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COMMENTARY Open Access

Two large-scale analyses of Ty1 LTR-
retrotransposon de novo insertion events indicate
that Ty1 targets nucleosomal DNA near the
H2A/H2B interface
Antoine Bridier-Nahmias1,2,3* and Pascale Lesage1,2,3

Abstract

Background: Over the years, a number of reports have revealed that Ty1 integration occurs in a 1-kb window

upstream of Pol III-transcribed genes with an approximate 80-bp periodicity between each integration hotspot and

that this targeting requires active Pol III transcription at the site of integration. However, the molecular bases of Ty1

targeting are still not understood.

Findings: The publications by Baller et al. and Mularoni et al. in the April issue of Genome Res. report the first

high-throughput sequencing analysis of Ty1 de novo insertion events. Their observations converge to the same

conclusion, that Ty1 targets a specific surface of the nucleosome at he H2A/H2B interface.

Conclusion: This discovery is important, and should help identifying factor(s) involved in Ty1 targeting. Recent data

on transposable elements and retroviruses integration site choice obtained by large-scale analyses indicate that

transcription and chromatin structure play an important role in this process. The studies reported in this

commentary add a new evidence of the importance of chromatin in integration selectivity that should be of

interest for everyone interested in transposable elements integration.
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Findings

Retrotransposons are major components of eukaryotic

genomes. They represent, for example, half of the human

genome, up to 80% of some plant's genomes and 3% of

the compact genome of Yeast S. cerevisiae. They have a

central role in shaping genomes, and have been shown to

be a powerful force of evolution and to play a positive role

in long-term adaptation. However, they can also be

deleterious in the short-term, since their integration into

the host genome can inactivate or deregulate gene expres-

sion or even induce large chromosomal rearrangements

by homologous recombination of distant copies. LTR-

retrotransposons are structurally and functionally related

to retroviruses but their life cycle is exclusively intracellu-

lar since they do not encode an envelope glycoprotein.

They replicate by reverse transcribing their RNA into

cDNA, which is ultimately integrated into the host

genome by the element-encoded integrase (IN). The non-

random distribution of LTR-retrotransposons and retro-

viruses into genomes suggests that these elements actively

select their integration sites (for review, [1]).

For the past 20 years, studies on Ty3 and Ty5 LTR-

retrotransposons of S. cerevisiae have led to better under-

stand the molecular bases of their targeted integration

(Figure 1). It has been established that an interaction

between Ty3 IN and the Brf1 subunit of TFIIIB is sufficient

to target Ty3 integration to Pol III transcription initiation

sites in vitro [2]. Likewise, in vivo, Ty5 preferential integra-

tion into silent telomeric heterochromatin depends on the

interaction between Ty5 IN and the Sir4 protein, a
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structural component of silent chromatin [3]. In the distant

Yeast S. pombe, interaction between Tf1 IN and the Atf1

transcription factor plays a direct and specific role in tar-

geting Tf1 integration in the fbp1 gene promoter [4]. These

studies have converged on a common targeting mecha-

nism, based on tethering of integration complexes to the

cell genome through interaction between IN and cellular

proteins bound at favored insertion sites. It is noteworthy

that this model may also account for the selectivity of the

integration of retroviruses, since HIV-1 integration in ac-

tive transcription units relies on the interaction of its IN

with the LEDGF/p75 transcription factor (reviewed in [5]).

Discovered in 1979 [6], Ty1 is the most abundant and ac-

tive LTR-retrotransposon in S. cerevisiae. It was first

noticed in 1982 that Ty1 insertions are located adjacent to

several tRNA genes [7]. Over the years, a number of

reports have found that Ty1 integration occurs in a 1-kb

window upstream of Pol III-transcribed genes with an

approximate 80-bp periodicity between each integration

hotspot and that this targeting requires active Pol III

transcription at the site of integration (Figure 1) [8-10].

However, despite 30 years of active research, the molecular

bases of Ty1 targeting are still not understood. Thus, the

recent articles of Baller et al. and Mularoni et al. are an

important advance for understanding the selection of Ty1

integration sites, by showing that Ty1 targets a specific sur-

face of the nucleosome [11,12].

Both studies used a deep-sequencing approach to get

insights into Ty1 integration selectivity. To discriminate

de novo insertion events from resident Ty1 elements,

both used a short tag sequence introduced in one LTR

of a galactose-inducible donor Ty1 element, such that

after a complete retrotransposition cycle the tag would

be recovered in both LTRs (Figure 2), and this short tag

was used to specifically sequence newly transposed

sequences. In the Mularoni et al.'s study, sequences were

generated by an Illumina GAII apparatus. Of a total of

7,990,112 reads, 1,154,281 were characterized as non-

redundant Ty1 insertions. Baller et al. used a donor Ty1

element, which contained the his3AI reporter construct

conferring histidine prototrophy to the cells after Ty1

retrotransposition, and recovered only His+ insertions. A

single 454 run produced from 13,000 to 111,000 reads.

While Mularoni et al. analyzed 10- to 100-fold more

integration events than Baller et al., the latter analyzed

integration profiles in diploid and haploid wild-type cells

and in a panel of mutants affecting DNA-related pro-

cesses known to increase integration frequency (rrm3Δ,

rtt109Δ, hos2Δ) and integration in coding sequences and

transcription units (rad6Δ). RTT109 and HOS2 encode

histone-modifying enzymes, while RRM3 encodes a heli-

case and RAD6 an ubiquitin-conjugating enzyme.

Both reports describe the same general insertion profile

pattern in wild-type cells. Independently of cell ploidy, a

Figure 1 Yeast chromosome with Ty1, 3, 5 integration-targeted regions.

Figure 2 Strategies used to recover insertions: red triangles represent the tag sequences transferred from one LTR to another during

retrotransposition. In Baller et al., the tag is a 6 nucleotide substitution, in Mularoni et al., the tag is a 25 bp synthetic DNA.
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vast majority (~90%) of insertions were observed as pre-

dicted in the 5' region of class III genes. However, Ty1 did

not target class III genes equally. All but two tRNA genes,

tE(UUC)C and tI(AAU)L1, received many insertions.

Other class III genes, such as SNR6, RPR1, SNR52, SCR1

and the repeated locus RDN5 received insertions as well.

However, two class III loci of unknown function, RNA170

and ZOD1, were not targeted, probably because the Pol III

transcription machinery was not efficiently recruited at

these loci. Insertions in Pol II-transcribed genes were rare,

representing about 5% of total events. Most of them oc-

curred near a Pol III gene, with a strong preference for the

region closest to the class III gene. Considering ORFs

which are more distant to tRNA genes (~5 kb), the few

recovered insertions occurred at the gene 5' end. Although

insertions into mitochondrial sequences (mtDNA) were

reported by Mularoni et al., they were not detected by

Baller et al., probably because of a smaller dataset size or

because those insertions did not confer histidine prototro-

phy and were, consequently, not selected for sequencing.

Mularoni et al. suggest that these insertions might come

from shattered mitochondria and could occur in the nu-

cleus or even in the cytoplasm.

The novel and most striking observation of both stud-

ies is that Ty1 integration is positively correlated with

nucleosome occupancy. An important role for chromatin

in the selection process of insertion sites was already

suspected after the discovery of an intriguing periodicity

of ~80 bp between each integration hotspots that relied

on the ATP-dependent chromatin remodeling factor

Isw2 [10]. By comparing their deep-sequencing results

with genome-wide nucleosome positioning data sets, they

have discovered two hotspots per nucleosome, separated

by about 70 bp. These observations were made for the first

three nucleosomes directly upstream of a class III gene

and the integration events were aligned with the nucleo-

some H2A/H2B interface (Figure 3).

In hos2Δ and rtt109Δ mutant strains analyzed by Baller

et al., the pattern of Ty1 insertion events was not signifi-

cantly different from that in wild-type cells. In contrast, in-

tegration events in verified ORFs increased significantly in

rrm3Δ and rad6Δ mutant strains (by two- and three-fold,

respectively), although the integration pattern upstream of

tRNA genes was unmodified, leading to the conclusion

that the determining factors for specific nucleosomal

targeting upstream of class III genes were not affected in

these mutants.

High-throughput sequencing of insertion events has

provided a saturated profile of target activity for several

retrotransposons and contributed to better understand

their integration preferences. For example, integration of

the LTR retrotransposon of S. pombe Tf1 has been

shown to be strongly biased for Pol II promoters with a

clear preference for stress-induced promoters [13], and

another report, in which 10,000 events have been ana-

lyzed, confirms all previous in vitro evidences on Ty3

integration at Pol III sites [14]. A high-throughput se-

quencing strategy has also been largely used to map the

insertions profiles of different retroviruses (for review

[15]). The reports of Mularoni et al. and Baller et al.

reveal that Ty1 integration upstream of class III genes

is strongly correlated with the chromatin structure at

these loci and preferentially targets a specific nucleo-

somal DNA segment. Interestingly, the preference for

nucleosome-rich regions is not a conserved feature of

retroelements since it has been shown that elements

such as Ty5 and Hermes (when expressed in yeast)

prefer nucleosome-free regions [16,17].

Although these two studies clearly contribute to better

understanding of Ty1 targeting, they do not characterize

Figure 3 (A) Plot of Ty1 insertions upstream of tRNAs. The blue curve above the midline represents Ty1 insertions in tandem with the tRNAs,

that below the midline represents elements inserted in inverted orientation. (B) Scheme of Ty1 integration in nucleosomal DNA. The black lines

represent nucleosomal DNA from base 1 to base 146 (5' to 3' orientation), the red boxes are the hotspots of integration with the coordinates of

the attacked dinucleotides indicated above. The green broken lines indicate the expected integration hotspots symmetrically disposed around

the dyad axis and distant of 73 bp. We can see here the "right shift" of the observed integration hotspots towards the tRNA gene in regard to

the dyad axis of symmetry.
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whether a specific nucleosomal DNA conformation, a

specific histone modification, or a nucleosome-bound

factor enriched at sites of Pol III transcription, determine

Ty1 preferred target sites, nor do they elucidate the role of

RNA polymerase III and its co-factors in Ty1 targeting.

Thus, further work is required to completely decipher the

molecular bases of Ty1 targeting.
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