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ABSTRACT

The human brain’s ability to adapt to environmental changes is obvious in specific sensory domains 

of experts, and olfaction is one of the least investigated senses. As we have previously demonstrated 

that olfactory expertise is related to functional brain modifications, we investigated here whether ol-

factory expertise is also coupled with structural changes. We used voxel-based morphometry to 

compare the gray-matter volume in student and professional perfumers, as well as untrained control 

subjects, and accounted for all methodological improvements that have been recently developed to 

limit possible errors associated with image processing. In all perfumers, we detected an increase in 

gray-matter volume in the bilateral gyrus rectus/medial orbital gyrus (GR/MOG), an orbitofrontal 

area that surrounds the olfactory sulcus. In addition, gray-matter volume in the anterior PC and left 

GR/MOG was positively correlated with experience in professional perfumers. We concluded that 

the acute olfactory knowledge acquired through extensive olfactory training leads to the structural 

reorganization of olfactory brain areas.

Keywords

Olfaction, Perfumer, Expertise, Gray-matter volume, Voxel-based morphometry, Structural 

reorganization
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Introduction

Numerous studies in humans have indicated that functional and anatomical modifications occur 

in the brain because of learning and training. In experts with enhanced visual, auditory or motor 

skills, such as musicians and athletes, greater performance is associated with functional  and 

structural  brain changes in modality-specific brain areas, which supports the view that brain 

reorganization is associated with expertise.

What about olfactory expertise? Could the brain reorganization observed with expertise in other 

modalities be generalized to olfaction? This question has been addressed only once before , 

probably because human olfactory abilities are less essential for survival than other senses and are 

more poorly developed compared to those of other mammals, and because olfactory experts, such as 

perfumers, are rare. While exploring brain process related to odor mental imagery, we observed an 

expertise-dependent functional reorganization in olfactory and mnesic brain areas, such as the 

primary olfactory (piriform) cortex (PC) and hippocampus, which was concomitant to enhanced 

behavioral performances with expertise. To the best of our knowledge, brain structural 

reorganization in olfactory expert has never been investigated. However, focusing on alterations of 

olfactory processes, several studies have shown gray matter (GM) atrophy in olfactory-related areas 

in patients suffering from anosmia, or hyposmia because of peripheral dysfunction  or neurological 

disease . Whether subjects with olfactory expertise present modifications of GM volume in 

olfactory areas is an open question.

Computational morphometry tools allow for investigation of structural brain changes related to 

development, learning, expertise and pathology . The voxel-based morphometry (VBM) technique 

is broadly used and remains an active field of methodological research . Several pitfalls in image 

preprocessing, including inter-individual misregistration and errors in the segmentation procedure ,  

skull-stripping and bias correction , and bias induced by improper templates and priors, are the 

subjects of vigorous debate in the neuroimaging community. However, methodological 

3



NeuroImage / Cognitive Neuroscience Delon-Martin et al.

improvements have recently been developed that may limit possible errors . First, the segmentation 

algorithm can include bias correction, and can now model not only brain tissues but also non-brain 

tissues. This allows removing potential contamination from soft tissues outside the brain, large 

vessels and skull. Second, a study-specific template can be created. Third, algorithms for 

diffeomorphic image registration with a high number of degrees of freedom can be employed to 

obtain accurate registration of each individual brain with a given template. In particular, the  

algorithm for “Diffeomorphic Anatomical Registration using Exponentiated Lie algebra” better  

known under the DARTEL acronym  is considered as being among the best algorithms available . 

Fourth, the segmentation and the spatial registration procedure can be combined in a unified 

approach to improve preprocessing steps . A recent VBM test-retest study showed that when using 

all above-mentioned improvements as implemented in Statistical Parametric Mapping 8 (SPM8) 

using DARTEL, this permits to avoid obtaining most of the false positives . Fifth, voxels which 

feature low effect-size and very low variance can be artifactually significant . In order to reduce 

false positives, the newest SPM8 release (v.4010, April 04, 2011) includes a scheme to force such 

voxels to have low significance in VBM statistical analysis.

In the current study, we used structural magnetic resonance imaging (MRI) and the VBM 

pipeline with DARTEL  in statistical parametric mapping (SPM8) software. We scanned 14 

perfumers renowned for creating perfumes, 13 students from an international school of perfumery 

and 21 control subjects. We took advantage of variability in length of expertise in professional 

perfumers to identify structural brain reorganization that is associated with experience under the 

hypothesis that intensive olfactory training may lead to increased GM volumes in olfactory- and 

memory-related areas.
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Materials and Methods

Subjects

Forty-eight healthy right-handed subjects participated in our study. The perfumers’ group 

included 13 young experts (YE; 3 men; mean age, 23 years; range, 21−26 years) who were students 

at an international school of perfumery (Institut Supérieur International de la Parfumerie, de la 

Cosmétique et de l'Aromatique, Versailles, France), and 14 older experts (OE; 10 men; mean age, 

42 years; range, 29−59 years) who were professionals known for creating perfumes. While the YE 

had been trained for 2 years at most as part of their education, all OE had 5-35 years of career-

relevant business experience. The control group was composed of 21 untrained subjects, including 8 

young controls (YC; 2 men; mean age, 25 years; range, 24-28 years) and 13 older controls (OC; 6 

men; mean age, 40 years; range, 30−55 years). Subjects from both groups were matched in age 

(F(1,47) = 0.10, p = 0.712) and gender (χ² = 0.34, p = 0.560).

The exclusion criteria were rhinal disorders (e.g., a history of nasal-sinus surgery), pregnancy, 

ferrous implants (e.g., pacemakers and cochlear implants), claustrophobia, or any neurological 

disease. This study was conducted according to French regulations on biomedical experiments 

using healthy volunteers and according to the principles outlined in the Declaration of Helsinki. All  

subjects gave written informed consent, as required by the local Institutional Review Board.

Structural Data Acquisition

All structural images were acquired on a Philips NT 1.5-Tesla MRI scanner (Philips Medical 

Systems, Best, Netherlands) with a birdcage head coil. The high resolution anatomical images of 

the olfactory experts were acquired during an fMRI study investigating the neural substrates of 

olfactory imagery  and on controls during a visual retinotopy protocol that was conducted on the 

same scanner with the same sequence and at the same period of time as the scanning of olfactory 

experts . A high-resolution (1 mm3) structural image was acquired with the same sequence for all 
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subjects using a 3-dimensional, T1-weighted gradient echo sequence [repetition time = 23.7 ms, 

echo time = 6.9 ms, flip angle = 28°, number of accumulations = 2]. This acquisition sequence type 

has been shown to be particularly efficient when studying the inner part of the cortex .

Structural Data Preprocessing

We processed and analyzed the structural data using a VBM approach and SPM8 software 

(www.fil.ion.ucl.ac.uk/spm/software/spm8/) with default parameters.

For the first step, each individual image was segmented using the 'New Segment' tool provided 

with the DARTEL toolbox . This procedure performs segmentation and spatial normalization in a 

unified generative model based on a mixture of Gaussians with spatial priors and bias correction. In 

addition, the algorithm includes non-brain tissues (dura, scalp and large vessels), which ensures that 

the calculation of GM images is uncontaminated by either the skull or large veins. This approach 

permits to skip the bias correction and skull-stripping procedure, which improves VBM 

preprocessing .

In a second step, a study-specific template was calculated from all subjects’ GM and white 

matter (WM) images using the DARTEL framework . This diffeomorphic registration algorithm 

iteratively estimates the non-linear deformations that best align the GM and WM images together,  

which provides a common study-specific template and deformation field that parameterizes the 

deformations for each subject’s image.

In a third step, to spatially normalize the images to the Montreal Neurological Institute (MNI) 

standard brain, we calculated the affine registration that realigned our study-specific template  

generated using DARTEL with the GM tissue probability map in the MNI space. For each subject, 

we applied a combination of the deformation field and affine registration to the GM and structural  

images of each individual. The spatially normalized GM segmented images were further modulated 

with the Jacobian of the deformation field to adjust for the resulting volume changes  and derive 

GM volume-related images. The realigned structural images of all subjects were averaged for 

display purposes.
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In a fourth step, to improve the sensitivity of the analysis to regional differences at a small spatial 

scale (required by small structures, such as the PC), we smoothed the GM volume images using a 

small isotropic Gaussian kernel with a 6-mm full width at half maximum. This kernel width ensures 

that any non-normality in the error term is sufficiently attenuated in balanced designs to render the 

tests valid .

Olfactory-related regions of interest 

Statistical analyses were performed on brain areas known to play a role in olfactory and memory 

processing. As no probabilistic maps have been proposed for the olfactory areas, anatomical volume 

of interests (VOIs) in the PC, amygdala, hippocampus, insula and thalamus were drawn from the 

study-specific template realigned to the MNI using MRIcron 

(www.mccauslandcenter.sc.edu/mricro/mricron/) and human brain atlases . The VOIs were drawn 

from coronal slices for the PC (from y = 12.5 anterior to -2.7 posterior to the anterior commissure), 

amygdala (from y = 0 to -13.3), insula (from y = -22 to 36), and thalamus (from y = 8 to 29.2), and 

from sagittal slices for the hippocampus (from x = -24 to -38 on the left, and from x = 24 to 38 on 

the right). Based on previous data , the PC was divided along the y-axis into two areas, specifically, 

the anterior area (spreading from 12.5 to 4 mm) and posterior area (spreading from 4 to -2.7 mm). 

Orbitofrontal cortex (OFC) VOIs were spheres 10 mm in diameter located at coordinates previously 

identified by Gottfried and Zald  in the left and right hemispheres (Talairach coordinates: -22 30 -17 

and 24 33 -12) as being the putative secondary olfactory cortex. These areas defining the human 

olfactory network were combined to form a binary mask to which we added orbital areas 

(Brodmann areas (BA) 11, 20 and 34) using the WFU_PickAtlas v2.4 software  based on the 

Talairach Daemon database . This mask was further dilated by 6 mm (the same width as the 

smoothing kernel employed for GM volume images) for use as an explicit mask in subsequent 

VBM statistical analyses.
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Statistical Analysis

Voxel-based morphometry analysis

As it was reported that the anatomical effects of expertise in musicians increase as a function of 

years of practice , we hypothesized that the effects of expertise could also be correlated with age in 

perfumers and not in naïve controls who have never undergone any olfactory training. Given this 

hypothesis, the effect of age was inhomogeneous among the four groups of subjects and had to be 

modeled separately for each sub-group. Voxelwise GM volume differences between experts and 

control subjects were statistically tested using multiple regression analysis, including four 

regressors of interest (age of older experts, older controls, young experts and young controls). To 

eliminate possible confounding factors associated with gender  or with total GM volume , we 

applied two regressors of no-interest (gender and total GM volume, the latter being obtained using 

the 'get-totals.m' matlab function, www.cs.ucl.ac.uk/staff/g.ridgway/vbm/). For statistical analysis 

of the GM images, we excluded all voxels with GM values below 0.2 (absolute threshold masking) 

to avoid possible edge effects between different tissue types and to only account for GM voxels 

with high GM volume content. The GM-volume statistical analysis was constrained within the 

explicit GM olfactory mask defined above.

We tested whether GM volumes differed globally between experts and controls [(YE + OE) – 

(YC + OC)] and also assessed the effect of expertise in the younger and older experts compared to 

their respective controls (contrasts [YE-YC] and [OE-OC], respectively). To identify the areas 

commonly different between the two sub-groups of experts and their respective controls, we 

computed the voxels that reached the criterion of significance for both contrasts [YE-YC] and [OE-

OC]. Finally, to test for differences in brain volumes between the expert sub-groups, we performed 

contrasts for [(YE-YC) - (OE-OC)] and [(OE-OC) - (YE-YC)]. For all the contrasts, we applied 

Student’s t-test with a height of threshold on individual voxels such that puncorrected < 0.001 and a 

threshold on spatial extent such that the probability on the extent was pk < 0.05.
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VOI-based analysis

For each olfactory-related VOI and each of the 48 participants, we derived the adjusted values 

from the previous general linear model analysis, by removing any contribution from no-interest 

variables within the VOI. For each VOI, three-way ANOVA (Group x Age x Side) and mean post-

hoc comparisons were performed using Statistica 6.0 (StatSoft®, Tulsa, OK, USA) to compare the 

degree of change in GM volume as a function of the groups (controls and experts), age (younger 

and older) and brain sides (left and right). We tested the null hypothesis that there were no 

significant changes of GM in each of the seven VOIs (the aPC, pPC, OFC, amygdala, hippocampus, 

insula and thalamus). To control for Type I error rate, we applied the Bonferroni correction by 

dividing the probability α per the number of VOIs (pcorrected = 0.007).

Regression analyses

On the bilateral aPC and pPC VOIs, and two GR/MOG clusters evidenced on the left side (-9 23 

-15 and -8 26 -24) with classical general linear model analysis as being dependent of expertise, we 

performed linear regression analyses to test for significant relationships between the years of age 

and volume of GM either in older experts or in older controls using Statistica 6.0 (StatSoft®, Tulsa, 

OK, USA). In older experts, years from 20 years-old (when their training started) were considered 

as years of practice and thus reflected the length of expertise. In the controls matched in age, we 

also removed 20 years to their age in order to compare with the professional experts. The regression 

lines of the expert and control groups were compared for parallelism and common intercepts  to 

respectively test whether the relationships between expertise and GM volume (slopes of the 

regression lines) were different, and whether the volume variations began at identical levels of 

expertise (intersection of the regression lines with the y-axis). As an effect of expertise on the grey-

matter volume could be predicted for each of these 6 VOIs, we applied the Bonferroni correction (p 

= 0.0083).
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Results

Statistical results of the analyses of GM volume in the four groups of subjects are presented in 

Table 1. When contrasting the GM volumes between all experts and controls [(YE + OE) – (YC + 

OC)], we observed a bilateral pattern of increased volume spreading from the gyrus rectus (GR) to 

the medial orbital gyrus (MOG), and an increased GM volume in the anterior cingulate gyrus and 

the caudate nucleus (Fig. 1A). In YE compared with YC (YE - YC), we observed an increased GM 

volume in the left and right GR/MOG and in the left anterior cingulate gyrus. In OE compared with 

OC (OE - OC), a higher GM volume was observed in an anterior area of the left GR/MOG and in 

the left caudate nucleus. Although reaching the criterion of significance at peak level only, the  

conjunction analysis between contrasts applied in both sub-groups of experts when compared to 

their respective controls [(YE - YC) and (OE -OC)] revealed a common pattern of increased GM 

volume in the right gyrus rectus (x y z coordinates, 9 27 -24). The interactions [(OE - OC) - (YE - 

YC)] and [(YE - YC) - (OE - OC)] did not reveal any significant differences in GM volume, 

demonstrating no significant influence of sub-groups on the effect of expertise. No significant 

decrease in GM volume was observed in experts when compared with controls regardless of the 

comparisons.

Anatomical VOI analyses did not reveal any significant group effect in the VOIs (pcorrected), 

although a group effect was noted in the posterior PC with a puncorrected (F(1,44) = 4.00, p = 0.044), 

suggesting a volume of GM tending to be higher in experts than in control participants. Significant 

Group x Side interactions were observed for the amygdala (F(1,44) = 13.01, p = 0.001), insula 

(F(1,44) = 56.99, p < 0.001) and thalamus (F(1,44) = 16.45, p < 0.001); however, post-hoc 

comparisons did not show any significant difference between groups for a given side (p’s > 0.007), 

but only significant differences between both sides in experts and/or controls.

We subsequently examined whether the GM volume in older experts depended on the duration of 

practice (and therefore on the level of expertise). In the left gyrus rectus (Lower part: -9 23 -15; 
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Upper part: -8 26 -24; Fig. 2A), the volume of the GM was significantly positively correlated with 

the age (and therefore the level of expertise) in OE (Upper part: r = 0.685, F(1,12) = 10.62, p = 

0.007; Lower part: r = 0.677, F(1,12) = 10.13, p = 0.008), while it tended to be significantly 

negatively correlated with age in EC in the upper part (r = -0.649, F(1,11) = 8.00, p = 0.016) and it 

was not significant in the lower part (r = -0.50, F(1,11) = 3.58, p = 0.085). Regression lines 

obtained in OE and OC were significantly not parallel in both areas (Upper part: T(27) = 4.21, p < 

0.001; Lower part: T(27) = 3.42, p = 0.002), and they had common intercepts (T(27) = 1.90, p = 

0.068 and T(27) = 1.52, p = 0.139, respectively).

The GM volume of the anterior PC (Fig. 3B) was not significantly positively correlated with 

expertise level in OE in the left (r = 0.486, F(1,12) = 3.71, p = 0.078) and the right (r = 0.401, 

F(1,12) = 2.30, p = 0.155) sides, but tended to be significantly negatively correlated (puncorrected) in 

OC in both sides (Left: r = -0.582, F(1,11) = 5.64, p = 0.037; Right: r = -0.623, F(1,11) = 6.69, p = 

0.023). Regression lines for OE and OC data were significantly not parallel (Left: T27 = 3.03, p = 

0.005; Right: T(27)  = 2.84, p = 0.009) and had common intercepts for the right anterior PC (T(27) 

= -1.74, p = 0.093).
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Discussion

By combining the structural imaging and VBM technique with the best and most recent 

improvements, we showed structural modifications related to olfactory expertise. Compared with 

naïve subjects, the student and professional perfumers mainly presented a bilateral GM increase in 

the GR/MOG, an area that marks the borders of the olfactory sulcus and that is adjacent to the 

putative secondary olfactory cortex. Furthermore, when considering the professional experts only, 

expertise seems to counteract the effect of age in the GR/MOG and anterior PC, as the GM volumes 

increased with years of practice, whereas they decreased with age in naïve subjects.

Structural and functional characteristics of the GR/MOG

All olfactory experts showed an increased GM volume in the GR/MOG compared with control 

subjects who had no expertise in olfaction. Volume increase was bilateral in the GR/MOG more 

posterior part and was left-sided in the more anterior part.

Very few studies have shown an increase of GM volume in olfactory areas in relation with 

olfactory abilities in normosmic volunteers. They demonstrated that the size of the olfactory bulb 

and/or the depth of the left olfactory sulcus significantly correlated with olfactory performances in 

healthy subjects  and in individuals who became blind early in life . If the olfactory bulb is mostly 

considered to be a peripheral structure, the depth of the olfactory sulcus can reflect the size of the 

adjacent cerebral cortex. Using an automated method for extracting the cortical thickness, Frasnelli  

et al.  found an increase in cortical thickness with higher olfactory abilities in an area surrounding 

the left olfactory sulcus in healthy volunteers. This region is very close to the GR/MOG evidenced 

in our study, and allows dismissing the interpretation of the current results as resulting from 

methodological artifact. Recently, applying classical volumetry and VBM methodologies in healthy 

subjects, Seubert et al.  dissociated the functional contributions of olfactory peripheral and central  

areas. They found that the volume of the olfactory bulb increased with higher identification scores, 

while the volume of GM in the OFC was enhanced with better olfactory threshold and 
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discrimination performances. Because the authors limited their investigation to a unique area of the 

OFC that approximately covered the putative human olfactory OFC evidenced by Gottfried and 

Zald  but did not include the GR/MOG regions, the comparison with our data is impossible. 

However, it is surprising that we did not observe any change of GM volume in this region in the 

odor experts.

What is the role of the GR/MOG region? In monkeys, the GR/MOG is referred as being area 

11m and is a zone located at the level of the olfactory sulcus delimited by the dysgranular areas 

13m, 13b and 14r . Studying architectonic maps and the intrinsic cortico-cortical connections within 

the orbital and the medial prefrontal cortex, Carmichael and Price  distinguished two distinct  

networks, the “orbital network” (including in particular areas 13b and 13m) that receives inputs 

related to most of the sensory modalities and the “medial network” (including in particular areas 

11m and 14r) that receives a few direct olfactory inputs, but does not receive inputs from other 

sensory modalities. Because all of the areas recognized in the macaque medial prefrontal cortex 

have their counterparts in humans , the question is to know what is the role of the GR/MOG in 

humans. In an attempt to explain the respective role of these two networks, the authors suggested 

that the orbital network appears to be related to feeding and reward, whereas the medial network 

seems to participate in the guidance of emotional behavior . Rather than a coarse medial/lateral  

distinction, Kahnt et al.  recently identified 6 subdivisions in the human OFC from their functional 

connectivity profiles with other brain regions. They suggested a role of the medial and central-

posterior regions in reward processing and reward learning, respectively.

In cerebral imaging studies on human olfactory processes, the GR/MOG was found to be 

activated in several studies , although often described with different labels (such as the rostromedial 

or posterior OFC, ventromedial prefrontal cortex, inferior frontal gyrus, cingulate gyrus, or 

subcallosum), depending on the atlases and nomenclatures. Interestingly, this brain region is 

different from the putative olfactory OFC evidenced by Gottfried and Zald . The GR/MOG could 

therefore be associated to more higher-order cognitive process in comparison to this putative 
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olfactory OFC which was identified from data for which no cognitive olfactory judgment and no 

aversive odorants were used. A functional segregation of valence neural representations has been 

observed in the OFC, the medial part being more strongly activated by pleasant odors, and the 

lateral part being more notably activated by unpleasant odors , a representation that holds even 

when the attributed hedonic properties are modulated by cognitive information . Similar findings 

were observed with taste and flavor , the processing of faces, and monetary reward and 

punishment . Since the perfumers intensively and daily use pleasant odorants in order to make 

fragrances, as suggested by testimonies, the question is whether this hyper-use can explain 

structural changes observed in the GR/MOG. Further investigations are needed to clarify this point.

We further observed additional GM changes in the anterior cingulate gyrus in student perfumers 

and in the caudate nucleus in professional perfumers, which are two areas that are commonly 

activated in olfaction . Structural modifications in these regions are in accordance with the cognitive  

functions that are widely used in experts of all types including perfumers. The anterior cingulate 

gyrus is predicted to play an important role in tasks requiring cognitive control in the presence of 

emotional stimuli  while the caudate nucleus is highly involved in learning and memory .

Dynamic changes of GM volume in olfactory areas

Here, we observed that intensive olfactory training counteracts the effect of age in several brain 

regions. Thus, although the increases were not systematically significantly positively correlated 

with experience in these areas in older perfumers, they were strengthened by the fact that the GM 

volume was reduced with age in controls and that the respective slopes of both regression lines were 

then systematically significantly different. Thus, the older an individual gets, the more the anterior  

PC and GR/MOG volumes relatively increase in experts and the more they decrease in untrained 

subjects. Volume reduction in controls is consistent with the well-known decline of global GM 

volume with age . Hedman et al.  have shown that after 35 years-old, a steady volume loss of 0.2 % 

per year is found, which accelerates gradually to an annual brain volume loss of 0.5 % at age 60.

Overall, these double morphometry data demonstrate a causal direction between olfactory 
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abilities and GM volume of olfactory areas. When the two lines of regression present a common 

intercept but different slopes, this means that experts and controls had the same GM volume at the 

same age (approximately 20 years old), but that this volume changes differently with respect to age 

by increasing in odor experts and decreasing in controls. These data also allow claiming that longer 

olfactory training leads to larger GM volumes, a finding that must be related to our previous results 

observed in the same subjects and showing behavioral performances enhanced with expertise . 

Structural changes in odor experts are further consistent with cross-sectional VBM studies that 

demonstrate learning-dependent changes in the adult human brain and suggest anatomical correlates  

for navigation, arithmetic, linguistic, procedural, and musical learning abilities . Structural changes  

have even been observed after brief periods of learning, such as after studying for three months 

after an exam  or even after a very short spatial learning of 2 hours .

Neuronal mechanisms related to olfactory learning

Perceptual learning refers to a phenomenon whereby experience refines sensory perception 

through the differentiation of stimulus features, dimensions, or categories  of items that was 

previously experienced. It has previously been showed that experience and familiarity enhance odor 

quality discrimination . Training to taste wine and beer also improves the ability to discriminate  

flavors . Recently, Li et al.  showed that prolonged exposure (3.5 min) to a floral-smelling odorant 

enhances perceptual differentiation only for novel odorants that are related in odor quality or 

functional group, indicating that subjects become floral “experts.” This effect was paralleled by 

increased responses in the posterior PC and interestingly an area close to the medial OFC (-14 30 

-14), as observed here. The authors speculated that this learning-induced plasticity could reflect two 

neuronal mechanisms, an enlargement in cortical receptive fields, which results in the recruitment  

of more neurons (spatial summation), or alternatively a synchronization of neuronal activity 

(temporal summation) .

The current experiment is the first to investigate the structural impact of odor long-term training.  

Perfumers live in an enriched olfactory environment and learn to characterize and recognize 
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numerous stimuli daily, and to discriminate often minute differences between them. This paper 

follows its functional counterpart in which we demonstrate a signal decrease in hyper-trained 

perfumers  in olfactory (piriform cortex and OFC) and memory (hippocampus) brain regions when 

they generate a mental image of odor. A signal decrease could be because of a greater selectivity of  

neurons due to a decorrelation of their activity . Similar mechanisms have been shown in the 

antennal lobe of the honeybees trained on one odorant, the sensorial representation of that odorant 

becoming smaller, more compact, and nonoverlapping with other odorants  and in rats trained to 

discriminate highly overlapping odorous mixtures . As an attempt to conciliate the structural and 

functional reorganizations of olfactory experts, we speculate that although cells become more 

selective after perceptual learning, perfumers could present an enlargement of the cortical surface 

dedicated to odor representation, and correlatively present a GM volume increase.

Cellular events underlying structural changes

The nature of the cellular events that underlie structural changes in the human brain is still  

unknown , although it is widely assumed that GM loss in neurodegeneration corresponds to neural 

loss . First, GM increase can be due to fast morphological changes such as the formation of new 

connections by dendritic spine growth  . Thus, a three-day olfactory learning in rats is accompanied 

by a dendritic spine density increase (15%) along apical dendrites of PC pyramidal neurons, 

suggesting an increased number of excitatory synapses . Second, GM increase can be related to 

slow mechanisms, such as adult neurogenesis that has been reported in the olfactory bulb  and the 

PC . In the olfactory bulb, it was associated with an improvement in short-term olfactory memory 

when mice were exposed daily to a novel enriched olfactory environment . Here, we suggest that a 

GM volume increase in the anterior PC could mainly result both from a fast remodeling of the 

intracortical neuronal network, but genesis of new neurons in this brain area cannot be excluded.
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The current study showed that olfactory expertise is concomitant with a structural reorganization 

in primary areas and the OFC. We revealed a GM volume increase in the bilateral GR/MOG and a 

trend for a GM increase in the posterior PC in odor experts compared with naïve subjects. More 

strikingly, the GM volume in the left GR/MOG and bilateral anterior PC was positively correlated 

with experience. These findings are consistent with our previous data showing that perfumers 

present an expertise-dependent functional reorganization in olfactory and memory areas. In 

summary, together with our previous experiment , long-term olfactory training leads to the 

acquisition of highly specific knowledge, which enables the generation of odor mental images and 

is paralleled by the structural and functional reorganization of olfactory areas.
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Legends

Fig. 1. Whole-brain structural modifications as a function of expertise. Increased GM volumes were 

observed in (A) the gyrus rectus in all experts (Exp) when compared with all controls (Cont), (B) 

the cingulate gyrus in young experts (YE) when compared with young controls (YC), and (C) the 

gyrus rectus and caudate nucleus in older experts (OE) when compared with older controls (OC). 

Graphs: data adjusted for gender and total GM volume in experts and controls. Vertical bars, 

standard error of the mean. GM: gray matter.

Fig. 2. Relationship between structural modifications and years of age. Positive slope in older 

experts (OE, green) and negative slope in older controls (OC, blue) of regression lines between the 

GM volume and years of age (from 20 to 60 years old) in A) the left GR/MOG and B) left and right 

anterior piriform cortex. GR/MOG, gyrus rectus/medial orbital gyrus.

Table 1. Whole-brain structural modifications as a function of expertise in 1) all experts vs. all 

controls; 2) Younger experts vs. their controls; 3) Older experts vs. their controls. 
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Table 1

Contrast Region BA Side Statistics Coordinates

k T x y z

Exp - Cont GR/MOG 11m L 2021 6.83 -8 41 -24

GR/MOG 14r/13b R 6.00 9 27 -23

MOG 13b/13m L 4.90 -15 35 -23

Anterior cingulate gyrus 32ac L 355 5.13 -3 39 16

Caudate nucleus L 552 4.91 -14 6 21

YE – YC GR/MOG 11m L 296 6.65 -9 42 -26

MOG 13m L 4.57 -15 35 -23

GR/MOG 14r/13b R 516 4.87 9 27 -20

GR/MOG 11m R 4.07 9 36 -20

Anterior cingulate gyrus 32ac L 264 4.27 -3 39 16

OE - OC Caudate nucleus L 503 5.57 -14 14 16

L 5.47 -15 6 21

GR/MOG 14r/13b L 395 4.12 -8 26 -24

14r L -9 23 -15

puncorrected < 0.001 at voxel-level, k > 170 (pk < 0.05).

Abbreviations: Exp, All experts; Cont, All controls; OE, older expert; OC, older control; YE, 

young expert; YC, young control; GR/MOG, Gyrus rectus/Medial orbital gyrus; BA, Brodmann 

area L, left; R, right.
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Figure 1 to be reproduced in color on the Web only
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Figure 2 to be reproduced in color on the Web only
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