for 

Mbnl1- and Mbnl2-deficient mice. The graph on the right represents the average 

RAB3A steady state-levels (±SEM) in knock-out mice (n=3), relative to normalized 

age-matched wild-type controls (n=3). (E) Western blot analysis of RAB3A protein 

levels and SYN1 phosphorylation in PC12 cells overexpressing CELF1 or CELF2. NT, 

non-transfected cells. (F) RAB3A upregulation and SYN1 hyperphosphorylation in 

frontal cortex of adult DM1 patients (n=9), relative to non-DM controls (n=6). One 

non-DM control (“b”) did not show a suitable SYN1 signal (possibly due to protein 

degradation) and was excluded from the analysis. *, P<0.05; **, P<0.01. 

 

Figure 5. Toxic CUG repeats dysregulate neurosecretion in culture. Quantification of 

the effect of CTG repeat expansion on neurosecretion. The average secretion from 

hGH-expressing PC12 cells co-transfected with expanded DT960 or no-expansion 

DMPKS plasmids is plotted as a percent of total hGH content (±SEM). Basal secretion 

was measured in control medium containing 5.6 mM KCl. Stimulus-dependent 

secretion was measured in media containing 56 mM or 100 mM KCl.  

 

 

 


