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Comparison of different segmentation
approaches without using gold standard.

Application to the estimation of the left ventricle
ejection fraction from cardiac cine MRI sequences.

Jessica Lebenberg, Irène Buvat, Mireille Garreau, Christopher Casta, Constantin Constantinidès,
Jean Cousty, Alexandre Cochet, Stéphanie Jehan-Besson, Christophe Tilmant, Muriel Lefort, Elodie Roullot,

Laurent Najman, Laurent Sarry, Patrick Clarysse, Alain de Cesare, Alain Lalande and Frédérique Frouin

Abstract— A statistical method is proposed to compare
several estimates of a relevant clinical parameter when no
gold standard is available. The method is illustrated by
considering the left ventricle ejection fraction derived from
cardiac magnetic resonance images and computed using seven
approaches with different degrees of automation. The proposed
method did not use any a priori regarding with the reliability of
each method and its degree of automation. The results showed
that the most accurate estimates of the ejection fraction were
obtained using manual segmentations, followed by the semi-
automatic methods, while the methods with the least user input
yielded the least accurate ejection fraction estimates. These
results were consistent with the expected performance of the
estimation methods, suggesting that the proposed statistical ap-
proach might be helpful to assess the performance of estimation
methods on clinical data for which no gold standard is available.

I. INTRODUCTION

The comparison of segmentation algorithms on clinical
data is extremely challenging. Initial evaluation is often
performed visually by superimposing contours provided by
each segmentation method on the images to be studied.
To overcome drawbacks inherent to visual inspection, a
quantitative assessment is preferable and most approaches
consider a ground truth to evaluate the different methods
to be compared. A single manual contour delineated by an
expert or a representative shape based on several manual
segmentations provided by different experts is commonly
used as a gold standard [1]. Several criteria measuring the
overlap between the segmented region and the gold standard
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region, like the Dice coefficient [2], are then computed to
assess the quality of the segmentation to be evaluated given
the reference delineation. Since obtaining such references
can be difficult, we proposed in this paper, a method based
on the ”Regression Without Truth” approach (RWT) [3], [4]
to classify different segmentation approaches with different
degrees of automation. The comparison of methods is based
on the computation of a figure of merit. A second figure of
merit, introduced in [5], was also considered here to carry
out the classification. To get a robust comparison, a bootstrap
analysis [6] was performed on top of the RWT approach
followed by a rank analysis. The method is illustrated here
in the framework of the study of the left ventricle ejection
fraction estimated using seven segmentation approaches of
the endocardium based on cardiac cine magnetic resonance
(MR) images. This work was performed in the context of the
French MedIEval (Medical Image segmentation Evaluation)
working group.

II. MATERIALS

A. Database

Our method was applied to the datasets provided to the
participants in the MICCAI 2009 Grand Challenge, by Sun-
nybrook Health Sciences Center [7]. The database consisted
of 30 subjects from the testing and the on-line contest
datasets, including 6 healthy individuals and 24 patients
with different cardiac pathologies. For each patient, about
ten cine steady state free precession MR short axis slices
were acquired with 20 cardiac phases over the heart cycle,
and scanned from the end-diastolic phase. Further details
regarding the datasets and image acquisition protocol can be
found in [7].

The ejection fraction is the biomarker conventionally de-
fined as the ratio of the difference between end-diastolic and
end-systolic volumes (volume of blood ejected within each
beat) by the end-diastolic volume. It ranges from 0 to 1. To
estimate ejection fraction, the MR slices corresponding to
the end-systolic and end-diastolic phases were given to the
participants to the Challenge, so as to avoid any variability
only due to the choice of these time points.



B. Segmentation approaches to be evaluated
For this project, 7 segmentation methods were proposed by

5 different research teams to provide 7 independent estimates
of the left ventricle ejection fraction.

Methods M1 and M7 were entirely manual and per-
formed by two experts from two different laboratories. Semi-
automated methods M2, M5 and M6, described in [8], [9],
[10] respectively, involved an interactive definition of an
initial shape or a modification of the parameters by the
operators during the process. Method M2 was modified to
yield a fully-automated method (M3) [11]. Method M5 was
also revised to require only a very limited interaction from
the operator, yielding method M4.

Fig. 1 illustrates endocardial contours obtained by a
manual approach (M1) and an automated method (M3)
superimposed on MRI telediastolic slices of the database.
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Fig. 1. Superimposition of contours of the left ventricle provided by
a manual segmentation method (M1, solid green line) and an automated
approach (M3, dashed red line) on MRI slices of the database.

III. METHODS
A. Regression Without Truth approach (RWT)

1) Theory: The RWT approach is detailed in [3], [4]. Here
is a brief summary.

Let us consider the database containing P samples
(indexed by p, ranging from 1 to P) and M segmentation
methods (indexed by m, ranging from 1 to M). Each segmen-
tation method m yields an estimate θpm of the biomarker of
interest on sample p. The true value Θp of this biomarker is
unknown.

The RWT approach assumes a parametric relationship
between the true value Θp and its estimate θpm according to
the three following hypotheses:
H1: the distribution of the biomarker Θ for the database has

a finite support.
H2: each method m provides an estimate θpm of Θp through

the linear expression (1) where εpm is normally dis-
tributed with zero mean and standard deviation σm, and

where the parameters am and bm are specific to method
m and independent of sample p:

θpm = amΘp + bm + εpm. (1)

H3: the error terms of each method are independent.
Given the above assumptions, the probability of the estimated
values given the linear model and the true value is described
through (2):

Pr({θpm}|{am, bm, σm}, Θp) =
M∏

m=1

1√
2πσ2

m

exp

(
− 1

2σ2
m

(θpm − amΘp − bm)2
)

. (2)

Let us then consider the P samples of the database; the
log-likelihood can be written as a function of am, bm and
σm and the parameters of the distribution describing the
biomarker Θ [3]. The maximization of this expression leads
to the estimation of the above-cited parameters for each
method.

2) Application: The objective of our study was to com-
pare the different methods of segmentation (M = 7) applied
to the dataset described in II-A (P = 30). According to [4],
the beta distribution, defined by two parameters (µ and ν),
is a good finite support function to describe the distribution
of the biomarker Θ, i.e. the ejection fraction of the left
ventricle. In our study, we also chose this distribution and
empirically set the parameters of the beta distribution based
on 2 observations: 1) since there were more pathological
patients than controls, including 16 patients with a reduced
ejection fraction (≤0.45), the distribution was centered at
a value slightly below 0.5; 2) since most ejection fractions
ranged from 0.05 to 0.85, µ and ν were chosen so that the
probability density function of the beta distribution was close
to zero outside this range.

The estimation of the maximum-log-likelihood was per-
formed by optimizing a constrained nonlinear multivariable
function implemented in MATLAB (R2009a). Estimates of
the parameters of the linear model (am, bm and σm) were
returned for each segmentation approach.

B. Figures of merit as comparison criteria
The figure of merit proposed in [3], [4] to compare the

different methods was the ratio between σm and am. We
define it as F1 hereafter.

Another figure of merit called F2 was proposed in
[5]. It was defined as the mean squared difference be-
tween the value of the parameter and the estimated
value: E

[
(Θ− amΘ− bm − εm)2

]
. Considering H3 given

in III-A.1 and the 1st and 2nd moments of a beta distribution,
we computed F2 using (3):

F2 = (am − 1)2
µ (µ + 1)

(µ + ν) (µ + ν + 1)
+

2 (am − 1) bm
µ

µ + ν
+ b2

m + σ2
m. (3)

The smaller the figures of merit, the better the estimate.
The classifications of the segmentation methods based on F1

and F2 were compared.



Final classifications were also compared to visual inspec-
tions of the superimposition of different contours on MRI
slices (see Fig. 1).

C. Bootstrap process and rank analysis

To get robust estimates of F1 and F2 from the small
database involved in our study, a bootstrap approach was
used. This statistical process is extensively described in
[6]. It is useful to overcome robustness issues due to low
sample size. The principle consists in drawing randomly with
replacement n samples of equal size as the initial available
sample, from this initial sample.

For the present work, n = 1000 different random draw-
ings were performed from the P = 30 initial samples{−→

θp1 ,
−→
θp2 , ...,

−→
θpP

}
, with

−→
θpi

an array containing the M
values θpim estimated from the pi dataset. A Kruskal-Wallis
test was then performed based on F1 or F2 to determine
whether the figure of merit was equal among segmentation
methods. When the null hypothesis was rejected, the methods
were compared two by two, using a Bonferroni correction,
to classify the segmentation methods (with a Type I error
equal to 5%).

IV. RESULTS

A. Visual comparison of segmentation approaches

Displays such as Fig. 1 allowed us to visually compare the
segmentation approaches to be evaluated. We observed that
automated methods (like M3) tended to fail in segmenting the
left ventricle when the intensity of the neighboring structures,
like the atrium seen on basal slices, was similar to the
intensity of the region to be segmented. Trained experts were
able to better differentiate poorly contrasted structures hence
to provide better segmentation than automated methods.

B. Estimation of the RWT parameters

Tests were carried out to experimentally determine the µ
and ν parameters of the beta distribution representative of
our database. According to visual inspections, the parameters
were set to 4 and 5 respectively. A representation of the
probability distribution function of such a beta distribution
is in the upper left corner of Fig. 2.

Table I displays the parameters of the linear model (am,
bm and σm) estimated for each method using the RWT
approach. To visually compare these parameters, estimates
of the biomarker defined by such parameters were plotted
against a gold standard of the ejection fraction ranging from
0 to 1 (see Fig. 2). A plot of an ”ideal” estimation (identity
between the estimated values and the gold standard) was
superimposed to these graphs to observe the gap between
both lines. The smaller this gap, the better the estimate. Chart
and figure attest that estimates of the biomarker provided by
methods M1 and M7 were the most accurate, with small
standard deviations, whereas results obtained from methods
M3 and M4 were the least reliable, with a large under-
estimation of ejection fraction. We also note an important
standard deviation of the M4 estimates in comparison with
other results.
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Fig. 2. Upper left corner: Probability distribution function (PDF) of a beta
distribution describing the ejection fractions of the database (µ = 4, ν = 5).
The other plots in the figure show estimates of the biomarker for each
method (solid red line) with their associated standard deviation (dashed red
lines) superimposed on the ideal estimation (dash-dotted blue line).

TABLE I
ESTIMATION OF THE RWT PARAMETERS AND FIGURES OF MERIT FOR

EACH METHOD

Method am bm σm F1 F2

M1 1.2380 -0.1143 0.0401 0.0324 0.0031
M2 1.3573 -0.1244 0.0544 0.0401 0.0073
M3 0.3632 -0.0176 0.0767 0.2112 0.1062
M4 0.5745 0.0051 0.2122 0.3693 0.0833
M5 0.9976 -0.0568 0.0830 0.0832 0.0102
M6 1.3306 -0.1060 0.1337 0.1005 0.0222
M7 1.2982 -0.1138 0.0034 0.0026 0.0026

Table I presents the figures of merit for each method
computed from the above regressions. This table shows that
F1 and F2 led to a similar classification of the segmentation
approaches except for M3 and M4: according to F1, M3
appeared more accurate than M4 to estimate the ejection
fraction whereas an analysis based on F2 yielded the opposite
conclusion. However in both cases, M3 and M4 were found
to be the least accurate.

C. Rank analysis performed after the bootstrap process

The rank analysis performed after the application of the
bootstrap procedure was repeated on the two figures of merit.

Fig. 3 illustrates the repartition of F2 computed for each
segmentation approach after the bootstrap process. Accord-
ing to this figure, results obtained from M3 and M4 are
very variable and those based on M1, M2 and M7 are the
most reproducible. Similar observations were made from the
boxplot figure displaying the repartition of F1 computed for
each method (not shown).

Results of the rank analysis based on the second figure of
merit are shown in Fig. 4. According to this figure, 6 different
groups of methods can be distinguished and classified in
ascending order of accuracy: M1-M7, M2, M5, M6, M4
and M3. The rank analysis based on F1 (not shown in this
paper) also distinguished 6 groups of methods as fellows (in
ascending order of accuracy): M1, M7, M2, M5-M6, M3
and M4.
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Fig. 4. Rank analysis based on F2 performed after the bootstrap process.
The vertical dashed lines indicate the confidence interval of method M7
(blue) that includes method M1 (gray): the two methods do no yield
significant different results.

V. DISCUSSION AND CONCLUSION

Seven segmentation approaches with different degrees of
automation were compared using an RWT-based method to
assess the ejection fraction of the left ventricle. Two figures
of merit were computed to evaluate the classification: the
first one was commonly used in an RWT approach [3],
[4] and the second one was more recently introduced in a
previous work described in [5]. Both criteria produced sim-
ilar assessment of the segmentation approaches: the manual
delineations (M1 and M7) appeared to give the most accurate
estimate of the ejection fraction and the most automated
methods (M3 and M4) yielded the least accurate estimates.
This quantitative evaluation was consistent with the visual
assessment of the contours estimated by the segmentation
methods when superimposed with the MR slices (see Fig. 1).
Thus, the RWT method, only based on hypotheses described
in III-A.1 and using no a priori concerning the automation
of the method, seems to be relevant to compare different
segmentation approaches used to subsequently derive the
ejection fraction.

Other biomarkers, like the diastolic and systolic volumes
or the myocardial mass, will soon be evaluated using the
same proposed method to validate the classification of seg-
mentation approaches. Additional tests will also be carried
out by modifying the parameters of the beta distribution
and by removing some evaluated segmentation approaches
(like the manual segmentations) to compare the classifica-
tion results based on the remaining methods to the initial
classification results. Finally, the results of the classification
method proposed in this paper will be compared to those
obtained in comparing segmentations to a representative
shape created either from the STAPLE algorithm [1] or from
a new approach maximizing the mutual information between
segmentations [12].
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