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Abstract 
In the past year, the influence of psychosocial and environmental stressors in different pathogenesis received 
increased awareness. The brain is the master manager of the interpretation of what is stressful and of the 
physiological responses that are produced. Animals have developed conserved strategies to respond to 
stressful conditions, in particular, the secretion of stress-specific neuromediators which mediate protective 
and adaptative effects in the short run and yet can accelerate pathophysiology when they are over-produced 
or mis-managed. The Cortico-Releasing Factor (CRF) and their derived peptides are the majors stress 
neuromediators. Their localization has originally been described in the central nervous system where they 
play a pivotal role to activate the hypothalamic-pituitary-adrenal (HPA) axis and was recently extended to 
the periphery. While the peripheral effects of CRF signalling need to be more thoroughly investigated, it has 
been described to influence disease negatively, in particular in the intestine. The epithelial barrier is a crucial 
checkpoint to control body entrances. Prolonged exposure to stress can cause ultrastructural epithelial 
abnormalities and can increase barrier permeability, which favors luminal translocation, immune activation 
and thus induces inflammation. This review summarizes the present knowledge on the stress response and 
the effects of both acute and chronic stress to induce pathological damage to the intestine. We present the 
potential pathways involved, and the proposed mechanisms of action, mediating these effects. The CRF 
system is potentially useful as a diagnostic marker or a therapy target for inflammatory diseases and cancer. 

 
 
Introduction 
 
 In medical language the concept of “Stress” has been introduced by Hans Selye (1907-1982) [1]. In 
response to various stressors, living organisms have developed adaptative behaviors and coping strategies in 
order to maintain their homoeostasis. Stress is a complex process that involves the endocrine, immune and 
nervous systems. Altogether, they communicate by the production of mediators (hormones, cytokines, 
neuromediators) which target their specific receptors. “Cognitive stress” (from the central nervous system 
activity) such as psychological and emotional events is distinguished from the “non cognitive stress” induced by 
physical damage, infection or inflammation, although some “non cognitive stress” may be relayed by the 
nervous system especially via the vagal afferences (Figure 1). The stress is also characterized by various 
parameters such as duration, frequency (acute versus chronic stress) and intensity. Chronic or recurrent stress 
results in an increased demand of physiological systems (cardiac, immune, metabolic, hormonal…) that can lead 
to diseases and contribute to wear and tear on the body, a condition known as “allostatic load” [2]. 
 
 According to the community of pathways used and processes generated, mediators and receptors used, 
stress of various nature leads to convergent effects. Indeed, whatever the nature of the stress, the main adaptative 
response is mediated by the hypothalamic-pituitary-adrenal (HPA) axis with a central role of the neurohormone, 
the corticotrophin-releasing factor (CRF). This stress response begins with the hypothalamic production of CRF 
which in turn, induces the production and release of adrenocorticotropic hormone (ACTH). Pituitary-derived 
ACTH stimulates adrenocortical production of glucocorticoids (GC) which counteract the effect of stressors, 
suppress the immune system, and attenuate the functional activity of HPA axis via feedback inhibition of the 
hypothalamic CRF expression [3, 4] (Figure 1). However, the brain is not the only centre of information and 
decisions: the interactions between the different systems also occur at a local level in some organs such as the 
skin, the heart and the digestive tract.  They are particularly described in the brain-gut axis, which also 
contributes to manage the stress in the intestine using the same mediators and signalling pathways in reciprocity 
to the brain. 
 
 
Stress and pathologies 
 
 In the past ten years, the influence of psychological and environmental stressors on pathogenesis such 
as obesity, metabolic syndrome, and type 2 diabetes, as well as pain and chronic fatigue syndromes, received 
increased awareness [5]. Furthermore, a large number of skin diseases, including atopic dermatitis and psoriasis, 
appear to be triggered or exacerbated by psychological stress [6]. They are also often associated with a 
perturbation of the cutaneous homeostatic permeability barrier [7]. Stress is recognized to participate in the 
development and/or aggravation of gastrointestinal (GI) disorders, such as inflammatory bowel diseases (IBD) 
and irritable bowel syndrome (IBS) despite differences in their etiologies [8-12]. IBD which includes Chron’s 
disease (CD) and ulcerative colitis (UC), consist of a measurable over-inflammatory response leading to gut 
damage [13]. Many in vitro and in vivo studies indicate that stress-related alterations of GI functions are 
mediated by both brain and peripheral CRF signalling pathways (for review see [14]). While the expression 
pattern of CRF receptors and ligands in the GI tract have been extensively described (for review see [15]), the 



cellular and molecular mechanisms of their interactions are still poorly understood and principally focused on the 
neuronal CRF signalling influence on the immune response in the GI tract (for review [16]). Using data from 
clinical and basic research literature, the objectives of this review are to summarize evidence in support of a 
major role of stress and CRF signalling in the induction and progression of inflammatory intestinal disorders 
with a special emphasis on the intestinal barrier alteration. We also discuss the implication of CRF system in the 
colorectal cancer (CRC) initiation and progression. 
 
 
The CRF system: signalling and expression in the epithelium  
 
 
An overview of the CRF system  
 
 In mammals, the CRF family (including urocortins, Ucn) is composed of 38 to 41aa peptides called 
CRF or urocortins (Ucn) such as Ucn1, Ucn2 and Ucn3. CRF and Ucn1 were first characterized for their ability 
to control ACTH secretion from anterior pituitary cells [3, 17], and hence play a pivotal role in the stress 
response by regulating the HPA axis. Later, DNA analysis has identified Ucn2 and Ucn3 by sequence 
homologies [18, 19]. Other orthologs have also been described, like the Urotensin1 [20] in fish or the sauvagine 
in frogs [21, 22]. Phylogenic analyses indicated that CRF-like peptides are well conserved through the evolution 
and derived from a common stem involved in osmo-regulation as an ancestral stress adaptation, neuro-endocine 
system [23-25]. Like many hormones, these peptides are derived from precursor proteins [26, 27] and their 
bioactivities are modulated by the secreted CRF-binding protein (CRF-BP) or soluble splice variants of their 
receptors [28-32] (Figure 2). 
 
 These polypeptides exert their activities through the activation of two known class II G Protein Coupled 
Receptors (GPCR), CRF1 [33] and CRF2 [34]. While CRF receptors arise from the transcription of two different 
genes they share about 70% homology, but differ by their N-terminal ligand binding domains [35, 36]. CRF 
recognizes both receptors, but displays a higher affinity for CRF1. Ucn1 activates CRF1 and CRF2 with the 
same potency, whereas Ucn2 and Ucn3 exclusively bind to CRF2 [37, 38]. CRF receptors are subjected to 
additional modifications consisting of splicing regulation and glycosylation [39]. Several CRF1 splice variants 
classified from CRF1a to CRF1h were identified at the mRNA level but there is little knowledge about their 
protein expression and functionality within the different tissues. Except for CRF1a, these variants display low 
ligand affinity or are unable to induce intracellular signalling: they have been suggested to exert regulatory 
functions by titrating free ligands [40-43]. Recently, a novel functional isoform CRF1i has been identified in the 
BON cell line, which is also expressed in human ileum [44]. CRF2 undergoes three distinct functional forms: 
CRF2a, CRF2b and CRF2c, which consist of an alternative transcription start a, c versus b and alternative 
splicing between a and c, only detected in humans [45, 46]. This results in the modification of the N-terminus, 
involved in the ligands’ affinity [47]. Several dysfunctional CRF2 forms have also been described, in particular 
soluble truncated forms. First, they have been proposed as ligand scavengers which are in competition with 
membrane expressed receptors for free ligands [48]. However recent studies found that despite its correct 
translation, the variant of CRF2a is not secreted. This protein may regulate the CRF2 signalling by altering the 
transcription of full-length CRF2a mRNA [49, 50]. Similarly, a dominant-negative CRF2b splice variant has 
been described in mouse heart, to impair mCRF2b function by retaining its cellular location to the endoplasmic 
reticulum-golgi sites [51]. There is also some variability in the molecular weight observed by western blot 
analysis for these receptors depending on tissue, cell type and species. These differences are often due to the 
splicing, the antibodies used, or the glycosylation status of CRF receptors [52, 53] according to the five potential 
sites of N-glycosylation identified in the primary structure [39]. However CRF1 activity has been described to be 
regulated by inflammation [39] which also influences the glycosylation status of proteins [54]. Together these 
studies indicate that the CRF system is finely tuned by different regulatory pathways at the receptor and ligand 
levels. 
 
 
CRF signalling 
 
 CRF signalling has been studied in many cell lines and tissues including the Central Nervous System 
(CNS) and the periphery. It appears that the binding of ligands give rise to structural arrangements of CRF 
receptors that increase the affinity of their third intracellular loop for the Gα subunits which become activated. 
CRF receptors are primarily coupled to Gαs and trigger cAMP formation via adenylyl cyclase activation [55] 
(Figure 2). However they could in few cases bind to Gαq, i, o, z and involve other signalling pathways like 
Phosho Lipase C (PLC) [56-59]. Gβγ subunits are also able to mobilize intracellular pathways like PI3K/Akt and 



Ca2+ flux but their involvements in CRF signalling are poorly investigated.  Thus, depending on the Gα subtype 
recruited and on the cell type, CRF receptors are able to transduce plethora of intracellular signalisations, such as 
Protein Kinase A, B, C (PKA, PKB, PKC), P42/p44, p38 Mitogen-Activated Protein Kinases (MAPK) Ca2+ flux, 
NOS activation Fas-ligand, and NFκb [60]. Recently novel downstream G protein-independent pathways have 
been described for the CRF receptors like Src which directly interacts with the endocytosed CRF receptors and 
takes part in the activation of ERK 1/2 [56, 61, 62]. 
 
 Like other GPCR, CRF receptors expression and function are regulated by a desensitizing process. 
Moreover, the recruitment of G protein-coupled receptor kinase GRK3 and GRK6 by the activated receptor leads 
to the phosphorylation of its C-terminus and β-arrestin binding [40, 63]. All of these events are involved in the 
internalization of the receptor which can subsequently be degraded in the endo-lysosomal path, or recycling to 
the membrane. If both receptors are subjected to internalization after ligand binding, it seems that the time course 
of desensitization could be different depending on the cell model and the receptor sub-type [64, 65]. Sequences 
analyses also report multiple phosphorylation sites for either PKA or PKC, which can regulate CRF receptor 
function [40, 66]. However, the use of specific mutants, truncated forms or PKA inhibitors showed that these 
modifications are not required for the receptor internalization [65]. 

 
 
Distribution of CRFreceptors and  peptides through the intestinal mucosa 
 
 The CRF system was first characterized in the CNS for its implication in the brain response and 
adaptation to stress as well as in food intake [67, 68] and psychiatric disorders [69, 70]. Later, CRF receptors and 
their ligands have been identified in peripheral tissues like digestive tract (for review [15]), cardiovascular, 
immune, reproductive systems or skin [71]. There is a growing number of studies interested in CRF receptor 
expression and localization in the gut but the emerging features are often heterogeneous and incomplete. This 
can be explained by the CRF receptor isoforms, species and antibodies recognition, as mentioned previously 
[72]. It could also be due to the disparity in global and cell type expression between the different sections of the 
digestive tract [73]. According to our interest in the regulatory role of CRF system on the epithelial barrier, in 
this section, we will focus on what is known on epithelial cells (EC), lamina propria (LP) cells and on the enteric 
nervous system (ENS), at the small intestine and colonic levels (Figure 3). Indeed, the LP contains innate 
immune cells which participate in the primary response to intestinal homeostasis perturbations. 
 
 
Expression of CRF receptors and ligands in the small intestine 
 
 In contrast to the colon, the expression and distribution of CRF receptors and their related peptides in 
the ileum have been poorly investigated in rodents and humans. In mouse, only one study has reported the 
expression of CRF1 mRNA and at low levels CRF2 mRNA in LP and EC in the ileum [74]. CRF2 mRNA was 
found in mucosa and at the base of villi in the duodenum [75]. Both CRF receptors have been principally 
detected in neuronal myenteric plexus (NMP) and neuronal submucous plexus (SNP) in guinea pigs and rats [73, 
76, 77]. Their expression can also be observed in muscle layers of rats, however with opposite patterns 
depending on the region considered duodenal versus ileal. Lastly, CRF2 expression was found in enteric neurons 
and nerve fibers, in the duodenal glands [78] and in 5-HT negative EC in the villi [77]. Interestingly, the 
expression of CRF1 is complementary to that of CRF peptides suggesting that neurons are a potential target for 
CRF signalling [79].  
 
 CRF immunoreactivity was detected in MNP and SNP of the ileum and the duodenum in guinea-pigs as 
well as in rats [80]. CRF mRNA was also located at low levels in LP cells, Paneth cells and endocrine cells in 
the crypts of rat ileum, but not in enterocytes [80, 81]. Only one report describes CRF expression in LP and in a 
few EC of mouse ileum at both mRNA and protein levels [74]. The expression of Ucns in the ileum has been 
principally investigated in rat tissue. Ucn1 proteins and transcripts were found in both enteric plexuses [82, 83]. 
Ucn2 mRNA has been described in rat and to a lesser extent in mouse small intestine [73, 84]. In rat, Ucn2 was 
detected in the epithelium, LP and enteric plexuses. In human, Ucn2 was absent, while Ucn3 was detected in the 
muscularis mucosae [85]. 
 
 
Expression of CRF receptors and ligands in the colon 
 
 Both CRF receptors have been detected at the gene and/or protein levels in human and rodent colons 
(Figure 3). Some reports mentioned that CRF1 is unexpressed in human IEC of the colon, neither at the mRNA 



level on total purified EC, nor with tissue immunolocalization [86, 87]. Nevertheless, CRF1 transcripts have 
been detected in colonic sections from healthy adults and a CRF1 positive staining can be observed in LP cells 
(macrophages and mast cells), as well as in both enteric plexuses [88]. LP macrophages and mast cells from 
ileum and colon also express CRF2 receptors in humans [86, 89] and rats [73]. The mast cell leukaemia-derived 
cell line HMC-1 also expresses CRF1 and CRF2a specific mRNA isoforms and provides a useful model to study 
in vitro mastocyte-epithelial interactions [87, 90].  In rodents, CRF1 expression especially concerns neural 
plexuses. However regional differences were observed between species. In guinea pigs, the signal is more 
important in the SNP than in the MNP, whereas the opposite is observed in rats [78, 88, 91]. Non-neuronal 
expression of CRF1 has been reported in some LP cells and in IEC located at the base of rat colon crypts, which 
also contain stem cells [78]. Other experiments depict a protein expression in the whole crypts of rat proximal 
colons, which disappears distally, and mRNA is also described in the IEC of the mice ileum [74, 92, 93]. In 
ovines, CRF1 is expressed at the baso-lateral membrane in the IEC of the colon, during the foetus maturation but 
there are no data whether it’s still present in young and adults [72].  
 The presence of CRF2 in IEC, at a basal level is quite controversial in terms of expression and 
localization. CRF2a mARN or protein expression have been identified in human and rat IEC and in the epithelial 
derived carcinoma cell lines HT-29 or in the untransformed NCM460 [86, 89, 93-95]. However, in other studies, 
CRF2 has not been detected in rat, human or foetal ovine IEC [72, 73, 87, 92]. The CRF2 subcellular 
localization differs in EC, depending on the studies or species. While CRF2 immunostaining is apical in rats, 
localized in the luminal surface of the crypts, it seems to be localized on the baso-lateral membrane in humans 
[78, 95]. The real localization of this receptor is very important to understand its role in the direct regulation of 
epithelial barrier functions. Therefore, baso-lateral expression would signify that EC could be exposed to 
autocrine/paracrine activation, while apical expression would be restricted to autocrine stimulation or activation 
by luminal circulating ligands. Enterochromaffin cells, which are inserted within the epithelium, do not express 
CRF2 but CRF1 in humans and ovines [72, 89]. Both receptors have been identified in BON cells, a pancreatic 
carcinoid-derived human endocrine cell line, which shares functional similarities with intestinal 
enterochromaffin cells [96].  
 The quasi ubiquitous expression of the CRF receptors in these cell populations of the digestive wall 
reinforces the involvement of the CRF system in the immunomodulation response. The micro vasculature of the 
intestine plays an important role in the delivery of proinflammatory cytokines and the regulation of immune 
cells. There is a strong expression of CRF2 in endothelium and smooth muscles from the human colon 
vasculature [89, 97]. Identical patterns are found in rats with no CRF1 [78].  
  
 To date, CRF, Ucn1 and Ucn3 but not Ucn2 were detected in human colons. While CRF was found in 
the mucosa, in monocytes and IEC, mainly in enterochromaffin cells [98, 99], Ucn1 (protein and mRNA) was 
present in LP macrophages with a few amount in enterochromaffin cells [86, 100, 101]. Ucn3 expression is more 
heterogenous, since protein and mRNA were found in both enteric plexuses, smooth muscle, endothelium, 
enterochromaffin cells as well as in enteric glial cells [89, 102]. In rodents, there is no data available on Ucn3 
expression, to date. Expression of CRF is predominantly neuronal with an immunoreactivity observed in both 
enteric plexuses, and in nerve fibers located in mucosal projections and submucosa ganglia and in the circular 
muscle layer [81, 88, 103]. Non-neuronal expression of CRF in rats was controversial, and was detected in 
enterochromaffin cells [81]. Expression of Ucn1 is higher than of CRF and was observed in rat enteric nervous 
plexuses and co-localized with CRF1 receptors [83, 91]. In contrast, mucosal expression of Ucn1 has been 
detected in very few cells [82]. Ucn2 protein was identified in mucosal and submucosal layers of rat colon in 
IEC, LP immune cells and enteric neurons [73, 84, 102].  
 
 Altogether these studies indicate that the intestine is a target for stress signalling. Most of the studies 
show that ligands are expressed in close proximity of the CRF receptors, indicating the existence of local 
autocrine/paracrine regulatory loops. However, stress ligands produced by enteric neurons could contribute to 
endocrine regulation. So whatever the nature of this regulation, different loops could be established (Figure 1). 
For example, neuronal activation following stress may regulate expression of stress-ligand and receptors in IEC 
and their function, directly according to the close proximity of enteric neurones and these cells [104] as well as 
indirectly after LP immune cell stimulation. Indeed, wallon et al. have shown that the release of CRF by 
oesinophils following the activation of muscarinic receptors can activate mast cells and leads to colonic mucosal 
barrier dysfunction in patients with UC or in eptithelial T84 cells [105]. Immune cells may also regulate CRF 
signalling on IEC, independently of neurones after infection. Finally, IEC may produce ligands which may 
regulate epithelial barrier function by an autocrine way. We found that rat IEC from the duodenum to the colon 
as well as human adenocarcima cells were able to produce CRF and Ucns (personal data).  
 
 
 



Regulation of the CRF system by stress and inflammation  
 
 Cumulative studies suggest that stress, whatever its origin, either interceptive (infection, inflammation) 
or exteroceptive (psychological or physical stress), modulates the expression of stress signalling molecules in the 
GI tract as it was observed for the brain.  
  
 
Regulation by stress 
 
 During stressful conditions, brain perception is communicated to the periphery partially via the HPA 
axis that rapidly produces GC discharges into the blood. Promoters of CRF family genes contain Glucocorticoid 
Response Elements (GRE) which modulate their gene expression [48, 106-109]. However, GC regulate the 
expression of the CRF system compounds depending on cell type or location. For example, CRF and Ucn2 are 
differentially regulated by stress-related GC depending on the brain region [109]. Ligands and receptors are also 
submitted to regulation in different intestinal cell types, during stress and inflammation. The stress-induced 
regulation of intestinal CRF system could also be dependent on the nature of the stress inputs. Acute versus 
chronic stress could modify the GC response which depends on GC receptor signalling, rather than on 
mineralocorticoid receptors (MR) according to the GR expression profile of cells [110]. CRF2 is down-regulated 
by GC in the rat aortic smooth muscle A7r5, the skeletal muscle C2C12 for the β isoform or the HEK 293 cells 
transfected with the "a" promoter coupled to luciferase. Dexamethasone induces a decrease of CRF1 and CRF2b 
opposite to a CRF2a increase of the promoter activity in pancreatic islets or in the insulinoma cell line MIN6 
[111]. Consequently, some CRF circuits could be shut down in some cell types or activated in others. O’ Malley 
et al.; have investigated the CRF receptor regulation during acute versus chronic stress or the association of both. 
Regulation appears to be different between proximal and distal sections of the rat colon, according to the nature 
of stressors [92]. Their experiments are very exhaustive in stress models but there is no information on the time 
course which is important according to the variation in CRF system expression during the inflammation process. 
In that way, our unpublished data show that acute restraint stress induces an increase in CRF2 expression which 
becomes significant in the proximal colon of rats, only after six hours post stress. Hence, if the level of CRF 
system components is unchanged at the early phase of stress, it doesn’t exclude that some modifications occur 
later. Lakshmanan et al. speculate that in ovines the increase of endogenous foetal GC and/or gestational stress 
contributes both to the down-regulation of the CRF2 and to the up-regulation of the CRF1 observed near the 
term and term foetuses [72].  
 CRF ligands are also differentially regulated by GC. Cortico-therapies reverse the Ucn1 up-regulation 
observed in the intestinal mucosa of UC patients [101], whereas CRF levels seem to be not regulated by the 
corticosterone and hence independent of the HPA axis [112]. When altered, the physiological state of the bowel 
and coping strategies will lead to inappropriate response to stress, as observed in maternal deprived (MD) rats 
and IBD or IBS patients [113-115]. Some IBD patients don’t respond to corticotherapy and in few cases, these 
treatments lead to worsening symptoms. Misregulations of the CRF system dependent on GC could explain these 
phenomenons. Also, CRF and Ucn genes contain CRE and GATA sequences that enhance promoter activity 
[116-118]. These sequences may participate to the tissue- and cell type-specific expression of CRF peptides 
[119]. Moreover, in human and rodents, the stress response and the associated HPA axis activation display sex 
related differences. Sex hormones like oestrogen and their receptors target the CRF promoter and up-regulate its 
activity [120]. 
 
 Stress causes relapse after the remission of inflammation in IBD and animal colitis models [121-123], it 
also exacerbates flares in IBD [124]. Depending or not on stress, local modifications of the ratio 
ligands/receptors control the CRF signalling which participates to mucosal inflammation but the molecular 
mechanisms involved in this process are not well known. Finally, individual differences in CRF system 
compounds may explain differential susceptibility to stress. In this way, Wistar Kyoto and Sprague-Dawley, two 
strains of rats with diverse anxiety sensitivities, exhibit differential profiles of CRF1 and CRF2 receptor 
expression in their colon under basal conditions and following various stresses [93]. 
 
 
Regulation by inflammation 
 
 CRF signalling molecules are increased in IBD biopsies versus healthy volunteers and in animal models 
of inflammation. Both Ucn2 and CRF2 expression were reported in IEC in regions with active colitis in UC and 
CD biopsies compared to healthy samples [95]. In UC biopsies, CRF was detected in monocytes, and Ucn1 in 
LP immune cells together with CRF1 and CRF2, but not in macrophages [99, 101]. Their expression correlates 
with the inflammatory stage of UC patients [101]. In this study, Ucn1 was also reported in mucosal cells such as 



enterochromaffin cells. Interestingly, Ucn1 is absent in foetuses or neonates but appears in the LP inflammatory 
cells of pediatric subjects and increase in adults. Food intake and bacterial agent exposure after birth were 
supposed to contribute to Ucn1 expression and regulation [86]. 
 Different models of animals developing inflammatory colitis have been described: 1) spontaneous 
colitis in animals with genetic manipulation, 2) colitis induced by the transfer of activated cells (T lymphocytes 
in nude mice, SCID), by chemical agents (indomethacin, 2.4.6-trinitrobenzenesulfonic acid, TNBS; dextran 
sulphate sodique, DSS; acetic acid), by bacterial products (peptidoglycan-polysaccharide, PG-PS) [125]. TNBS-
induced colitis in rats is associated with a decrease in CRF2 expression in myenteric neurons and macrophages 
during the early phase (days1-3) of inflammation while its agonist Ucn2 mRNA is up-regulated in the early and 
late stages (days 12-15) of inflammation [73]. Our unpublished data depict an up-regulation of the CRF2 in the 
chronic DSS model of rat colitis that is coherent with the CRF2 overexpression observed in human colitis [95]. 
In these models, the development of colitis is influenced by the intestinal bacterial flora [126]. This suggested 
flora to mucosa regulation has been investigated in lipopolysaccharides (LPS) treated rats in which CRF mRNA 
and proteins are up-regulated in inflammatory cells, mesenchymal cells and myenteric plexus [112, 127]. Toll-
Like Receptors (TLR) which are targets of LPS, participate for a bacteria-dependent colitogenic effect by 
internalizing and transporting pathogens from the lumen to the LP. The TLR-4 is strongly expressed in the colon 
and could then relay the inflammation-dependent increased expression of CRF and Ucn1 peptides [128]. The 
TLR-4 expression is increased in macrophages and IEC of CD patients and could favor the bacterial-induced 
inflammatory susceptibility [129].  Clostridium Difficile toxin A (C. Difficile Tx A)-induced inflammation in 
mice ileum leads to an early increased expression (within 1 hour) of CRF in subepithelial cells and both CRF 
receptors in LP cells and IEC [74]. Blocking of CRF1 led to decreased inflammation suggesting a pro-
inflammatory role of CRF. In the same model, Ucn2, Ucn3 (but not Ucn1) and CRF2 mRNA levels were 
increased after a four hour treatment in mice [94] or rats [80], while in humans, exposure to C. Difficile Tx A 
was reported to increase the expression of CRF2 mRNA and protein levels in HT-29 cells and colonic xenografts 
[95]. Also, CRF receptors are sensitive to cytokines and inflammatory toxins but their regulation by endocytosis 
and degradation after ligand binding counteracts the observed levels. This hypothesis is supported by the 
observation that C. Difficile Tx A raises CRF1 levels in the ileum when CRF is down-regulated but not in 
control or Ucn2 silencing [80]. This differential modulation between ligand and receptor expression could be a 
regulatory response to stress signals. Commensal bacteria are beneficial or/and pathogenic, depending on strain, 
environment and localization. IBD patients, who are subjected to chronic colitis, present a modified enteric 
microflora composition (for review [130]), that could affect the basal expression of CRF system compounds 
depending on intestinal sections, and consequently enhances colitis susceptibility. 
 
 Alternatively, mucosal inflammation can be considered on the immune cell side, where an inappropriate 
activation leads to pro-inflammatory cytokine secretion and participates in inflammatory flares in IBD. The CRF 
system could be regulated by inflammatory cytokines like IL1, IL6 or TNFα [112], which are differentially 
expressed depending on the colitis stage. This has been studied at the different phases of TNBS-induced colitis 
in rats [12, 73]. On day 1, at the early step of inflammation, the MPO peak matches with an Ucn2 up-regulation 
in mucosal macrophages, whereas Ucn1 and CRF2 are down-regulated. On day 6, at the late step of 
inflammation, Ucn1 and Ucn2 expressions are at their maximal levels with the TNFα peak. Up and down 
regulations may represent the multi-factorial influence of cytokine production. The cytokine profile is different 
in UC versus CD patients [131] and the respectively corresponding experimental models, DSS and TNBS colitis 
[132]. These divergences could explain some differences of both the immune activated population and the CRF 
system regulation pattern. Altogether, microflora and cytokines impact the basal level expression and 
localization of the CRF system according to the cell types and their location.  
 
 
Influence of CRF signalling in epithelial function : normal and pathological  
 
 Intestinal epithelial homeostasis and function depend on various cell populations distributed on the 
different layers that constitute the GI tract. These cells participate in the control of intestinal secretory, motor and 
immune functions as well as epithelium permeability (for review [14]). Mucosal cells make up a complex 
network in which ENS, immunocytes, enterocytes and enterochomaffin cells, establish interaction circuits that 
are mobilized during stress and inflammation. This equilibrium of cell representations could also be affected in 
pathological conditions, as mastocytes, macrophages and lymphocytes are more vastly represented in the colon 
LP of IBD and IBS [133]. In this review, we will focus on epithelial barrier defects induced by CRF signalling.  
 
 The intestinal homeostasis is maintained by the epithelial monolayer which separates immune cells 
from luminal contents. Thus the epithelium prevents unwanted solutes, micro-organisms, and antigens entering 
into the body. However, monocyte activation, epithelial cell-cell interaction weakness or down-regulation of 



goblet cells induced-mucus secretion lead to a higher influx from the lumen that makes these two populations in 
contact (Figure 1). The GI epithelial lining consists of a monolayer of cells that are held together by 
circumferential intercellular junctions. Tight junctions (TJ) are composed of transmembrane proteins (claudins 
(CL), occludins and junctional adhesion molecules (JAM)), scaffold proteins like zona occludens (ZOs) that link 
the actin cytoskeleton, and intracellular regulatory molecules including kinases [134]. TJ proteins regulate the 
flux of water and solutes in the intercellular space, but also the movement of transmembrane proteins, thereby 
promoting apical-basal polarity [135]. Directly beneath TJ are the adherens junctions (AJ) which comprise E-
cadherin and nectin connected to the actin cytoskeleton via α/β catenin and afadin respectively, and are regulated 
by 120ctn [136]. Rather than providing barrier function, AJ are thought to act as a dynamic connection between 
the actin contractile rings of adjacent cells [137]. The third group of cell-cell contacts, desmosomes, is 
structurally similar to AJ [138]. The transmembrane desmosomal cadherin, desmoglein and desmocollin, bind to 
the intercellular scaffold proteins plakoglobin and desmoplakin, which link the protein complexes to 
intermediate filaments to provide structural strength. In addition to form a physical barrier, EC participate in the 
innate defence mechanisms through the expression of a wide range of pattern-recognition receptors, such as 
TLRs and by the production of immunomodulatory molecules. By releasing 5-HT, enterochromaffin can cause 
the secretion of mucus from goblet cells [139], while Paneth cells produce defensins, crytidines and lysozymes 
which exert antibacterial activities [140]. The mucus protects from bacterial penetration by the formation of a 
coating laid at the epithelial surface [141].  
 
 Stress modulates the activity of neuroendocrine, immune and GI systems [142, 143]. Altered release of 
neuroendocrine factors, such as GC, vasoactive intestinal peptides, neurotensin, adrenomedullin, catecholamines 
or CRF and its related peptides, by stress, may disturb the intestinal cytokine balance and barrier integrity [10, 
144, 145]. The impact of the CRF system on the intestinal epithelium could be considered at two different levels: 
On one hand, by targeting the immune system, which secondarily interacts with the epithelium through the 
production of cytokines, and on the other hand, by the mobilization of the enterocyte’s CRF receptors. 
According to the low expression of the enterocytic CRFergic system in basal conditions, this way has been less 
studied. However, considering the CRF ligand and receptor up-regulation that could occur under various 
conditions such as stress or inflammation, the EC aspect needs to be more thoroughly investigated.  
 
 
Stress and barrier dysfunction: role of CRF signalling 
 
 While maintaining an effective barrier to harmful macromolecules and micro-organisms, enterocytes 
have also developed two mechanisms to control the selective permeability of the barrier. The management of ion 
selectivity, nutriments and solute occurs via the para-cellular route crossing between the epithelial cells, while 
large molecules such as antigens and immunoglobulins pass through epithelial cells via the trans-cellular route 
[146] (Figure 1). In humans, the effect of stress on mucosal barrier function has not been deeply investigated. 
The reason might be that it is difficult to evaluate the stress and to obtain intestinal biopsies of these patients 
without adding exogenous stress. However, some studies showed that acute stress leads to the reduction of water 
absorption, and sodium/chloride secretion, cooperatively with the luminal release of mast cell mediators in the 
colon [147, 148] and/or α-defensin in the jejunum [149]. Other studies reported increased small intestinal 
permeability in some patients with IBS compared to healthy controls [150, 151]. Futhermore colonic biopsies 
from IBS patients had increased para-cellular permeability [152] and a release in mast cell neuromediators [153]. 
Soluble mediators produced from cultured colonic biopsies of these IBS patients increased the permeability of 
human intestinal epithelial Caco-2 cells, a process correlated with a reduction of ZO-1 mRNA [152]. So far, the 
components that alter epithelial barrier in humans have not all been identified. However unpublished data of 
kiank et al., indicate that activation of peripheral CRF signalling contributes to defect in epithelial barrier by 
reducing the expression of TJ proteins and altering the expression of IFNγ and IL10 (Kiank et al., unpublished 
data). This effect seems to be related to the recruitment of CRF2 pathways by CRF1 activation.  
  
 In rodents, both acute physical and chronic stresses increase the para- and trans-cellular permeability in 
colon. Studies, using various CRF antagonists, indicate that the modulation of colonic permeability seems to be 
CRF1 dependent [103, 154-160]. In rats, acute or chronic administration of peripheral CRF also leads to an 
increase in the colonic permeability by stimulating para-cellular transport, [154, 155, 161]. This process that 
appeared to be dependent on either CRF1 or CRF2 drives potential pro-inflammatory events [162]. 
Psychological stress induces eosinophils-derived CRF to activate mast cells, leading to epithelial barrier 
dysfunction [163]. As it might be expected, the exposure to chronic stress compared to a single exposure has 
more severe consequences on the intestinal function. The use of chronic stress (5-10 days of repeated exposure 
to stressors) is thought to reflect more accurately the daily stressors of humans. Indeed, the exposure to chronic 
water avoidance stress (WAS) caused longer lasting mucosal barrier defects than in acute stress, with enhanced 



ultrastructural abnormalities in the epithelium, inflammation and mucus depletion [158, 164, 165]. Following 
acute stress, the endogenous CRF is responsible for the increased mucin secretion since IEC expressing CRF1 
are partly goblet cells [10, 72, 154 , 166]. On the other hand, murine experiments advocated that under acute 
stress, provoked by high level acoustic stimuli, colonic permeability occurs, associated with mast cell 
degranulation and overproduction of interferon gamma (IFNγ). The colonic epithelial barrier was 
morphologically altered, mRNA encoding TJ proteins were reduced and colonocyte differentiation was altered 
[157]. Theses transient phenotypic changes in colonocytes are mediated by mast cell activation and IFNγ release 
[167]. 
 Early life stress also generates long term impacts on the epithelial physiology by changing its cell 
composition and interactions. Maternal deprivation (MD) of rat pups induces alterations in the differentiation of 
IEC, resulting in a CRF2-dependent depletion of Paneth and goblet cells, concomitant to a CRF1-dependent 
hyperplasia of endocrine cells in the rat duodenum. These losses in the secretory epithelial cell lineage could 
contribute to the stress-associated epithelial barrier defects, disturb the mucosal function and promote subsequent 
exposure to sensitising antigen or bacterial infections. Similarly to MD, chronic administration of CRF in rats, 
increases enterochromaffin cells, while Ucn2 administration decreases Paneth and goblet cells [168]. The effect 
on goblet and Paneth cells but not on enteroendocrine cells does not exceed the duration of the renewal of 
cellular population, suggesting that the stem cell population was altered by a CRF/CRF1-dependant mechanism 
at a critical stage of the intestinal maturation. Intestinal crypts may contain both short-lived (days) as well as 
long-lived (months) multipotent progenitors that are able to differentiate in all epithelial cell fates [169]. 
Futhermore, in the rat colon, CRF receptors are both expressed in the basal third of the crypts on intestinal stem 
cells and could affect cell differentiation [78]. Finally, stress impairs rat ileal epithelial cell kinetics including 
proliferation, maturation and apoptosis. In adult rats, chronic stress reduced crypt length due to apoptosis, 
followed by an increase in cell proliferation to replace these damaged cells [170]. Hence, a reduced proportion of 
fully differentiated epithelial cells may produce a more permeable intestinal barrier. 
 
 Various mechanisms are responsible for mucosal barrier dysfunction. A combination of local and 
extrinsic signals may be involved in mediating the effect of CRF on colonic epithelial function since CRF 
receptors were localized in the periphery as described previously. Here we will successively focus on the CRF 
system-dependent barrier dysfunctions at the neural, immunologic and epithelial level. The enteric nervous 
system (ENS) controls chloride secretion by acetylcholine (ACh) and 5-HT, through the secreto-motor reflex 
[171]. The stress susceptible Wistar-Kyoto strain of rats have a decreased ACh transferase activity in mucosal 
homogenates, compared to the parental strain which is less stress-suceptible, suggesting that ACh plays a role in 
these rats prior to restraint stress exposure [172]. Futhermore, atropine, a muscarinic receptor antagonist 
prevented the stress-induced increase in both mucin release following exposure to immobilization stress [166] 
and trans-cellular permeability [154, 173]. Then it has been proposed that MD-induced barrier dysfunction was 
dependent on CRF activation via CRF2 of enteric nerves to release ACh, which in turn activated EC to increase 
the permeability of the epithelium [174]. Acute stress also activates cholinergic pathways, to trigger exocrine 
pancreatic secretion. Trypsin released in these conditions may be responsible for colonic barrier alterations 
through activation of PAR2 [175]. 
 
 Animals devoid of mastocytes (including Ws/Ws rats) do not develop gastrointestinal disorders 
following the exposure to stress [158, 164]. Hence, various studies have shown that stress-mediated changes in 
GI are mediated by mast cell activation and degranulation in the LP of mediators such as prostaglandins, 
proteases, histamine and 5-HT. In distal colon explants of rats, the administration of CRF induces a dose 
response increase in rat mast cell proteases (RMCP-II), which is responsible for entrerocyte down-regulation of 
occludin and ZO-1, and subsequent TJ opening [176]. These effects are reverted in presence of doxantrazole (a 
mast cell stabilizer) and significantly reduced in Ws/Ws rats. This seems to be mast cell and CRF2 dependent but 
the presence of neighboring cells that also express CRF receptors does not exclude other targets [10]. In vitro 
studies have shown that acute stress is able to induce ion-transport and abnormalities in para/trans-cellular 
permeability of rats [159, 173]. These effects mediated by peripheral CRF induce activation of mast cells, which 
is also blocked by doxantrazole [154, 155]. Mast cell mediators may affect epithelial permeability either directly 
eg tryptase acting through PAR2 receptors [177, 178], either by stimulating local immune system [167] or by the 
reduction of colonic mucus [179]. Chronic affections found in MD are responsible for a CRF-dependent 
production of the nerve growth factor (NGF) in mastocytes via CRF1, with a subsequent increase in para-cellular 
permeability [103, 180, 181]. Therefore, mast cells are important effectors of the intestinal responses to stress 
and inflammation, which include ion secretion abnormalities, increased permability and mucin release [10, 182]. 
CRF receptor expression and functionality have been described in mast cells in rat and human colonic mucosa, 
however in humans, only resident mast cells are concerned [10, 87]. NCM460 IEC stimulated by Ucn2, produce 
chemo-attractants for immunocytes, like IL8, which has been described to control intestinal permeability [95, 
183]. 



 Futhermore, the increased para-cellular flux of the epithelium can be explained by cell signalling that 
are activated directly on enterocytes. Therefore, CRF receptors coupled to adenyl cyclase and cAMP have been 
described to be responsible for the inter-cellular dissociation of IEC [184]. In addition to their canonical 
pathways, GPCRs as well as CRF receptors are able to activate the Src kinase by promoting its auto-
phosphorylation on Y-418 [61] as observed in the HT-29 cell line (our unpublished data). Thus, by modulating 
the phosphorylation status of inter-cellular junction proteins Src activation could lead to the barrier opening 
[185]. Src kinase has also been implicated in trancytosis mechanisms, its activation leads to caveole formation 
and small molecules flux, from the apical to the basal pole, through a trans-cellular route. Both immobilization  
stress of rats and intravenous/intracerebral injection of CRF in conscious non stressed rats, lead to increased 
colonic mucosal levels of cyclooxygenase-2 (COX-2) mRNA and prostaglandin E2 (PGE2) secretion [166, 186]. 
However, RhoA-dependent COX-2 signalling has been shown to disrupt formation of AJ in HCA-7 cells [187], 
whereas PGE2 signalling mediates TJ disassembly through a mechanism that involves PKC and CL1 in human 
colorectal cancer Caco-2 cells [188]. Our results indicate that exposure of HT-29 cells to Ucn3 lead to AJ 
dissociation and increase cell motility, a process associated in part with RhoA activation (Ducarouge et al.; 
unpublished data). 
 Together, these data suggest that stress-induced activation of both peripheral CRF receptors contributes 
to mucosal barrier dysfunction, with the recruitment of enteric nerves, mastocytes and the less investigated, IEC. 
Furthermore, timing and duration of the stressor are key elements determining the extent of the damage 
observed. 
 
 
Inflammation and barrier dysfunction: role of CRF signalling.  
 
 Inflammation is a main component in the pathogenesis of IBD [13, 145] and there is increasing 
evidence that low grade pro-inflammatory processes may also have a role in the development of IBS, particularly 
in post-infectious IBS [10, 189, 190]. Psychological stress, including dismal life events and depression, triggers 
sympathetic activation and favors inflammatory reactions that increase the risk of relapse and/or exacerbation of 
IBD symptoms [9].Thus, a stress/inflammation relationship has been found in IBD patients, particularly for the 
stress in UC and the depressive symptoms in CD. Moreover, whether stress presents itself as a causative factor 
or a consequence of the IBD development remains questionable, since psychosocial stress might trigger or 
increase the inflammatory cascade through neuro-immunological interactions, whereas disease symptoms can 
themselves cause stress. It is already well-established that, in parallel to the indirect influences of the CRF 
system on the immune function through neuroendocrine activation of the HPA-axis, a direct pathway exists 
through immune tissue-derived local inflammatory actions. The CRF receptors are found in different immune 
cells, including macrophages, lymphocytes and mast cells and locally secreted CRF ligands are thought to act 
directly as autocrine/paracrine immuno-modulators [191]. 
 The development of inflammatory processes could result from the increased passage of antigens and 
pathogens in the LP subsequent to a prolonged impairment of colonic epithelial secretion [192] or to an epithelial 
barrier dysfunction [193] (for review [194]). Both colitis and chronic psychological stress enhance bacterial 
translocation, which in turn exacerbates the course of colonic inflammation [195, 196]. During the mucosal 
inflammation, E. coli bacteria activate the TLR4 of immune cells, which enhance the local release of IFNγ and 
NO [197]. This exacerbates ileitis and thus causes local damages of tissues. In vitro study showed that in murine 
macrophages, the expression and transcription of TLR4 could be increased by stimulating CRF2 [198]. 
However, deficiency in the TLR4 signalling pathway leads to increased intestinal inflammation in animal models 
[199] and is associated with IBD pathology in humans [200]. Using a DSS-induced colitis model in mice, 
Chaniotou et al.; showed that CRF-deficient mice have a lower expression of TLR4 before the onset of 
inflammation and that inflammation is more severe in these animals [201]. In humans, it has been established 
that a protective pathway mediated by Paneth cells’s secretory activity is altered in IBD patients [202, 203]. 
Alterations in the expression of defensins could have deleterious effects on gut homeostasis and shift this 
balance toward inflammation. However, it is not clear whether defensin deficiency is implicated in the 
pathogenesis of IBD or is a symptom [204]. The possibility that stress may affect this innate defence mechanism 
is supported by recent data showing that psychological stress decreases the release of anti-microbacterial 
peptides in the skin and that MD stress or Ucn2 administration decreases Paneth cells [168]. 
 IBD-associated inflammatory response in the gut also includes activation of the adaptive immune 
system. Both Th1 and Th2, T cells have been shown to cause chronic gut inflammation by releasing pro-
inflammatory cytokines, with CD having a predominantly Th1 cytokine profile (IFNγ or TNFα) and UC having 
a Th2 cytokine profile (IL4 IL5, IL13) mediated by specialized cells such as natural killer (NK) T-cells. In 
addition to the Th1/Th2 theory, recent studies have unveiled in the pathogenesis of CD, the critical involvement 
of a third subset of effectors T helper cells, Th17 cells [13, 205]. These cells produce IL17, which promotes a 
local inflammatory response including a IL6 and IL8 release and neutrophil chemotaxis to remove microbes. 



Under physiological conditions, the Th1/Th2 balance is equilibrated and regulatory T (Treg) cell driven 
responses, which include the release of IL10, TGFβ and IL4, counteract the Th1 mediated microbial and 
autoimmune actions [205, 206]. In several tissues, CRF signalling promotes the immune response: indeed, CRF 
stimulates the proliferation of human lymphocytes by increasing IL2 receptor expression and enhancing the 
production of IL1 and IL2 [207]. Tache and collaborators found that in mice treated with CRF1 agonist, the 
colon responds with increased TGFβ expression (a modulator of intestinal mast cell effector functions), while the 
ileum exhibits a dose-related IFNγ response indicating T cell and/or NK cell activation (Kiank et al.; 
unpublishend data). Finally, IBS patients who present high levels of psychological stress, exhibit a higher 
number of mucosal mast cells (in the jejunum and colon) as well as CD8+ T lymphocytes (in the colon) [133, 
208, 209]. Similarly, chemically DNBS induced colitis in rodents can be reactivated by acute stress. Stress 
reduced colonic mucin, increased colon permeability and T lymphocytes mucosal infiltration [121, 210]. Stress 
susceptible reactivation required CD4+ lymphocytes. Furthermore, stress neuro-mediators like CRF can recruit 
and activate mast cells, neutrophils, oeisnophils mononuclear cells in the intestinal mucosa which can either 
cause tissue damage (pro-inflammatory actions) or have protective effects on intestinal homeostasis (anti-
inflammatory)(for review [16]). 
 To understand the role of the CRF system in the regulation of the intestinal homeostasis, some 
approaches were developed based on receptor and ligand inhibition by either genetic or chemical extinction. 
These works indicate that both CRF receptors play a role in the stress-induced inflammation but they may have a 
contrasting function since it was hypothesized that CRF1 acts as an anti-inflammatory by countering the effect of 
pro-inflammatory cytokines, while CRF2 signalling potentiates the inflammation. The establishment of knockout 
(KO) mice provided a useful tool for this purpose. However, there are some contradictory results possibly 
depending on the type of inflammation and since they are not conditional, they do not exclude central mediated 
effects on the animal behaviour, that impact the intestinal mucosa through the “brain-gut axis” [211-213]. 
Indeed, CRF2 KO is responsible for a reduced inflammation in C. Difficile Tx A-treated mice [94]. In contrast, 
in a DSS-induced colitis model, CRF1 KO mice showed decreased inflammation, while CRF2 KO mice 
displayed increased intestinal inflammation. This effect could also be obtained by antagonizing receptors in 
littermate mice [214]. This hypothesis is reinforced by contradictory data in which local injections of shRNA 
targeting CRF-receptors diminish TNBS-induced colitis suggesting that both receptors participate in the 
inflammation process [12]. Furthermore, IBD patients display a high level expression of Ucn2 and CRF2 in the 
colon [95]. Likewise, in the acute phase of inflammation, in a rat model of chemically-induced colitis, Ucn2 
levels are increased in infiltrating cells whereas expression levels of CRF2 are decreased in myenteric neurons, 
suggesting a compensatory down-regulation [73]. Regulation of receptor expression by its ligands is a rather 
frequent homeostatic mechanism observed in endocrine/paracrine pathways. The pro-inflammatory role of CRF2 
has also been demonstrated at the cellular level. In human NCM460 colonocytes, CRF2 activation by Ucn2 
induces NF-κb signalling and a subsequent exaggerated release of IL8 and monocyte chemoattractant protein 1 
(MCP-1) [94, 95]. In these cells, Ucn2 also induces the mitogen-activated protein (MAP) kinase which 
participates in cell differentiation, survival and apoptosis.  The pro-inflammatory role of CRF ligands has also 
been demonstrated by KO or sh interference. In an experimental mouse model of C. Difficile Tx A induced 
intestinal inflammation, CRF KO animals developed a less severe inflammation [215]. In rats, CRF mRNA 
silencing but not UcnII dsRNA treatment abrogated both the inflammatory response and the increased CRF1 
expression in inflamed tissue [80] suggesting an important role of CRF1 in the pro-inflammatory effect of CRF 
in rats. However, CRF receptors antagonists reduced the rise of TNFα and IL1β in C. Difficile Tx A-induced 
ileitis [74]. In murine TNBS-induced colitis, CRF KO reduced inflammation with a decline in the local IL1β 
upregulation [216]. Supporting a local pro-inflammatory role, CRF was shown to modulate secretion of 
cytokines and neuropeptides, as well as proliferation, chemotaxis and degranulation of purified macrophages and 
lymphocytes in vitro. Indeed, CRF/Ucns augments proinflammatory cytokine production (TNFα, IL1 and IL6) 
from macrophages in vitro and in LPS-induced endotoxin shock in mice. This induced the chemotaxis of 
mononuclear cells and macrophage activation, which are associated with a local release of oxidative mediators 
[74, 142, 198, 217]. Antalarmin administration inhibits CRF-induced local inflammation, suggesting the 
implication of CRF1 [218]. The pro-inflammatory effects of CRF are in contrast to the anti-inflammatory 
properties reported for Ucn1, which bind with higher affinity the same receptors. Treatment of endotoxemic 
animals with Ucn1 reduced several pro-inflammatory cytokines release, and also increased the levels of the anti-
inflammatory IL10 [219]. Comparable results were obtained in TNBS-induced colitis with the induction of a 
clear anti-inflammatory cytokine profile that promoted Treg cell responses but reduced the Th1 after treatment 
with Ucn1 [220]. The contrasting results between CRF and Ucn1, may be attributed to their different distribution 
patterns. Whatever their role, clinical studies showed that the colonic mucosa of UC patients displays increased 
numbers of CRF positive enterochromaffin and macrophage cells and Ucn1 is upregulated in these cells in a 
positive correlation with the intensity of the disease [86, 101, 145]. Futhermore, multiple pathological conditions 
associated with chronic inflammation present high levels of CRF and/or Ucn1 in the affected tissues [221] 
including endometriosis, Hashimoto thyroiditis and rheumatoid arthritis, where they seem to act as pro-



inflammatory factors. In cardiomyocytes, Ucn1 induces an IL6 release in a time- and dose-dependent manner 
which is associated with the activation of ERK and p38 MAP kinases and the stimulation of NF-κb [222]. On the 
other hand, some studies show that CRF receptor signalling may also favor an anti-inflammatory process. 
Peripheral immune pro-inflammatory mediators such as IL1β, TNFα and IL6, stimulate the hypothalamic 
secretion of CRF which evokes adrenal GC release and activation of the sympathetic nervous system [143, 223]. 
Secondarily, the CRF-induced release of GC and cathecolamines displays an immunosuppressive effect by 
favoring anti-inflammatory responses and inhibiting innate and adaptative immune systems [224-226]. 
Furthermore, CRF stimulation of human monocyte-derived dendritic cells (DC) decreased the release of IL18, 
which is a pro-inflammatory mediator that promotes a Th1 shift [227]. During the early stage of inflammation, 
CRF, Ucn1 and Ucn2 can transiently inhibit the LPS-induced TNFα response in murine macrophages, via the 
induction of a COX-2/PGE2 pathway. However, it increases the TNFα transcription and release in late stages of 
inflammation [228]. These authors also previously showed that the CRF2 activation by low dose of ligands 
enhances macrophage apoptosis and thus promotes an anti-inflammatory response [229]. The differential 
modulation of inflammatory process by CRF peptides is time and dose dependent. 
 It has been suggested that dysfunction in the epithelial barrier stimulates the mucosal immune system 
and may be the primary cause of IBD (reviewed in [230]). Permeability defects could conceivably be due to the 
pronounced apoptosis that occurs during inflammation processes. However it has been shown that IEC apoptosis 
alone is not sufficient for the entire deficit. Several studies have provided evidence for the perturbation of AJ or 
TJ in IBD, however the question of whether any altered expression of junctional molecules is a primary event in 
IBD mucosa, or a phenomenon secondary to the inflammatory process has yet to be clarified. It has been 
hypothesized that permeability defects might represent a primary disorder in CD, since intestinal permeability 
alterations have been observed not only in inflamed gut tissues but also in areas lacking any sign of macroscopic 
injury [231, 232]. Animal models mimicking CD such as the SAMP1/Yit mode, showed increased intestinal 
para-cellular permeability at an early stage of disease, prior to the onset of inflammation [233]. In UC, 
perturbations in permeability seem to be limited to the inflamed intestinal segment. However the debate still 
persists since animal studies support both tendencies [234, 235]. Various junctional molecules are affected by the 
actively inflamed status in IBD, in particular the expression of ZO-1, occludin, E-cadherin and desmoglein-2 
[235]. E-cadherin mRNA transcripts were clearly expressed in actively inflamed mucosa of CD and UC, whereas 
the protein is less detected, suggesting a posttranscriptional regulation of barrier integrity as it was observed with 
cytokines and various growth factors (TGF, HGF, TNF) [236]. Transgenic animal models revealed the 
importance of E-cadherin in maintening the epithelial of barrier by showing that AJ proteins contributed to IBD-
like processes [237] ([238] for review). Jankowski and co-wokers have demonstrated that deregulation of E- and 
P- cadherin correlates with the progression of human colitis [239].  Intestinal permeability is also directly 
regulated through alteration of TJ proteins [240]. Using non invasive techniques, various studies demonstrated 
an increased intestinal permeability in CD [241-244] which is most likely attributed to the actions of Th1 
cytokines (TNFα and INFγ) that are characteristic of this disease [245]. Underlaying this increased permeability 
are disrupted TJ resulting in an up-regulation of pore-forming CL2 and a down-regulation and a redistribution of 
sealing CL3, CL4, CL5 and CL8 along the inflamed crypt epithelium, whilst absent or barely detectable in 
normal colon [246, 247]. In vitro models have demonstrated that TNFα can induce both apoptosis-independent 
disruption of epithelial barrier function via alteration of TJ and up-regulation of apoptosis in absence of changes 
in the expression of TJ proteins, suggesting that TNFα, may constitute a major link between a more leaky barrier 
and CD [248-250]. Furthermore, IFNγ can prime intestinal epithelial monolayers to respond to TNFα by 
disrupting TJ morphology and barrier function via myosin light chain (MLC) kinase up-regulation and MLC 
phosphorylation [245]. The mechanism by which IFNγ induces permeability changes is incompletetely 
understood. It has been associated to endocytosis of occludin, JAM-A and CL1 following activation of Rho 
GTPases [249]. In contrast to CD, increased intestinal permeability is not easily demonstrated in UC while 
ultrastructural evidence of inadequate TJ has been established without increasing bacterial translocation such as 
in CD patients. These alterations have been attributed to UC cytokine profiles IL1β, TNFα and IL13 which are 
able to alter TJ and permeability in cell cultures [251, 252]. IL13 impairs epithelial barrier function by affecting 
epithelial apoptosis, CL2 expression and restitution velocity [251]. Unlike CD patients, UC is characterized by a 
reduction of goblet cells and a diminished mucus barrier [253].  
 
 
Interplay between Inflammation and cancer: role of the CRF system 
 
 Even though CRC does not always develop after IBD, its high frequency in patients with IBD 
represents a paradigm for the connection between inflammation and cancer in terms of epidemiology and 
mechanistic studies in preclinical models (for review [254]). Although there is a very clear association between 
UC and an elevated risk for CRC, there has been some debate concerning CD patients. However, the increased 
risk of CRC in IBD patients seems correlate with the chronic inflammatory conditions in the intestinal mucosa, 



in particular with the degree [255], duration [256, 257] and anatomical extent of colonic inflammation [258]. 
There is evidence that the regular use of anti-inflammatory medications can reduce the development of cancers 
in IBD patients, but these cancers are lymphomas and are not developed from intestinal epithelial cells [259, 
260]. In animals models such as intraperitoneal injection of the carcinogen azoxymethane (AOM) followed by 
repeated cycles of DSS or mice lacking the gene for the IL10 cytokine, chronic inflammation also results in an 
increased frequency of intestinal tumors [261, 262]. However these data do not provide mechanistic insight into 
how inflammatory processes might contribute to cancer. Inflammation could contribute to carcinogenesis by: 1) 
enhancing levels of reactive oxygen species that have a mutagenic effect on DNA (tumor initiation) [263]; 2) 
activating pro-survival or anti-apoptotic pathways in EC (tumor promotion) and 3) generating an environnement 
in favor of substained growth, angiogenesis, migration and invasion of tumor cells (tumor progression and 
metastasis). Various components of the inflammatory environnement in IBD are key elements in the different 
steps of cancer [264]. Recent works have elucidated the role of various immune cells and mediators in all the 
steps of colon carcinogenesis with the dissection of some molecular pathways. The most significant findings are 
reviewed in [254, 265, 266]. The relationship between cancer and inflammation is not simple and cannot be 
reduced to the deleterious role of various inflammatory cells, mediators or signalling pathways in cancer. The 
inflammatory response also maintains physiological processes such as tissue homeostasis and repair after injury. 
Indeed, many molecules and pathways double-up, playing roles in homeostasis, tissue repair, and tumorigenesis. 
However, dedicated tissue injury and wounding supports tumor growth and neoplastic progression such making 
the two processes of tissue repair and tumoregenesis inseparable, in particular during chronis stress. (See review 
from [267]). In this review, we will focus on the role of CRF signalling in the regulation of cancer development. 
Our analysis will be extended to various cancers since there is little specific data concerning colon cancer. 
 
 CRF receptors and ligands are expressed in many types of cancers and melanoma (for review [268]. 
However, a wild range screening of the CRF receptor expression by CRF autoradiography misses to identify the 
CRF receptors in different tumoral tissues like colorectal adenocarcinomas [269], while they were expressed in 
normal conditions suggesting that receptor loss may contribute to malignant transformation and/or tumor 
progression either as a causal or as a resulting effect. Similar conclusions have been drawn in prostate cancer 
characterized by an expression loss of CRF2 compared to benign tissues [270]. The comparison with high 
expressing tissues like endocrine tumors could dismiss less expressing tissues such as GI. However, CRF2 has 
been previously immuno-detected in HT-29 cells [94] and further in Caco2, SW620, SW1222 and HCT8 cells 
(Ducarouge et al. unpublished data), all adenocarcinoma cell lines which display differential metastatic 
properties. Finally, the distinct distribution and activities of the CRF system within the tumor or between normal 
tissues and tumors reinforce the hypothesis that CRF1 and/or CRF2 could modulate different aspects of cancer. 
A study performed on 51 untreated endometrial cancer patients as well as on normal surrounding tissues showed 
that in 61% of tumors specimens, CRF2 staining was diffuse in the cytoplasm while it was nuclear in normal 
endometrial glands [271]. The CRF2 cytoplasmic pattern was associated with a more advanced FIGO stage 
disease [271, 272]. As for CRF receptors, CRF and Ucn expressions have been extensively investigated in the GI 
tract, but their expression in colorectal cancers has not been the center of interest. Expression of CRF was first 
detected in various tumors of the GI by radioimmunoassay including one adenocarcinoma of the sigmoid colon 
[273]. One report indicated that CRF/Ucn peptides could inappropriately be secreted by several tumors [274, 
275] and sometimes correlates with the aggressiveness of cancers [276]. It would therefore be interesting to 
determine the CRF peptide regulation in colorectal adenocarcinomas. Autocrine/paracrine actions of the CRF 
system have been suggested to be involved in the micro-environment control of the tumor and neighboring cells 
[277, 278]. In the tumor microenvironment, CRF is released by endothelial and immune cells and by the local 
neuronal innervations [279-281]. The non-tumoral cells could also be source of CRF ligands, which is influenced 
by stress and inflammation.  
 The chronic inflammatory states may lead to environments that foster genomic lesions and tumor 
initiation. Disorganization of inter-epithelial junctions could participate in the infection process but also in the 
cellular dedifferentiation preceding carcinogenesis [282]. These epithelial alterations were more pronounced in 
UC tissues in which the development of malignancies is apparently more frequent than in CD tissues, suggesting 
that disturbances of junction-associated molecules are likely to be involved in carcinogenesis from IBD patients. 
In HT-29 cells, we found that exposure to Ucn3 contributes to the disorganization of AJ with an endocytosis of 
E-cadherin and a nuclear translocation of both β-catenins and p120ctn (Ducarouge et al.; unpsblished data).  
Apart from being cell-cell adhesion proteins, these catenins are also important signal transduction molecules that 
control proliferation and migration processes. The induction of Wnt signalling, mostly by affecting β-catenin, 
plays a critical role in both the maintenance of the steady-state proliferative compartment and tumorigenesis of 
tissue since it has been described as a hallmark of colon, breast, prostate and ovarian cancers, all of which 
express CRF system molecules [283, 284]. Using the 4T1 breast cancer cell line, Arranz et al. demonstrate that 
peripheral CRF modified the expression of SMAD2 and β-catenin, induced cell proliferation and increased the 
TGFβ action on proliferation, confirming its impact on TGFβ and the Wnt signalling [285]. Similarly, CRF 



stimulates Neuro2a neublastoma cell line proliferation [286]. However, the effects exerted by CRF in cancer 
cells range from promotion of cell proliferation and angiogenesis versus cell apoptosis; all of these processes 
participating in the regulation of the tumor growth. Thus, CRF has been described to inhibit cell proliferation via 
CRF1 in the endometrial adenocarcinoma cell line Ishikawa [287], in human HaCat keratinocytes, in mouse 
immortalized keratinocytes and melanoma [288, 289], and in MCF7, an oestrogen dependent human breast 
cancer [290]. One study reports that Ucns could directly inhibit the proliferation and promote apoptosis of 
human small cell lung carcinoma via CRF2 activation [291] whereas both receptors don't affect the proliferation 
of the human gastric cancer cell line AGS [221]. Thus, tumor growth could also result from inhibition of 
apoptosis, which procures characteristics that participate in the chemotherapy escape and the survival of 
metastatic cells. Apoptosis is inhibited in the human gastric cancer cell line AGS after exposure to CRF, Ucn1 or 
Ucn2 [221]. Similar results were observed in the retinoblastoma cells treated by CRF via a PKA-mediated down-
regulation of pro-caspase-3 cleavage and subsequent activation [292]. In contrast, CRF induces local 
immunosuppression by promoting apoptosis of cytotoxic T-cell via the production of Fas ligand in ovarian 
cancer cells [276]. In the mouse RM-1 prostate cancer cell line, CRF1 and CRF2 are expressed and exert 
opposite apoptotic roles. CRF reduces Bcl-2 expression while activating Bax-dependent caspase-9 and Ucn2 
increases Bcl-2 expression and decreases Bax expression via a cAMP, AKT pathway [293]. The balance 
between proliferation and apoptosis could switch ON or OFF the tumor survival or death, depending on the 
cancer type and the nature of CRF peptides and the activated CRF receptors.  
 Another way by which the CRF system may influence tumor growth is angiogenesis. It has been 
reported that Ucn2 inhibits the growth and vascularization of Lewis lung carcinoma cell tumors in vivo and in 
vitro [294] as well as in hepatocellular carcinoma [295]. Furthermore, the CRF2 is strongly expressed in blood 
vessels [89] that are neo-generated in growing solid tumors [296]. In many tumors, the neo-angiogenesis is 
affected by the CRF system via the production of VEGF and has been suggested to be a potential therapeutic 
target with Ucn treatments [97, 295, 297]. The CRF2 activation down-regulates VEGF production from vascular 
smooth muscle cells, which leads to a decrease of their proliferation and tubule formation in matrigel, and CRF2 
deficient mice become hyper-vascularized post-natally [97]. Similarly, it was also shown that the activation of 
CRF2 could inhibit p38/AKT phosphorylation to suppress the secretion of  VEGF in human small cell lung 
carcinoma [291]. In contrast, in the skin, peripheral CRF has been shown to enhance local angiogenesis and 
vascular permeability [280, 298]. This effect involves skin mast cell degranulation (theoharides 1998). The 
HMC-1 human mastocyte cell line also produces VEGF in response to CRF administration by a CRF1 pathway, 
as it is reversed by Antalarmin [90]. This CRF1 antagonist also suppresses neo-angiogenesis in 4T1 breast 
cancer cell line using a COX-2 but not VEGF-dependent mechanism [285]. In the intestine, during DSS-induced 
colitis, KO of CRF1 and CRF2 decreased or increased microvascular density, respectively [214]. This effect was 
associated with a decrease (for CRF1−/−) or an increase (for CRF2−/−) in VEGF compared to inflammation in 
control mice. The effects of the two receptors on intestinal angiogenesis are again opposite to each other. This 
finding leads to the conclusion that CRF1 is pro-angiogenic, while CRF2 is anti-angiogenic. The anti-angiogenic 
property of CRF2 is not only true during inflammation [97]. 
 Finally, the CRF system has been proposed to affect migration and invasion of tumor cells, thus 
supporting tumor progression and metastasis [278, 299]. As described previously, the CRF receptors induce 
numerous cell signalling pathways, which are involved in cell-cell junction regulation and/or cell migration. This 
increased cell motility might be driven by cytoskeleton rearrangements and focal adhesion kinase (FAK) 
phosphorylation [278, 300]. Actin reorganization has been observed following CRF-treatment of At1 cells [285]. 
In colorectal cancers, transient ERK activation seems to be sufficient to induce FAK phosphorylation on serine 
and subsequent migration and metastasis [301, 302]. In HT-29 cells, the CRF2 activation induces Src, ERK and 
FAK phosphorylation coupled to a disorganization of AJ, a rearrangement of actin cytoskeleton and cell 
migration (Ducarouge et al. unpublished data). The Src family kinases are master regulators of the AJ and 
interact with both CRF receptors [61]. The CRF induces the migration and invasion of the B16F10 murine 
melanoma cells that also depend on a transient ERK activation via the CRF1 [299]. It also participates to actin 
polymerization and FAK phosphorylation, which lead to MCF-7 motility [278]. CRF-dependent modulations of 
RhoGTPase and their associated actin cytoskeleton morphology have been described in neurons [303, 304]. 
CRF1 induces Rac-1 activation via PKA, MAPK signals, whereas CRF2 induces RhoA via PKC. The 
involvement of the CRF system in the regulation of cancer progression and metastasis is supported by the fact 
that ligand expression could correlate with the tumorgrade, as it has been observed in ovarian cancers [276] but 
not breast cancer [277]. CRF2 is also expressed especially in peri-neural invasion of breast tumorand may play a 
role in the invasiveness [277].  
 In conclusion CRF receptor signalling is implicated in carcinogenesis-related pathways which could 
therefore be regulated by CRF ligands. Among these pathway, the phosphatidylinositol 3-kinase (PI3K)/AKT 
pathway is a key modulator of cell survival, cell cycle and angiogenesis. Recently the PI3K pathway has been 
suggested to play a critical role in both CRF receptor-mediated effects [305, 306]. CRF is also a regulator of NF-
κb which is a regulator of genes that control cell proliferation and survival. However the varying results 



observed indicate cell-or receptor specific actions. In the brain, CRF inhibits the DNA binding activity of NF-κb 
under normal or oxidative stress-induced conditions while in leucocytes and thymocytes CRF has been described 
to enhance NF-κb DNA activity in a time and dose dependent manner [307, 308]. Aberrant activation of NF-κb 
is frequently detected in enterocytes and LP macrophages of IBD patient biopsies and colorectal tumors [309, 
310]. In a model of colitis associated-CRC and by deletion of IK-κb (impaired activation of NF-κb), it has been 
demonstrated that epithelial NF-κb contributes to tumor  initiation and promotion by suppressing apoptosis 
while, myeloid NF-κb supports both tumor promotion and progression through production of cytokines, COX-2 
and growth factors [311]. 
 
 
Conclusion 
 
 A great deal of evidence from recent literature demonstrates that the CRF system is widely expressed 
and active throughout the GI tract. Even some important specie differences in the expression patterns of these 
molecules at the cellular level, they could be modulated by both stress and inflammation. The CRF system may 
act as an autocrine/paracrine modulator of inflammatory pathways, which affects the immune system, the 
epithelial barrier physiology via the increase of trans- and para-cellular permeability and the mucus secretion. 
Life stress events are able to induce or aggravate the inflammatory state of either healthy people or IBD via CRF 
system modulations. Chronic inflammation observed in IBD patients or chronic stresses both lead to tissue 
damage that could be repaired. Thus, the chronic wounding makes hyper-proliferative IEC populations, which 
favors the cancer development. Furthermore, as cell-cell junction impairement leads to inflammatory processes 
in non-tumor tissues, this loss also participates in cancer progression. The CRF system seems to be expressed 
and functional in colorectal cancer cells. Hence, there is direct and indirect evidence for a role of the CRF 
signalling in human cancers, growth, survival and metastasis. Consequently, CRF receptors become potential 
targets for novel therapeutic strategies against IBD and colorectal cancers. These compounds are readily 
available for clinical use: while the synthesis of non-peptide selective CRF2 antagonists still remains a challenge 
in medicinal chemistry, non-peptide CRF1 antagonists have been recently synthesized and tested in the treatment 
of CNS-related diseases. 
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Figure 1: Involvement of the CRF system in stress, inflammation and cancer.
Brain-gut communications are exerted via the ANS regrouping vagal and sympathetic nerves, 
and the HPA axis. The cognitive stress induces both HPA activation and ANS modulations, 
which respectively lead to GC and cathecolamins (Cath) release into the blood, and liberation 
into the gut of Ach and Cath. A GC feedback regulates the central activation of the HPA by 
inhibiting the hypothalamic CRF production. The brain perceives both cognitive stress and 
peripheral stress by the activation of the vagal afferences from the gut. ACh, Cath and GC all 
regulate the intestinal expression of CRF receptors and ligands from IEC, immune cells and 
neurons from ENS. However the CRF system may act as a paracrine/autocrine system. CRF 
signalling could drive the inflammation related to the intestinal barrier opening by the control 
of: 1/ the trans-cellular permeability, 2/ the para-cellular permeability and 3/ the reduced mucus 
secretion. The inflammatory processes could in turn affect the CRF system expression by the 
production of cytokines and toxins. Acute and chronic stresses could also induce epithelial 
barrier dysfunctions which may contribute to inflammation. The epithelial barrier repair brings 
back to healthy conditions, but in the chronic inflammation this continual regeneration is a 
substrate for the development of cancer. Tumor cells express some CRF system components, 
which could participate to the cancer progression by affecting the cell-cell junctions and 
cytoskeleton organisation. Thus CRF signalling may affect: 4/ cell proliferation, 5/ cell 
apoptosis and 6/ cell migration and invasion.



Figure 2: The CRF system and receptor signalling.
Left panel: CRF and Ucn1 could activate the CRF1 and the CRF2 with a lower affinity for the 
CRF, whereas the Ucn2 and Ucn3 bind exclusively the CRF2. These ligand/receptor interactions 
are challenged by a competition with the CRF-BP, or soluble truncated forms of the receptors. 
The activated receptors are endocytosed and further either degraded or recycled to the cell 
membrane. Right panel: CRF receptors downstream signalling are linked to the GPCR Gαβγ
activity and the Src kinase which interact with their cytoplasmic domains. Thus, numerous intra-
cellular proteins could regulate cell processes like survival, proliferation, apoptosis, or 
migration.
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Figure 3: Distribution of CRF receptors and ligands in human and rodent colon and ileum. 
ENS: enteric nervous system, CD: Crohn disease, UC: ulcerative colitis, g: guinea pig, h: 
human, m: mouse, o: ovine, r: rat.
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