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Bertrand Cariou1,2,3*, Cédric Langhi1, Maëlle Le Bras1,3, Murielle Bortolotti4, Kim-Anne Lê4, Fanny Theytaz4,

Cédric Le May1, Béatrice Guyomarc’h-Delasalle1, Yassine Zaïr1,3, Roland Kreis5, Chris Boesch5, Michel Krempf1,2,3,

Luc Tappy4,6 and Philippe Costet1,3,7*

Abstract

Background: PCSK9 (Proprotein Convertase Subtilisin Kexin type 9) is a circulating protein that promotes

hypercholesterolemia by decreasing hepatic LDL receptor protein. Under non interventional conditions, its

expression is driven by sterol response element binding protein 2 (SREBP2) and follows a diurnal rhythm

synchronous with cholesterol synthesis. Plasma PCSK9 is associated to LDL-C and to a lesser extent plasma

triglycerides and insulin resistance. We aimed to verify the effect on plasma PCSK9 concentrations of dietary

interventions that affect these parameters.

Methods: We performed nutritional interventions in young healthy male volunteers and offspring of type 2

diabetic (OffT2D) patients that are more prone to develop insulin resistance, including: i) acute post-prandial

hyperlipidemic challenge (n=10), ii) 4 days of high-fat (HF) or high-fat/high-protein (HFHP) (n=10), iii) 7 (HFruc1,

n=16) or 6 (HFruc2, n=9) days of hypercaloric high-fructose diets. An acute oral fat load was also performed in two

patients bearing the R104C-V114A loss-of-function (LOF) PCSK9 mutation. Plasma PCSK9 concentrations were

measured by ELISA. For the HFruc1 study, intrahepatocellular (IHCL) and intramyocellular lipids were measured by
1H magnetic resonance spectroscopy. Hepatic and whole-body insulin sensitivity was assessed with a two-step

hyperinsulinemic-euglycemic clamp (0.3 and 1.0 mU.kg-1.min-1).

Findings: HF and HFHP short-term diets, as well as an acute hyperlipidemic oral load, did not significantly change

PCSK9 concentrations. In addition, post-prandial plasma triglyceride excursion was not altered in two carriers of

PCSK9 LOF mutation compared with non carriers. In contrast, hypercaloric 7-day HFruc1 diet increased plasma

PCSK9 concentrations by 28% (p=0.05) in healthy volunteers and by 34% (p=0.001) in OffT2D patients. In another

independent study, 6-day HFruc2 diet increased plasma PCSK9 levels by 93% (p<0.0001) in young healthy male

volunteers. Spearman’s correlations revealed that plasma PCSK9 concentrations upon 7-day HFruc1 diet were

positively associated with plasma triglycerides (r=0.54, p=0.01) and IHCL (r=0.56, p=0.001), and inversely correlated

with hepatic (r=0.54, p=0.014) and whole-body (r=−0.59, p=0.0065) insulin sensitivity.
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Conclusions: Plasma PCSK9 concentrations vary minimally in response to a short term high-fat diet and they are

not accompanied with changes in cholesterolemia upon high-fructose diet. Short-term high-fructose intake

increased plasma PCSK9 levels, independent on cholesterol synthesis, suggesting a regulation independent of

SREBP-2. Upon this diet, PCSK9 is associated with insulin resistance, hepatic steatosis and plasma triglycerides.

Keywords: Nutrition, Dietary intervention, PCSK9, Insulin resistance, Liver steatosis

Background

PCSK9 (Proprotein Convestase Subtilisin Kexin Type 9) is

the ninth member of the proprotein convertase (PC) fam-

ily [1]. Genetic studies have demonstrated that PCSK9 is a

major determinant of cholesterol homeostasis [2,3]. Gain-

of-function (GOF) PCSK9 mutations are associated to

autosomal dominant hypercholesterolemia and premature

atherosclerosis [4]. In contrast, loss-of-function (LOF)

PCSK9 mutations lead to low concentrations of plasma

low-density lipoprotein cholesterol (LDL-C) and confer

protection against cardiovascular disease [5]. PCSK9 is

secreted by the liver and acts as a natural inhibitor of the

LDL receptor (LDLR) pathway, by targeting the receptor

to the lysosomal pathway for degradation [3]. Current

clinical trials with monoclonal anti-PCSK9 antibodies and

SiRNA show that PCSK9 neutralisation is a promising

way to achieve low levels of LDL-C in combination with

statins [6,7].

Several studies have focussed on the metabolic determi-

nants of plasma PCSK9 concentration. Circulating PCSK9

concentrations are associated with LDL-C, plasma concen-

trations of triglycerides (TG), glucose and insulin in non-

diabetic cohorts [8-11]. The association between plasma

PCSK9 and LDL-C, although the most reproducible, is

weak as illustrated by the Dallas Heart Study where varia-

tions in fasting plasma PCSK9 only accounted for approx-

imately 7% of the variations in LDL-C [11]. At the

molecular level, PCSK9 is under the control of the sterol

regulatory element binding protein-2 (SREBP-2) [12] path-

way and as such it is downregulated by cholesterol [13].

We showed that lipogenic transcription factor SREBP-1c

can also regulate PCSK9, acting via the same response

element as SREBP-2 in the promoter of PCSK9 [14], sug-

gesting that SREBP-1c might not be dominant under non

interventional conditions. One diet that induces SREBP-1

activity is the Fructose enriched diet [15].

We previously showed that hepatic PCSK9 expression

is subjected to nutritional regulation, being decreased

upon fasting and increased following re-feeding with a

high carbohydrate diet in rodents [14]. Insulin increases

hepatic PCSK9 expression both in vitro in hepatocytes

and in vivo in mice [14]. Conversely, PCSK9 is repressed

by glucagon in rat liver [16]. Accordingly, fasting, but

not a ketogenic diet, reduces plasma PCSK9 concentra-

tions in healthy volunteers, with a ≈ 20–35% decrease

after 18 h [17,18]. However, so far there are only two

reports that describe a dietary modulation of PCSK9 in

human. The Mediterranean diet [19] and n-6 PUFAs [20]

have been shown to decrease plasma PCSK9 concentra-

tions by ≈ 12% and 13%, respectively.

Here, we assessed the variations of plasma PCSK9

concentrations following various diets that affect differ-

ently LDL-C and plasma TG. The aim was to put to test

the relationship between PCSK9 and these lipid para-

meters, as well as the hypothesis that plasma PCSK9 al-

ways reflects liver cholesterol synthesis. We used acute

fat loads, as well as several short-term dietary interven-

tions (either high-fat or high-fructose diets).

Methods

Post-prandial study

Ten healthy volunteers (5 women and 5 men; mean ±

SEM age: 25.7 ± 1.5 years) participated in the study

approved by the ethical committee of Nantes University

Hospital (Protocol referenced as n° 15/06 - BRD 06/3-E).

Patients were fasted overnight until 08.00 h, at which

time the oral fat load was given. The fat load was 180 g

of emulsified blended meal composed of 3.5% dried

skimmed milk, 19.25% butter, 23.75% peanut oil, 22%

chocolate and 30.25% water. Its energy content was 890

KCal (85% fat, 13% carbohydrates, 2% protein), with 35

g saturated fatty acid, 30 g mono-unsaturated fatty acid,

15 g poly-unsaturated fatty acid and 88 mg cholesterol

[21]. Subjects bearing the PCSK9 R104C-V114A double

mutant, acting as a dominant negative and severely

impairing PCSK9 processing and secretion, were previ-

ously described elsewhere [22] . Briefly, subject 1 is a 49

year-old man with low LDL-C (16 mg/dl) presenting

with no detectable circulating PCSK9. He has a diabetes

mellitus well-controlled with sitagliptine. Subject 2 is his

daughter, who has LDL-C values of 44 mg/dl and circu-

lating PCSK9 ~100 ng/ml. Both are heterozygous car-

riers of a double mutation affecting exon 2 of PCSK9.

Short-term dietary interventions

Post-hoc measurements of plasma PCSK9 were performed

in 2 distinct clinical trials (clinicaltrial.gov identifier

NCT00523562 and NCT01119989). Baseline characteris-

tics of the subjects, study design and diet compositions

were previously published elsewhere [23-25]. Briefly, 10
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healthy male volunteers (age: 24 ± 1 y) took part in the

protocol as previously described [23] and received either a

hypercaloric high-fat (HF) diet (51.6% saturated fat, 27.6%

monounsaturated fat, 8.8% polyunsaturated fat, 376 mg

cholesterol), a hypercaloric high-fat/high-protein (HFHP)

(52.6% saturated fat, 26.5% monounsaturated fat, 7.9%

polyunsaturated fat, 653 mg cholesterol) or an isocaloric

control diet (33.5% saturated fat, 37.0% monounsaturated

fat, 16.5% polyunsaturated fat, 226 mg cholesterol), for 4

consecutive days (NCT00523562). For the 7-day high

fructose diet (HFruc1) (16), 16 healthy male OffT2D

(mean ± SEM age: 24.7 ± 1.3 y) and 8 control subjects

(mean ± SEM age: 24 ± 1 y) participated in the study and

consumed daily, for 7 days, a control diet or an hypercalo-

ric diet enriched with 3.5 g fructose/kg fat free mass (+35%

energy intake,) (NCT00523562) [24]. For the 6-day high-

fructose diet (HFruc2) [25], 9 healthy male volunteers (age

of 23 ± 1 y; BMI: 22.6 ± 0.5 kg/m2) were initially included

in a randomized, cross-over, single-blinded study. In the

present study, dosages of lipids and PCSK9 were per-

formed in only 8 subjects due to an insufficient quantity of

serum in samples for one patient. Each participant con-

sumed a control, weight-maintenance diet with a total en-

ergy intake corresponding to 1.4 time their resting energy

requirements calculated using the Harris and Benedict

equation, and containing 55% carbohydrate, 30% lipid,

and 15% protein; and a hypercaloric (+36% energy intake)

high fructose diet supplemented with 3 g/kg/day fructose

and 3 times per day 2.2 g maltodextrin. (NCT01119989).

According to a physical examination and a brief medical

history, all participants in these 3 studies were in good

health and were not taking any medications. The studies

were performed on an out-patient basis, and subjects

received all their food as pre-packed food items with

instructions as how and when to prepare and consume

them, and where asked not to consume any other food or

drinks. Experimental periods were separated by a washout

period of at least 2 weeks (2–10 weeks). All studies were

approved by the ethical committee of Lausanne University

School of Medicine. All the participants provided written

informed consent.

Analytic procedures

Venous blood samples were obtained after an overnight

fast, between 08h00 and 09h00. For plasma PCSK9 dos-

age, blood was collected in an EDTA tube, maintained at

4°C until plasma and serum were separated and stored

at −80°C. Plasma PCSK9 concentrations were assayed in

duplicates using a commercially available quantitative sand-

wich ELISA assay and following the manufacturer instruc-

tions (Circulex CY-8079, CycLex Co, Nagano, Japan), as

previously described (14). Fasting plasma glucose was deter-

mined by the glucose oxidase method (Glucose HK, Roche

Diagnostics, Meylan, France). Serum total cholesterol, TG,

HDL cholesterol, ApoB and creatinine were measured

using routine clinical methods. LDL-C was calculated using

the Friedewald equation. Plasma lathosterol extraction and

analysis by gas chromatography–mass spectrometry was

previously described [26].

Metabolic investigation

The 2-step hyperinsulinemic euglycemic clamp and 1H

magnetic resonance spectroscopy (1H-MR spectroscopy)

used to determine insulin sensitivity, intrahepatocellular

lipid (IHCL) and intramyocellular lipid (IMCL) content,

were previously published [24]. Briefly, a 2-step hyperin-

sulinemic euglycemic clamp (0.3 and 1.0 mU.Kg-1.min-1,

90 minutes each), aimed to achieve glycaemia of 5.5

mmol/l, was performed in combination with measure of

hepatic glucose output (6,6 [2H2] glucose; hot infusion

model) [27]. Fasting hepatic insulin sensitivity index was

calculated as [100/(hepatic glucose output X insulin)]

and whole-body insulin sensitivity from the glucose dis-

posal rate at moderate and high insulinemia. IHCL and

IMCL contents were determined by 1H-MR spectros-

copy on a clinical 1.5 T MR scanner, as described previ-

ously [24]. IHCL and IMCL were expressed in units of

mmol/kg. Liver spectra were recorded from a large vol-

ume (55 cm3) during brief respiratory arrests in expir-

ation instead of by a double triggering method. Liver fat

content is expressed in units of volume percentage.

Statistical analysis

All data were expressed as means ± SEMs. The nonpara-

metric Wilcoxon’s signed-paired rank test was used to

assess the effect of each dietary intervention. All correla-

tions between plasma PCSK9 and metabolic parameters

were assessed using Spearman’s correlation test. A P-

value ≤ 0.05 was considered statistically significant. Stat-

istical analysis was performed with SAS for Windows

version 9.1 Software.

Results

Acute oral fat load does not affect plasma PCSK9

concentrations

Since we showed that PCSK9-deficient mice have reduced

post-prandial hyperlipidaemia following an oral fat load

[28], we investigated whether an acute oral fat load can

alter PCSK9 plasma concentrations in young healthy

volunteers. As expected, after the oral lipid load there was

a steep rise in plasma TG concentrations (phase 1) with a

peak at 120 min (+ 106% vs baseline) followed by a 2h

long steady state level (phase 2) and a return to normal

levels within 4 h (phase 3) (Figure 1A). Circulating PCSK9

concentrations remained unaltered (Figure 1B) during

phase 1 and phase 2, and non-significantly decreased with

fasting during phase 3 (−20 % vs baseline).
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In a step further, we verified whether two subjects

bearing the recently described PCSK9 loss of function

R104C-V114A double mutant [22] displayed an altered

postprandial lipid profile. As showed in Figure 1A,

postprandial plasma TG excursion was similar between

carriers and non carriers of PCSK9 mutation. As we

previously described [22], plasma PCSK9 concentrations

remained undetectable in subject 1 and were decreased

by ~50% in subject 2 compared to healthy volunteers. In

subject 2, circulating PCSK9 levels remained stable dur-

ing phase 1 and phase 2 and decreased by ~50% during

phase 3.

A high fructose diet raises plasma PCSK9 concentrations

We investigated the effect of various short-term diets,

including high-fat (HF), high-fat/high-protein (HFHP)

and high-fructose (HFruc) diets, on overnight fasted

plasma PCSK9 concentrations in young healthy volun-

teers. Plasma lipid profiles were previously described

[23-25] (Figure 2A-D). Briefly, HF diet was associated

with increased total-, LDL- and HDL-cholesterol (re-

spectively +9%, p = 0.069, +15%, p = 0.013, +16%, p =

0.006), decreased VLDL-triglycerides (−22%, p = 0.0017)

[23]. HFHP diet was associated with increased LDL- and

HDL-cholesterol (+20%, p = 0.007, +14%, p = 0.005) [23].

Circulating PCSK9 levels were not significantly altered

following both HF and HFHP diets, although there was

a trend toward an increase (Figure 2A).

A 7-day hypercaloric high fructose (3.5 g/kg/day) diet

(HFruc1) was performed in healthy male volunteers and

in healthy OffT2D subjects [24], who are more prone to

develop insulin resistance [29-31]. HFruc1 diet promotes

a significant rise in plasma TG levels (mean values ± SD

in control and HFruc1 diets were respectively: healthy

subjects: 57 ± 17 mg/dl and 76 ± 31 mg/dl; p=0.04;

OffT2D: 73 ± 23 and 121 ± 34 mg/dl, p<0.001) (Figure 2B-

C). HFruc1 diet did not affect LDL-C concentrations

(mean values ± SD in control and HFruc1 diets in healthy

subjects: 86 ± 8 mg/dl and 87 ± 8 mg/dl, p=ns and in

OffT2D: 111 ± 6 and 109 ± 7 mg/dl, p=ns) (Figure 2B-C).

PCSK9 levels were significantly increased following

HFruc1 diet by 27% in healthy volunteers (mean values ±

SD: 139 ± 26 vs 177 ± 48 ng/ml, p = 0.05) (Figure 2B) and

by 34% in OffT2D subjects (mean values ± SD: 172 ± 44

vs 231 ± 54 ng/ml, p = 0.001) (Figure 2C).

In another independent experiment [25], young healthy

male volunteers were subjected to a 6-day high fructose

diet (3 g/kg/day) (HFruc2). Compared to HFruc1 diet,

HFruc2 diet more severely increased plasma TG concen-

trations (72 ± 27 mg/dl vs 141 ± 58 mg/dl, p=0.01), with-

out altering LDL-C levels (mean values ± SD in CTRL

and HFruc2 diets were respectively: 92 ± 22 mg/dl and

79 ± 21 mg/dl, p=ns) (Figure 2D). In accordance with

HFruc1, fasting plasma PCSK9 concentrations were sig-

nificantly increased under fructose enriched diet by 93%

(mean values ± SD: 170 ± 23 vs 329 ± 29 ng/ml, p =

0.004) (Figure 2D).

Serum ratio to cholesterol of lathosterol is a valid indi-

cator of cholesterol synthesis in human (26). Mean lathos-

terol to cholesterol ratio was significantly increased by

113% (P=0.008) following the HF diet (Figure 3A), reflect-

ing an increase in cholesterol synthesis. It was not altered

upon HFruc1 diet in OffT2D patients (Figure 3B).

Upon high fructose diet, circulating pcsk9 concentrations

are positively associated with hepatic insulin resistance,

liver steatosis and vldl-triacylglycerols

Recent data in large cohorts have showed that plasma

PCSK9 concentrations are positively correlated with the

homeostasis model assessment-insulin resistance (HOMA-

IR) index, which is an indirect marker of insulin sensitivity

[9-11]. Here, we performed a 2-steps hyperinsulinemic-

euglycemic clamp, which is the gold standard to assess the

insulin sensitivity [32]. In healthy volunteers (n=22), with

(OffT2D: n=15) and without (n=7) a family history of type

2 diabetes mellitus, fed a control diet, there was no
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association between circulating PCSK9 concentrations and

both whole-body (i.e., GIR: glucose infusion rate) and hep-

atic (HGP: hepatic glucose production) insulin sensitivity

(Table 1). Moreover, PCSK9 concentrations were not cor-

related with the ectopic lipid deposition in liver (IHCL) and

skeletal muscle (IMCL), as well as with plasma lipid para-

meters (Table 1). Upon HFruc1 diet there was a significant

association between overnight-fasted plasma PCSK9 con-

centrations and both GIR and HGP under low-insulin infu-

sion dose during the clamp (Table 1 and Figure 4A-B). In

addition, circulating PCSK9 was positively correlated with

IHCL and with fasting VLDL-TG concentrations (Table 1

and Figure 4C-D). There was no statistically significant as-

sociation between PCSK9 and LDL-C or HDL-C under the

same conditions (Table 1).

Discussion

Recent studies have focused on the association between

circulating PCSK9 concentrations and metabolic para-

meters in human [8-11]. Plasma PCSK9 has been found

to be consistently associated with LDL-C, and less ro-

bustly with TG, fasting plasma glucose and HOMA-IR.

The major finding of our studies is that plasma

concentrations of PCSK9 were induced in response to

short-term HFruc diets by 27 to 93% in healthy volunteers

(Figure 2B-D). Circulating PCSK9 levels were associated

with both whole-body, hepatic insulin resistance, liver stea-

tosis and VLDL-TG (Figure 4 and Table 1). In accordance

with a regulation of PCSK9 by carbohydrate intake, we pre-

viously demonstrated that high-carbohydrate refeeding in

mice [14] increases hepatic PCSK9 mRNA and protein

levels. Our study does not explain whether changes in

plasma PCSK9 upon a high-fructose diet are causative of

the variations in VLDL-TG and what could be the molecu-

lar mechanisms involved, in particular whether PCSK9 acts

upon hepatic VLDL production. In humans, using lipopro-

tein kinetics with stable isotopes, we observed an increase

of VLDL production in 2 family members with PCSK9

GOF variant S127R [33] but it is unclear whether this is

related to this specific variant or to a general trait of

PCSK9 GOF variants. In mice, we showed that PCSK9

overexpression is accompanied with hypertriglyceridemia

due to VLDL overproduction. However this phenotype

was restricted to fasted mice, and was not observed in fed

mice [34]. Interestingly, we showed that PCSK9 is normally

decreased during fasting [14]. We hypothesized that VLDL

production was increased due to a lack of re-uptake of nas-

cent VLDL by the LDLR (as described by Twisk J. et al.

[35]). Indeed, fasting seemed to increase the effect of

PCSK9 on the LDLR degradation and these mice had vir-

tually no LDLR in their liver compared with fed mice that

overexpressed PCSK9. Fructose inhibits hepatic lipid oxi-

dation and favors VLDL-TG-synthesis [36] and it cannot

be excluded that PCSK9 was associated with nascent

VLDL particles produced by the liver. However, whether

PCSK9 is physically associated with lipoproteins remains a

controversial issue [8,37].

Plasma PCSK9 follows a diurnal rhythm that parallels

fluctuations of lathosterol to cholesterol ratio [18]. Chol-

esterol synthesis is driven by SREBP-2 that translocates

to the nucleus in response to lower cholesterol content

of the endoplasmic reticulum membrane and activates

(See figure on previous page.)

Figure 2 Effects of short-term dietary interventions. Fasting plasma PCSK9 concentrations (A-D) and LDL-C and plasma TG concentrations

(B-D) following (A) 4-day high fat (HF) or high fat/high protein (HF-HP); 7-day high fructose (HFruc1) diets in either (B) healthy volunteers or (C)

healthy offsprings of type 2 diabetic (OffT2D); (D) 6-day high fructose (HFruc2) diet in healthy volunteers. Results are expressed as means ± SEMs.

*: p<0.05, **: p<0.01; ***: p<0.001.
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Figure 3 Effects of short-term high fat (HF) and high fructose (HFRuc1) diets on markers of cholesterol synthesis. Ratios of lathosterol to

cholesterol following (A) HF diet in plasma in healthy volunteers and, (B) HFruc1 diet in OffT2D subjects. Results are expressed as means ± SEMs.

*: p<0.05, **: p<0.01; ***: p<0.001.
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HMG-Coa reductase. SREBP2 also up-regulates PCSK9

[12,39] and LDLR expression [39]. In order to estimate

how the present diets affect cholesterol synthesis, we

measured serum ratios of lathosterol to cholesterol as a

surrogate marker of cholesterol synthesis [40]. There

was an increase upon HF diets, as previously described

[41] (Figure 3A). This might relate to the non-significant

trend towards an increase of plasma PCSK9 we observed.

It is possible that the trend would turn out to be signifi-

cant with more subjects. However, upon HFruc diet, there

was no change in cholesterol synthesis (Figure 3B), but

plasma PCSK9 increased significantly, suggesting that

SREBP-2 pathway is not responsible for these changes.

We showed that SREBP-1c is able to drive the expression

of PCSK9 and that SREBP2 and SREBP1c share the same

response element on the promoter of PCSK9 [14,42]. Re-

cent studies in hamsters also support the implication of

SREBP-1c in PCSK9 regulation [43]. Diurnal fluctuations

of PCSK9 that parallel cholesterol synthesis suggest that

SREBP2 pathway is dominant over SREBP-1c activation

under non-interventional conditions. Our finding that

plasma PCSK9 is increased by a high fructose diet but that

cholesterol synthesis is not affected (Figure 3B) suggests

that PCSK9 regulation is not dependent upon SREBP-2

under this specific diet. Because SREBP-1c is induced by a

high fructose diet [15], it might be responsible for the in-

crease of plasma PCSK9.

Our study underlines the disconnection that might

take place between PCSK9 and LDL-C level under spe-

cific nutritional conditions. Indeed, the increase of LDL-

C (reported in [23]) under a HF diet was not linked to

an increase of PCSK9. Conversely, the increase of PCSK9

under HFruc diet was not associated to an increase of

LDL-C (Figure 2B-D). It is surprising that the large in-

crease of circulating PCSK9 seen under fructose (up to

93% in healthy volunteers in HFruc2) was not associated

to an increase of LDL-C (Figure 2D). Further studies are

needed to unravel the molecular mechanisms involved in

this disconnection. It is also unclear why the two studies

led to such different magnitude of increase in PCSK9

(23% for the 7 day-long vs 93% for the 6 day-long diet).

Subjects had on average similar basal concentrations of

PCSK9. It is possible that a peak of concentration occurs

at day 6 or before. However, HFruc2 induced a higher

hypertriglyceridemia than HFruc1 (+33% in HFruc1

Healthy Patients vs +107% in HFruc2 [25]), suggesting a

better efficacy of the diet.

Several elements suggested a potential association be-

tween PCSK9 and postprandial lipidaemia, in majority

represented by chylomicrons and their remnants. First

PCSK9 might influence chylomicron clearance by de-

grading the LDLR, although there is conflicting data in

Familial Hypercholesterolemia patients on the role of

the LDLR in chylomicrons clearance [44,45]. Second, we

showed that PCSK9-deficiency is associated with reduced

postprandial hyperlipidaemia in mice challenged with an

olive oil bolus, due to decreased apoB output and a modi-

fication of chylomicron size, number and catabolism [28].

Here, we failed to detect any variation in plasma PCSK9

concentrations following the acute oral fat load in healthy

Table 1 Correlations between plasma PCSK9 and metabolic parameters

correlation with PCSK9 CTRL HFruc1

Rho de Spearman p-value n Rho de Spearman p-value n

FPG (mg/dl) −0,040 0,859 22 0,266 0,232 22

GIR (1st) −0,084 0,710 22 −0,593 0,004 22

GIR (2nd) 0,045 0,844 22 −0,439 0,041 22

HGP −0,189 0,412 22 −0,019 0,934 22

HGP (1st) 0,003 0,991 22 0,542 0,009 22

HGP (2nd) −0,143 0,526 22 0,116 0,608 22

FFA (mmol/l) −0,317 0,150 22 −0,054 0,811 22

IHCL 0,182 0,417 22 0,558 0,007 22

IMCL 0,381 0,080 22 0,195 0,385 22

CT(mg/dl) 0,095 0,673 22 0,364 0,096 22

LDL-C (mg/dl) 0,178 0,427 22 0,344 0,117 22

TG (mg/dl) 0,267 0,230 22 0,538 0,010 22

VLDL-TG (mg/dl) 0,341 0,120 22 0,608 0,003 22

HDL-C (mg/dl) −0,343 0,118 22 0,006 0,980 22

Spearman’s correlations between plasma PCSK9 levels and metabolic parameters in healthy volunteers (n=7) and offsprings of type 2 diabetic patients (n=15)

after an isocaloric control (CTRL) or a high fructose (HFruc1) diet [24]. Data from both groups of patients were pooled to increase statistical power. GIR: glucose

infusion rate, HGP: hepatic glucose production, IHCL: intrahepatocellular lipid content, IMCL: intramyocellular lipid content, FPG: fasting plasma glucose, 1st

indicates the first step (0.3 mU.kg-1.min-1) and 2st the second step (1.0 mU.kg-1.min-1) of the hyperinsulinemic-euglycemic clamp.
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volunteers (Figure 1B). In addition, we found that 2 sub-

jects with PCSK9 LOF mutation responded in a similar

fashion than controls. It is possible that an olive oil load,

similar to what we did in PCSK9 knockout mice [28],

would have changed the outcome of the investigation in

these 2 subjects. However, these subjects cannot be con-

sidered as entirely deficient for PCSK9 because it is un-

clear how much wild type PCSK9 is present in the cells of

these individuals and because some wild type protein is

still being secreted for one of them. The R104CV114A

variant is not cleaved and not secreted. The variant exerts

a dominant negative effect over the wild type protein [22].

Carriers of PCSK9 R104CV114A have different concentra-

tions of plasma PCSK9 despite being both heterozygous

for the mono-allelic double mutation. For one of them

PCSK9 was virtually absent from the blood, while for the

other carrier concentrations were around 100 ng/ml. We

hypothesized that this variability is due to the dominant

effect of the variant [22]. Because the variant is not

secreted, we assume that plasma PCSK9 in these sub-

jects is the wild type protein. If plasma PCSK9 had a

role in postprandial lipemia, these two subjects would

have had a different response to the oral fat load. Of

course, some limitations to our study are to be taken

into account, as discussed below. All together, our data

suggest that plasma PCSK9 is not associated to post-

prandial hyperlipidaemia in human.

Recent studies suggest that PCSK9 may interfere with

glucose homeostasis, since: i) insulin increases PCSK9

expression in vitro in hepatocytes and in vivo in mice

and rats [14,16]; ii) the expression of PCSK9 is altered in

rodent models of diabetes [46]; and iii) circulating

PCSK9 concentrations were found to be correlated with

the level of insulin sensitivity assessed by the HOMA-R

index both in adults [11] and in children and adolescents

[9]. A recent phenotyping of PCSK9-deficient mice

A

C D

B

R=-0.59, P=0.0065
R=0.54,

P=0.014

R=0.56,

P=0.001

R=0.61,

P=0.0005

-T
G

HFruc 1 diet

Figure 4 Correlations between plasma PCSK9 levels (ng/ml) and (A) glucose infusion rate (GIR) during the 1st step of

hyperinsulinemic-euglycemic clamp (mg/kg/min), (B) hepatic glucose production (HGP) during the 1st step of hyperinsulinemic-

eugyclemic clamp (mg/kg/min), (C) intrahepatocellular lipid content (IHCL)(mmol/kg), and (D) VLDL-TG (mmol/l) in healthy volunteers

(n=7) and OffT2D subjects (n=15) under a HFruc diet. Correlations were made using Spearman’s correlation test.
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revealed that they were hypoinsulinemic, hyperglycaemic

and glucose intolerant [47]. Our own investigations in

mice with a different genetic background didn’t point

out any obvious abnormality in terms of glucose homeo-

stasis and pancreatic beta cell function [48]. High fruc-

tose intake leads to hypertriglyceridemia and hepatic

insulin resistance and obesity [49]. Whether the molecule

of fructose itself is responsible for these deleterious effects

is not established because high sucrose diets leads to simi-

lar defects [49].

We show here that PCSK9 was only positively asso-

ciated with both whole-body and hepatic insulin resist-

ance in healthy volunteers (including OffT2D) when they

fed a short-term HFruc diet, but not under basal condi-

tions (Figure 4 and Table 1). Additionally, we found that

PCSK9 is associated with liver steatosis upon HFruc diet,

without any correlation with IMCL. Previous characteriza-

tions of these subjects [23,24] showed that hepatic steatosis

was not accompanied with hepatic insulin resistance when

induced by the HF, HFHP diets but that it was under the

HFruc diet. Such a positive association between circulating

PCSK9 levels and liver TG content assessed by proton

magnetic spectroscopy was previously described in the co-

hort of the Dallas Heart Study, although the level of the

correlation coefficient was weak (r = 0.13) [11]. In accord-

ance with a potential link between PCSK9 and liver steato-

sis, we recently described a positive association between

PCSK9 and gamma-glutamyl transferase levels, a marker

of hepatic steatosis, in type 2 diabetic patients [50].

Finally, our study had certain limitations. Although

our metabolic phenotyping was exhaustive, the number

of subjects is small and potentially limited the ability to

detect weak correlations. In addition, the duration of each

diet is short (≤ 7 days) and additional studies with extended

periods of dietary intervention need to be performed to

confirm our observations. The variation in the extent of

fructose-induced PCSK9 expression between the HFruc1

(+23%) and HFruc2 (+93%) diets is surprising since both

diets were similar in term of fructose and energy intake.

The only difference was the addition of maltodextrin in

HFruc2 diet. In parallel with a higher increase of PCSK9,

the hypertriglyceridemia was also more robust in HFruc2

diet. While some of our preliminary observations in a small

number of healthy volunteers (n=6) suggest that high glu-

cose diet also increase circulating PCSK9 levels (+47%,

p=0.17) (data not shown), it would be interesting to

confirm this observation in a larger number of subjects.

Although our findings suggest that plasma PCSK9 concen-

trations do not parallel cholesterol synthesis under a high

fructose diet, these studies were not designed to explore

these aspects. In particular diurnal rhythms of cholesterol

synthesis and plasma PCSK9 concentrations were not

determined in these patients. Concerning the effect of

PCSK9-deficiency on post-prandial lipid profile, we only

investigated two subjects from the same family with the

same PCSK9 LOF and that were not from the same gen-

der. It cannot be excluded that different conclusions would

emerge from a study with more subjects or with subjects

with a different LOF mutation.

In summary, we demonstrated that circulating PCSK9

levels are significantly increased following a short-term

high-fructose diet. Under these specific nutritional con-

ditions, PCSK9 concentrations were positively correlated

with insulin resistance, liver steatosis and VLDL-TG

concentrations.
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