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and Pierre-Olivier Couraud1,2,3*

Abstract

The Blood–brain barrier (BBB), present at the level of the endothelium of cerebral blood vessels, selectively restricts

the blood-to-brain paracellular diffusion of compounds; it is mandatory for cerebral homeostasis and proper

neuronal function. The barrier properties of these specialized endothelial cells notably depend on tight junctions

(TJs) between adjacent cells: TJs are dynamic structures consisting of a number of transmembrane and

membrane-associated cytoplasmic proteins, which are assembled in a multimolecular complex and acting as a

platform for intracellular signaling. Although the structural composition of these complexes has been well

described in the recent years, our knowledge about their functional regulation still remains fragmentary.

Importantly, pericytes, embedded in the vascular basement membrane, and perivascular microglial cells, astrocytes

and neurons contribute to the regulation of endothelial TJs and BBB function, altogether constituting the so-called

neurovascular unit.

The present review summarizes our current understanding of the structure and functional regulation of endothelial

TJs at the BBB. Accumulating evidence points to a correlation between BBB dysfunction, alteration of TJ complexes

and progression of a variety of CNS diseases, such as stroke, multiple sclerosis and brain tumors, as well as

neurodegenerative diseases like Parkinson’s and Alzheimer’s diseases. Understanding how TJ integrity is controlled

may thus help improve drug delivery across the BBB and the design of therapeutic strategies for neurological

disorders.
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Review
Background

The BBB maintains the homeostasis of the central

nervous system (CNS) by (i) strictly limiting the passive

diffusion of polar substances from the blood to the brain,

(ii) mediating the transport of nutrients to the brain par-

enchyma as well as the efflux from the brain of toxic

metabolites and xenobiotics, (iii) regulating the migration

of circulating immune cells [1-3]. Formed by specialized

vascular endothelial cells, the BBB is tightly controlled by

pericytes, embedded in the vascular basement membrane,

perivascular microglial cells, astrocytes and neurons which

altogether constitute the neurovascular unit (NVU), a

concept highlighting the functional cell-cell interactions

supporting BBB function.

BBB endothelial cells display a unique phenotype char-

acterized by the presence of TJs and the expression of

specific polarized transport systems. TJs constitute the

most apical intercellular junctional complex in polarized

epithelium and endothelium, with three key biological

functions: a barrier to paracellular diffusion of blood-

borne polar substances [4], a fence preventing the lateral

diffusion of lipids and integral membrane proteins, thus

maintaining cell polarization [5-7] and an intracellular

signaling platform which will be described below.

Brain endothelial TJ strands, like epithelial TJs, are

composed of integral membrane proteins (occludin,

claudins and junctional adhesion molecules (JAMs))
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involved in intercellular contacts and interactions with

cytoplasmic scaffolding proteins such as zonula occludens

(ZO) proteins, actin cytoskeleton and associated proteins,

such as protein kinases, small GTPases [8] and heterotri-

meric G-proteins [9].

Excellent reviews have recently been published on the

architecture of TJ complexes in epithelial and brain

endothelial cells [10,11]. Here we will briefly recall the

main features of the structural organization of TJs at the

BBB and will focus on transcriptional regulation, post-

translational modifications and subcellular localization

of TJ proteins and their consequences for BBB integrity

with exposure to various environmental stimuli and

during CNS disorders.

Components of TJs in brain endothelial cells
As in polarized epithelial cells where TJs have been

mostly studied, the TJ backbone in brain endothelial

cells consists of transmembrane proteins (occludin,

claudins and JAMs) which recruit a number of

membrane-associated cytoplasmic proteins.

Transmembrane proteins as the BBB TJ backbone

Occludin (60kDa), a tetraspan integral membrane pro-

tein, was the first TJ-specific protein identified [12,13] in

epithelial cells and shown to be functionally important

for barrier function [14]. It is a member of the family

of TJ-associated marvel proteins (TAMP) with tricellu-

lin (marvelD2) [15] and marvelD3 [16,17]. Both the

MARVEL transmembrane domain of occludin, encom-

passing the four transmembrane helices, and its coiled

coil cytosolic C-terminus were recently described to

mediate its lateral (i.e. cis-) oligomerization in epithelial

MDCK cells [18-20]. More precisely, cystein residues in

these domains are directly involved in oligomerization

through disulfide bridge formation. This process being

redox-sensitive, oligomerization of occludin likely con-

tributes to the redox-dependency of the TJ assembly

[20,21]: whereas normoxia conditions support occludin

oligomerization and contribute to TJ assembly, oxidative

stress associated with hypoxia-reoxygenation [22] or in-

flammation [23,24] results in TJ disruption. This novel

concept that occludin plays a key role in the redox regu-

lation of TJs has been very recently reviewed [25].

In addition, the second extracellular domain of occlu-

din is required for its stable assembly in TJs [26]. Indeed,

synthetic peptides corresponding to this domain were

shown to perturb TJ permeability barrier in epithelial

cells [27-29]. The important contribution of occludin to

TJ function is illustrated by the observations that ectopic

expression of chicken occludin induced the formation of

TJ-like structures in Sf9 insect cells [30], while increasing

electrical resistance in MDCK cells [31]. Conversely,

occludin degradation induced by viruses or bacteria (like

HIV-1 Tat protein or Neisseria meningitidis), is associated

with increased permeability in primary or immortalized

human brain microvascular endothelial cells, respectively

[32,33]. However, well-developed TJ strands were reported

in cells lacking occludin (human or guinea pig testis) [34]

and between adjacent occludin-deficient epithelial cells

[34,35]; together with the report that occludin deficient-

mice are viable, exhibiting normal TJs morphology as well

as intestinal epithelium barrier function, these observations

indicate that occludin is dispensable for TJ formation

[36,37].

Claudins constitute a large family of 20-27kDa mem-

brane proteins (with four transmembrane domains)

expressed in TJs in various cell types [4,38-40] (endothe-

lial and epithelial cells). Brain endothelial cells predomin-

antly express claudin-3 and claudin-5 [41,42], claudin-12

likely being also expressed [43,44]. A large corpus of data

clearly establishes the key contribution of claudin-3 and

claudin-5 to TJ formation and integrity at the BBB.

Indeed, exogenous expression of claudin-5 strengthens

barrier properties in cultured rat brain endothelial cells

[44], whereas depletion of claudin-5 induces the disrup-

tion of the BBB in genetically-altered mice [43] and in

cultured human brain endothelial cells [9]. Claudins sup-

port TJ integrity via their capacity of cis- and trans-

homodimerization as well as heterodimerization, notably

through their second extracellular loop, as recently

reported for claudin-5 [45-47]. Claudin-5 can interact

with claudin-3 [48,49] and the selective loss of the latter

during autoimmune encephalomyelitis or human glio-

blastoma is associated with BBB breakdown [41].

Beside occludin and claudins, JAMs, although not

essential to TJ formation in epithelial and endothelial

cells, may be involved in the facilitation of assembly of

TJ components and in the establishment of cell polarity

by recruiting the polarity complex (Par-3/Par-6/aPKC:

see below) to TJs [50,51].

Membrane-associated cytoplasmic proteins in BBB TJs

A number of cytoplasmic proteins have been described

to associate with TJ transmembrane proteins and to

contribute somehow to TJ integrity in epithelial and

brain endothelial cells. Among them, the PDZ domain-

containing, membrane-associated guanylate kinase

(MAGUK) family members have been largely documented:

zonula occludens-1 (ZO-1, 225kDa) [52], ZO-2 (160kDa)

[53], and ZO-3 (130kDa) [54]. ZO-1 forms heterodimers

with ZO-2 and ZO-3 [54-56]. ZO proteins interact with the

C-terminal domain of claudins via their first PDZ domain

(PDZ1) [57], to JAMs by the third PDZ domain (PDZ3)

[58] and to occludin via their GUK domains [55,56,59]. It

is well established that ZO proteins are essential to the

assembly of claudins [60], occludin [35] and JAM-A [61]

at TJs, then anchoring this multimolecular complex to
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the actin cytoskeleton [62]. Par-3 (also known as ASIP)

[63] binds to JAM proteins [64-66] and recruits to TJs

atypical protein kinase C [67] and Par-6 [68], the three

proteins then forming a Planar Cell Polarity (PCP)

complex in polarized epithelial cells [69]. Only very recently

was their expression confirmed also in brain endothelial

cells [70].

Among additional TJ-associated proteins, heterotrimeric

G-proteins (Gαi) were first described, in association with

ZO-1, to contribute to TJ biogenesis and maintenance in

epithelial and brain endothelial cells [71-73]. Gαi2 proteins

were reported to be involved in T-lymphocyte extravasa-

tion, including in brain [74,75]. More recently, we reported

that Gαi2 interacts with claudin-5 and that its depletion

increases brain endothelial cell permeability in vitro and

delays TJ reassembly after hyperosmotic shock (induced by

a high concentration mannitol treatment) [9]. On the basis

of these observations, we proposed that claudin-5 and

Gαi2, whether they interact directly or indirectly, might

control TJ integrity as components of a multiprotein com-

plex, including caveolin, ZO-1 linked to the actin cytoskel-

eton and possibly also, occludin and MUPP-1.

Physiological regulation of TJ assembly by the
NVU
The NVU: regulation of TJ assembly by perivascular cells

Developmental role of astrocyte and pericyte secreted

proteins

Development and maintenance of the BBB requires

functional interactions between endothelial cells and

perivascular cells of the NVU: whereas astrocytes have

been well documented to regulate BBB formation and

integrity [76,77], only recently was the role of pericytes

unraveled (for reviews: [78-80]).

Indeed, early studies using co-culture of cerebral endo-

thelial cells and astrocytes (or culture in the presence of

astrocyte-conditioned medium) [81-87] highlighted the

role of astrocyte-derived soluble factors in maintaining

the specialized phenotype of brain endothelial cells

(Figure 1). In addition, more recent reports established

that pericytes also actively contribute to BBB formation

during development by the release of several growth

factors and morphogens [88-91].

Astrocyte- and pericyte-derived Wnt and hedgehog

morphogens were reported to control BBB formation

during development and TJ integrity. Indeed, the Wnt/

β-catenin pathway has been recently discovered as a

major BBB-regulating pathway. Wnt ligation to its mem-

brane receptors, Frizzled4 (Fz4) and LRP5/6 expressed

by brain endothelial cells, inhibits the β-catenin repres-

sor complex, allowing β-catenin cytoplasmic accumula-

tion, nuclear translocation and transcription of various

genes, including claudin-3 in cultured murine brain

endothelial cells [96,99] (Figure 1). Moreover, in vivo

inactivation of Wnt factors (Wnt7a and Wnt7b) [100],

Fz4 receptor [101] or injection of a soluble inhibitor of

the Wnt/ Frizzled receptor interaction [102] lead to

major vascular defects in the CNS (interestingly, not in

non-neuronal tissues) and to BBB breakdown, clearly

demonstrating a specific role for the Wnt/β-catenin

pathway in BBB differentiation during development and

for BBB maintenance in adulthood. These exciting

observations (for review, see: [103]) open new research

avenues for controlling BBB permeability in pathological

situations as well as improving drug delivery to the CNS.

Sonic hedgehog (Shh), another well-known morphogen

protein, acting through its membrane receptors Patched-

1 (Ptch1)/Smoothened (Smo), was also recently shown

to control BBB differentiation and to maintain the im-

mune privilege of the CNS by inhibiting the endothelial

production of chemokines and expression of adhesion

proteins supporting extravasation of leukocytes to the

brain [95].

In conclusion, these recent findings further document,

at the molecular and cellular levels, the functional inter-

actions between brain endothelial cells, pericytes and

astrocytes and emphasise the key importance of the

NVU in controlling BBB permeability and integrity. The

major cellular cross-talks at the NVU are illustrated in

Figure 1.

Role of basement membrane-associated proteins

The vascular basement membrane (or basal lamina) is a

complex structure, composed of four glycoprotein fam-

ilies: laminins, collagen type IV, nidogens and heparan

sulfate proteoglycans. Recent studies have unraveled the

contribution of the endothelial laminin isoform α5 to

the barrier property of the BBB by selectively inhibiting

lymphocyte infiltration; the basement membrane thus

contributes to maintain the well-known “immune privilege”

of the CNS [104].

The heparan sulfate proteoglycan agrin is found in the

basal lamina of brain microvessels [105]. A strict positive

correlation has been reported between agrin deposition

and expression of occludin [106], whereas, conversely,

absence of agrin in glioblastoma vessels was shown to

correlate with the lack of TJ proteins (occludin, claudin-5):

these observations strongly suggest that agrin may regu-

late TJ formation in brain endothelium. Recently, agrin

was described to be involved in the development of the

BBB by contributing to astrocyte polarity [92]. More-

over, β1-integrin-mediated attachment of brain endo-

thelial cells to the basement membrane has also been

reported to be critical for stabilizing claudin-5 localization

at TJs and maintaining BBB integrity in vitro and in vivo

[93]. Genetic deletion of β1-integrin decreases the ex-

pression of the polarity protein Par-3, leading to the

loss of endothelial cell polarity: these recent data
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suggest that β1-integrin-mediated brain endothelial cell

adhesion to the basement membrane may lead to the

development of cell polarity, TJ formation and BBB

integrity [94].

VE-cadherin and β-catenin as modulators of TJs

In addition to TJs, junctional complexes between endo-

thelial cells include adherens junctions (AJs), constituted

by transmembrane proteins VE-cadherin linked to the

actin cytoskeleton through catenins (eg: p120-catenin,

α- and β-catenin) [107-109]. Interestingly, AJ and TJ

complexes functionally interact in brain endothelial

cells: indeed, VE-cadherin engagement induces claudin-5

transcription through inhibition of FoxO1 activity (a

transcription repressor of claudin-5 gene) and β-catenin

sequestration (a stabilizer of FoxO1 activity) in AJ

complexes [97], in line with the above-mentioned cap-

acity of β-catenin, downstream of Wnt receptor activa-

tion, to control claudin gene expression [96]. These

findings clearly place VE-cadherin upstream of claudin-5

in the establishment, maturation and maintenance of

endothelial cell-cell junctions.

Contribution of shear stress to TJ modulation and

BBB integrity

It is established that one important mechanical stimu-

lus contributing to BBB formation and maintenance is

shear stress [110], a tangential force generated by flow

across the apical surface of vascular endothelium

[111,112]. In line with the accepted concept that cere-

bral microcirculation is highly heterogeneous, mean

shear stress levels in brain microvessels has been

Figure 1 Schematic representation of TJ modulation by the NVU. (a) The basal lamina protein agrin increases claudin-5 (Cld5) and occludin

expression [92]; (b) Aquaporin-4 density, regulated by agrin, stabilizes TJ complexes through ZO-1 expression [93]; (c) β1-integrin engagement

stabilizes Cld5 localization at the TJ [94]; (d) astrocyte/pericyte-secreted TGF-β induces Cld5 transcription through activation of Smad transcription

factor [91]; (e) Shh enhances expression of TJ proteins via its membrane receptor Ptch1/Smo and the transcription factor Gli-1 [95]; (f) Endothelial

PDGF-β recruits pericytes which stabilize BBB phenotype [90]; (g) Wnt 7a/7b proteins, via their membrane receptors Frizzled-4 associated to

LRP5/6, induce Cld3 transcription through stabilization of β-catenin [96]; (h,i,j) Angiopoietin-1 (Ang1), via its membrane receptor Tie2, enhances

VE-Cadherin clustering and Cld5 transcription through inhibition of FoxO1 activity by PI3K and β-catenin sequestration [83,97] ; (k) VE-Cadherin

engagement recruits CCM1 and the polarity complex (PCP) leading to TJ stabilization [98].
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estimated in a range as wide as 0.01 to 10 dynes/cm2

in capillaries and 10–100 dynes/cm2 in arterioles [113-115].

Several dynamic in vitro models were developed in order

to mimic a physiological situation (using laminar, steady

flow) or a pathological condition (such as atheroscler-

osis), using an irregular flow. Interestingly, culturing

human umbilical vein endothelial cells (HUVECs) in a

laminar flow chamber in the presence of meningococci

(N. meningitidis) was instrumental for unraveling some

key molecular mechanisms of CNS invasion by these

meningitis-causing human pathogens [111]. Regarding

BBB differentiation, culture of brain endothelial cells

under flow has been reported to induce the expression of

the TJ proteins occludin and ZO-1, to promote actin

cytoskeleton reorganization and to reduce endothelial

permeability [113,115-117]. In addition, very recent find-

ings suggest that physiological shear stress (6 dynes/cm2)

may increase the expression of a variety of BBB-

associated genes in human brain microvascular endo-

thelial cells, such as genes encoding for TJ proteins

(ZO1, claudin-3, claudin-5), several influx transporters

(Glut-1) and multidrug resistance efflux transporters

(ABCB1/P-gp, ABCC5/MRP5) [116]. Nevertheless, fur-

ther investigation is still required to get a better under-

standing of the contribution of shear stress to the

maintenance of BBB integrity.

Dysregulation of the BBB via phosphorylation and
relocalization of TJ proteins
Studies on CNS diseases associated with BBB dysfunctions

(e.g. stroke, multiple sclerosis, cerebral infection, brain

tumors, Parkinson’s and Alzheimer’s diseases) have pointed

to various molecular mechanisms involved in disruption of

TJ integrity, notably including Serine/Threonine (Ser/Thr)-

and Tyrosine (Tyr)-phosphorylation, down-regulation,

degradation or translocation of TJ proteins; a non ex-

haustive list of related reports are presented in Table 1.

More than other TJ proteins (such as claudins or JAMs),

occludin has been the focus of numerous studies investi-

gating post-translational modifications and their conse-

quences on TJ integrity (see for review: [118,119]).

Table 1 Dysregulation of the BBB via phosphorylation or down-regulation of TJ proteins

TJ proteins modifications Targeted TJ proteins Signaling pathway Stimulus / Diseases References

Serine/Threonine
Phosphorylation

Cld5 (Thr207) PKA cAMP [120]

Cld5, Occludin and ZO-1 nPKC-θ / aPKC-ζ Hypoxia [121]

N.D. cPKC-α, cPKC-βII , aPKC-λ/ζ HIV-1 gp120 [122]

Cld5 (T207) Occludin (T382/S507) RhoA/Rho kinase HIV-1 encephalitis [123]

Cld5, Occludin, ZO-1 RhoA / PKC-α CCL2 chemokine [124]

Cld5 and Occludin MLCK Alcohol / Reactive oxygen species [125,126]

N.D. Hypoxia / Reactive oxygen species [127]

Tyrosine Phosphorylation Occludin c-Src Cerebral ischemia [128]

Occludin N.D. Glutamate [129]

Cld5 N.D. TGF-β [130]

ZO-1 ND Tyrosine phosphatase inhibition [131]

Down-regulation
or degradation

Cld5 and Occludin
Internalization

Caveolae-dependent
endocytosis

CCL2 chemokine [132]

Occludin JNK, p38MAPK Amyloid-β peptide [133]

Cld5 ERK1/2 HIV-1 Tat protein [134]

Occludin and ZO-1 distribution PLC-γ, PI3K/Akt Hypoxia [135]

N.D. [136]

Cld5 N.D. [137]

Cld5 and Occludin VEGFR VEGF [138]

Cld3 N.D. Multiple Sclerosis Glioblastoma
multiforme

[41]

Cld5, Occludin, ZO-1 nPKC-δ Cerebral ischemia [139]

Occludin and ZO-1 MLCK HTLV-1 [140]

Cld5 and Occludin RhoA/RhoK Reactive oxygen species [141]

N.D : Not Described.
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Ser/Thr-phosphorylation of TJ proteins and regulation

of barrier permeability

Ser/Thr-phosphorylation forms of occludin are found

concentrated at TJs whereas dephosphorylated occludin

is rather detected on basolateral membranes and asso-

ciated with disrupted TJs in epithelial cells [142,143]

as well as in brain endothelial cells in experimental auto-

immune encephalomyelitis, a murine model of multiple

sclerosis characterized by brain inflammation [144].

Regarding claudin-5, phosphorylation of its C-terminal

domain on Thr207 residue in response to PKA or Rho

kinase activation [120,123,145] generally affected TJ integ-

rity in brain endothelial cells and increased permeability.

Differential regulation of TJs by Protein Kinases C (PKCs)

PKC-dependent pathways have been involved in endothe-

lial barrier disruption, as reported following treatment by

pertussis toxin, an inhibitor of Gαi heterotrimeric G

proteins [146], or in response to the pro-inflammatory

cytokine interleukin-6 (IL-6) which plays a critical role

during hypoxia [147]. However, early reports had clearly

established that PKC activity was crucial for BBB integrity

in epithelial cells, inasmuch as PKC inhibitors completely

blocked the formation of TJs [148,149]; in addition, PKC-

mediated phosphorylation of occludin (on residue Ser338)

was involved in occludin targeting to TJs and TJ

stabilization in epithelial MDCK cells [148].

At least part of the interpretation of these apparently

conflicting data may be found in the heterogeneity of

the PKC family. The Ser/Thr-kinases PKCs are indeed

classified into conventional (cPKC: α, βI, βII and γ),

novel (nPKC: δ, ε, θ, η, μ) and atypical (aPKC: λ,ζ) PKC

isozymes [150] according to their modes of regulation.

Accumulating evidence has pointed to a differential

capacity of PKC isozymes to regulate BBB permeability.

Indeed, activation of nPKC-θ and aPKC-ζ signaling by

hypoxia-mediated TJ proteins results in relocalization

(such as claudin-5, occludin, ZO-1) and increased BBB

permeability in rat brain microvascular endothelial cells

(in vitro and in vivo) [121,151]. In human brain micro-

vascular endothelial cells, cPKCα, cPKC βII and aPKCλ/ζ

isoforms were activated by HIV-1 gp120 envelope pro-

tein, leading to BBB disruption, intracellular calcium

increase and monocyte migration across cell monolayer

[122]. Interestingly, when cPKC-α was found to con-

tribute to TJ disassembly, nPKC-ε activation mediated

TJ formation in epithelial MDCK cells [152]. In line

with this observation, over-expression of cPKC-α in rat

epididymal microvascular endothelial cells was reported

to enhance thrombin-induced permeability, whereas

nPKC-δ expression promoted barrier function [153].

By contrast, IL-25, expressed by mouse brain capillary

endothelial cells, was shown to prevent inflammation-

induced BBB disruption and down-regulation of TJ

proteins (occludin, claudin-5, JAMs) through activation

of the nPKC-ε pathway [154]. Altogether, these obser-

vations strongly suggest that nPKC-selective activation

generally contributes to maintaining barrier integrity,

whereas cPKC activation has the opposite effect, both

in polarized epithelium and endothelium (Table 1).

Regarding aPKC isoforms (λ and ζ), they have been

shown to contribute to the establishment of epithelial

cell polarity, via participation in the PCP complex to-

gether with Par-3 and Par-6 [63,68,155]. As mentioned

above, the PCP complex is recruited to endothelial TJs by

Par-3 binding to JAM proteins [64-66]. Over-expression

of a dominant negative mutant of aPKC causes mislocali-

zation of Par-3 and affects the biogenesis of the TJs in

epithelial cells [67], suggesting that Par-3 is a substrate of

aPKC and that its localization in epithelial cells is

dependent upon its phosphorylation. In the same line,

the VE-cadherin/CCM1 (a protein encoded by the

CCM1 gene which is mutated in a large proportion

of patients affected by cerebral cavernous malforma-

tion) complex controls aPKC-ζ activation and Par-3

localization during early steps of brain endothelial cell

polarization [98]. The participation of this PCP complex

to TJ integrity was further illustrated by the recent obser-

vation that meningococcal adhesion to human cerebral

endothelial cells recruited Par-3, Par-6 and aPKC-ζ under

bacterial colonies and induced disruption of cell-cell

junctions [156]. Surprisingly, a distinct Par-3/Par-6 com-

plex, directly associated with VE-cadherin and lacking

aPKC, has also been identified in endothelial cells [157].

Finally, although additional polarity complexes are

known in epithelial cells (the apical Crumbs complex and

the basolateral Scribble complex) where they also con-

tribute to TJ formation and regulation, no similar obser-

vations have been reported, to our knowledge, in brain

endothelial cells.

BBB disruption mediated by Rho/ Rho kinase and MLCK

activation

The RhoA GTPase signaling pathway, activated by several

membrane receptors, has been extensively documented in

various cell types to induce actin cytoskeleton rearrange-

ments involved in cell migration and proliferation. In

brain endothelial cells, RhoA activation increased perme-

ability, in response to inflammatory stimuli, through one

of its major effectors Rho kinase (ROCK) [158,159].

Among these inflammatory stimuli, chemokines like

MCP-1/CCL2, acting via their seven transmembrane-

domain receptors, are known to activate the RhoA/ROCK

pathway in mouse brain endothelial cells, to induce occlu-

din, claudin-5 and ZO-1 Ser/Thr-phosphorylation, fol-

lowed by their delocalization from TJs, ultimately leading

to increased barrier permeability [124,160]. Similarly,

enhanced monocyte migration across human brain
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endothelial cells was observed in an HIV-1 encephalitis

model [123,161]. Also, adhesion molecules like ICAM-1

and VCAM-1 were shown, in response to lymphocyte/

monocyte adhesion, to transduce signals in rat brain

endothelial cell lines including activation of the RhoA/

ROCK pathway [162,163]: activation of this pathway ul-

timately leads to enhanced lymphocyte migration, sug-

gesting that this process may be involved in the massive

infiltration of immune cells into the CNS observed in

multiple sclerosis. It must be mentioned, however, that

lymphocyte migration across the BBB may also happen

via a transcellular pathway, leaving intact endothelial TJs

[164].

Rearrangements of the actin cytoskeleton have long

been recognized to be regulated, not only by the RhoA/

ROCK pathway, but also, often in a coordinated manner,

by the myosin light chain kinase (MLCK): MLCK dir-

ectly phosphorylates the myosin light chain, leading to

actomyosin contraction and endothelial barrier disruption

[165-167]. In the same line, inhibition of MLCK in bovine

brain endothelial cells was more recently reported to

prevent hypoxia-induced BBB disruption [127], whereas

alcohol increased human brain endothelial cell perme-

ability via activation of MLCK and phosphorylation of

occludin and claudin-5 [125,126]. Recently, pro-

inflammatory cytokines (IL1β and TNFα), secreted by

lymphocytes chronically infected by the HTLV-1 retro-

virus, were reported to induce barrier disruption in the

human brain endothelial cell line hCMEC/D3, associated

with loss of occludin and ZO-1 through activation of the

MLCK pathway [140].

In conclusion, as summarized in Table 1, inflammation-

or infection-induced actin cytoskeleton rearrangements in

brain endothelial cells, mediated by the RhoA/ROCK

and/or MLCK pathways, are associated with the phos-

phorylation, followed by delocalization or degradation of

TJ proteins, and BBB disruption.

BBB dysregulation by Tyr-phosphorylation of TJ proteins

Early studies with cultured bovine brain endothelial cells

and MDCK cells had pointed to Tyr-phosphorylation as a

mechanism for increasing TJ permeability [131]. Accumu-

lating evidence demonstrated that Tyr-phosphorylation of

TJ proteins, as well as AJ proteins, was directly involved in

BBB disruption, as observed in various pathological situa-

tions, although the identity of the Tyr-kinases involved

often remained unknown. Unlike occludin Ser/Thr phos-

phorylation associated with barrier formation, as men-

tioned above, occludin Tyr-phosphorylation was reported

to be associated with increased permeability of cultured

rat brain endothelial cells exposed to glutamate, as a way

to mimic cerebral ischemia [129] (Table 1). Like other

pro-inflammatory cytokines, transforming growth factor

(TGF)-β1 is known to increase BBB permeability: as

recently reported in bovine retinal and human brain

endothelial cells, this effect was mediated by Tyr-

phosphorylation of both claudin-5 and VE-cadherin

[130]. Vascular endothelial growth factor (VEGF), a

major angiogenic factor, which is drastically enhanced in

response to hypoxia, promotes Tyr-phosphorylation of

TJ proteins (ZO-1, occludin) in mouse brain and retinal

endothelial cells [168,169] either directly via its mem-

brane receptor tyrosine kinase VEGFR2 or via the activa-

tion of the cytosolic tyrosine kinase c-src [128,170].

VEGF-mediated Tyr-phosphorylation of TJ proteins in

brain endothelial cells was often followed by their

down-regulation and/or re-localization, leading to TJ

destabilization and permeability increase [136-138,171].

Alterations of expression and localization of TJ proteins

Caveolae are specialized plasma membrane microdo-

mains, abundantly found in endothelial cells where they

mediate various biological events such as transcytosis, vas-

cular permeability and angiogenesis [172,173]. They are

enriched in the small membrane protein caveolin-1 which

has been shown to recruit TJ proteins [9,174]. Caveolae-

mediated endocytosis induced by actin depolymerization

was reported to evoke occludin internalization in MDCK

cells [175]. Interestingly, exposure of cultured rat brain

endothelial cells to the HIV-1 Tat protein was reported to

increase TJ permeability, through alterations in expression

and distribution of TJs proteins: occludin, claudin-5, ZO1,

ZO2 [134,176]. In the same line, the increase in TJ perme-

ability observed in mouse brain endothelial cell response

to the inflammatory cytokine CCL2 was recently shown to

be associated with claudin-5 and occludin internalization

in a caveolae-dependent manner [132]. Altogether these

results strongly support the conclusion that alterations in

expression and localization of TJ proteins, associated or

not with their phosphorylation in response to various

pathological stimuli, directly contribute to TJ disruption

and BBB permeability increase (Table 1); in addition, they

suggest a role of caveolin-1/caveolae in such TJ remodeling.

Conclusion
The brain endothelial TJ complex, which constitutes a

key feature of the BBB, is now understood as a scaf-

folding and signaling platform in close interaction

with the actin cytoskeleton and the AJ complex. It

also appears as a dynamic complex, submitted to

post-translational modifications in response to physio-

logical and pathological stimuli. Indeed, perivascular

cells of the NVU, notably astrocytes and pericytes, se-

crete multiple growth factors and morphogens that

contribute to TJ formation and integrity. Conversely,

various pathological situations associated with the

presence of inflammatory cytokines, reactive oxygen
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species or pathogens, lead to TJ disruption following

phosphorylation and/or internalization of TJ proteins.

Although our understanding of TJ architecture and

function has significantly increased over the last ten

years, a number of issues will have to be addressed in

the next future, in particular taking advantage of new

and/or global analysis technologies. For example, super-

resolution light microscopy (time-lapse stimulated emis-

sion depletion (STED) imaging) recently appeared as a

very powerful approach to unravel synapse assembly and

plasticity [177]; in the same line, super-resolution mi-

croscopy of TJs (with a resolution down to 50–80 nm)

of cerebral microvessels in brain slices should provide a

more accurate understanding of TJ organization and

dynamics. Also, thanks to the availability of validated

BBB in vitro models, identification by mass spectrometry

(MS/MS analysis) of the secreted proteins (so-called

‘secretome’) from brain endothelial co-cultures with

astrocytes or pericytes may unravel new paracrine signal-

ing pathways in the NVU which contribute to the

stabilization of TJs at the BBB; in addition, similar ana-

lyses in the presence of inflammatory agents or patho-

gens [178] may highlight unsuspected mechanisms of TJ

disruption. This approach will complement quantitative

targeted absolute proteomics (also known as selected

reaction monitoring (SRM)), an emerging approach to

quantify membrane proteins [179]. This technology

will also greatly benefit the field, allowing absolute

quantification of TJ proteins in physiological and vari-

ous pharmacological situations, as recently proposed

[180]. The treatment of neurological diseases is cur-

rently hampered by difficulties encountered in deliver-

ing therapeutic compounds to the brain, across the

BBB. Because previous drug delivery strategies based

on transcellular transport machinery have shown lim-

ited efficacy so far, it is tempting to propose that tran-

sient modulation of TJs at the BBB, using in vitro

models of the BBB and in vivo models of human path-

ologies, may constitute an alternative approach for

drug delivery to the brain. Clearly, this field will bene-

fit greatly from an in-depth understanding of TJ archi-

tecture and functional regulatory mechanisms.
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