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Abstract

Background: Dynamic hyperinflation, hereafter called AutoPEEP (auto-positive end

expiratory pressure) with some slight language abuse, is a frequent deleterious

phenomenon in patients undergoing mechanical ventilation. Although not readily

quantifiable, AutoPEEP can be recognized on the expiratory portion of the flow

waveform. If expiratory flow does not return to zero before the next inspiration,

AutoPEEP is present. This simple detection however requires the eye of an expert

clinician at the patient’s bedside. An automatic detection of AutoPEEP should be

helpful to optimize care.

Methods: In this paper, a platform for automatic detection of AutoPEEP based on the

flow signal available on most of recent mechanical ventilators is introduced. The

detection algorithms are developed on the basis of robust non-parametric hypothesis

testings that require no prior information on the signal distribution. In particular, two

detectors are proposed: one is based on SNT (Signal Norm Testing) and the other is an

extension of SNT in the sequential framework. The performance assessment was

carried out on a respiratory system analog and ex-vivo on various retrospectively

acquired patient curves.

Results: The experiment results have shown that the proposed algorithm provides

relevant AutoPEEP detection on both simulated and real data. The analysis of clinical

data has shown that the proposed detectors can be used to automatically detect

AutoPEEP with an accuracy of 93% and a recall (sensitivity) of 90%.

Conclusions: The proposed platform provides an automatic early detection of

AutoPEEP. Such functionality can be integrated in the currently used mechanical

ventilator for continuous monitoring of the patient-ventilator interface and, therefore,

alleviate the clinician task.

Keywords: Patient-ventilator interaction, Dynamic hyperinflation detection, AutoPEEP

detection, Signal norm testing, Sequential decision

Introduction

Mechanical ventilation is routinely used in the clinical ward and/or in nursing/

rehabilitation institutions. Unfortunately, imperfect interaction between patient and ven-

tilator is frequently exhibited in intubated patients [1] and those undergoing non-invasive

ventilation [2].

It has been demonstrated that the graphical curves (flow, airway pressure and air

volume) available on most recent mechanical ventilators provide much information to

© 2012 Nguyen et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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analyze the patient-ventilator interface [3]. By visually monitoring these curves, patient-

ventilator mismatching can be observed and detected by the clinician. Various automatic

detection algorithms either embedded in a ventilatory system to detect ineffective trig-

gering and double triggering [4], or recently in a computerized monitoring system

(BetterCare) to determine ineffective respiratory efforts during expiration [5] have been

reported with positive results. However, to the best of our knowledge, the automatic

detection of other types of ventilatory abnormalities, including AutoPEEP, has not yet

been adequately considered.

This paper addresses automatic detection of AutoPEEP, a common ventilatory abnor-

mality that usually occurs in patients with acute severe asthma or chronic obstructive

pulmonary disease. The presence of AutoPEEP basically indicates an insufficient expira-

tory time. The amount of time given over to expiration therefore needs to be lengthened,

either by reducing the respiration rate or by decreasing the inspiratory time, or both.

AutoPEEP can be measured at the patient’s bedside by using the pressure transducer of

the ventilator. However, this quantification requires intervention from the therapist, who

must perform an expiratory pause, in order to monitor tele-expiratory pressure [6]. On

the contrary, although not readily quantifiable, AutoPEEP can easily be recognized on the

expiratory portion of the flow waveform. If expiratory flow does not return to zero before

the next inspiration, AutoPEEP is present. This detection however requires the eye of

an expert clinician at the patient’s bedside. Using flow signal as the input, an automatic

detection of AutoPEEP (dynamic hyperinflation) due to either expiratory flow limitation

and/or inappropriate ventilatory cycling should be helpful to optimize care. Our focus

is thus early detection of AutoPEEP for continuous monitoring of the patient-ventilator

interface. In what follows, AutoPEEP detection is performed by Signal Norm Testing

(SNT) on the flow signal captured from the patient-ventilator interface. SNT involves

testing the norm of a signal observed in noisy condition with respect to a certain tolerance

fixed by users on the basis of their know-how and/or experience of the domain [7]. An

extension of SNT in a sequential framework is also investigated. Other practical aspects,

including phase change detection and parameter estimation are considered as well. The

performance assessment is provided in three levels. First, the detection performance of

the proposed detectors will be illustrated with data synthesized on computer. Then, fur-

ther evaluation is performed on data derived from a respiratory system analog. Finally,

an ex-vivo performance assessment on retrospective data acquired from patients is

carried out.

Methods

Automatic detection of AutoPEEP and System overview

AutoPEEP can be visually observed and detected through flow signal. Figure 1 shows

an example of flow signal with AutoPEEP captured during mechanical ventilation on a

patient. Let ft be the clean flow signal. AutoPEEP can be regarded as the non-return of

the flow signal at the end of each expiratory phase to the null value. In practice, during

the observation of the air flow, various factors might get involved, including the mechan-

ical vibration of the air tube, the patient movement, the electro-magnetic interference,

etc. Therefore, the flow signal at the end of the expiratory phase will never be exactly

zero, even in absence of noise. Testing directly the hypothesis ftk �= 0, where tk is the end-

expiration instant of the considered breath, might thus not be realistic. A tolerance τ > 0
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Figure 1 An example of flow signal. This signal was recorded during the assisted mechanical ventilation on

a patient. The (blue) curve shows a typical waveform of flow signal with squared inspiratory phase. The

arrows point to some end-expiration instants where the markers for AutoPEEP detection are present.

is then introduced to take into account possible distortions on the signal under consid-

eration. Given τ , the problem is then the testing of ftk ≤ τ versus ftk > τ based on the

flow signal observation in presence of noise. This tolerance τ is specified by the clinician.

Its value is usually derived from his/her expertise of the domain. Other technical factors

could also be taken into account, such as: the flow sensor precision, the dynamic range of

the signal, etc. Multiple values of τ could also be employed to provide a semi-quantitative

evaluation of persisted AutoPEEP on patient.

With respect to the discussion above, a platform for automatic detection of AutoPEEP

based on a noisy observation of the flow signal can be developed. Figure 2 depicts

such a platform. The main processing components include: the data acquisition and

Serial/Parallel conversion, the phase-change detector, the estimator and the AutoPEEP

detector. These components are briefly presented as follows before being detailed in

the sequel.

Data acquisition and Serial/Parallel conversion This very-first module acquires the

discrete flow signal yn provided by the ventilator or by an independent flow sensor

Figure 2 Automatic AutoPEEP Detection Platform - System overview. The platform functions on the

basis of respiratory flow signal. For each end-expiration tk it detects, the Phase change detector triggers the

data acquisition/conversion process. Based on observationsYk provided by the Data acquisition/conversion

module and parameters pk , σ̂ given by the Estimator, the AutoPEEP Detector performs an optimal testing

with respect to specified tolerance τ and level γ to decide whether or not an AutoPEEP is present.
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installed inside the air-tube during the mechanical ventilation. Although every flow

datum is acquired, only end-expiration flow data of each breath is useful for the detec-

tion of AutoPEEP. When the end-expiration instant tk of the k-th breath is provided

by the phase change detector, the Data Acquisition and Serial/Parallel conversion mod-

ule will log L samples at the end of the expiratory phase to form the observation vector

Yk =[ ytk−L+1, ytk−L+2, . . . , ytk ]
T for the k-th breath. This output observation vector Yk is

finally injected into the AutoPEEP detector module.

Respiration phase change detection The main role of this module is to detect the end-

expiration of each breath and provide this instant to trigger the data logging process

and the Serial/Parallel conversion described above. This can also be regarded as a breath

detector, which separates the continuous flow signal into different breaths.

Estimator This module consists of two estimators, which estimate necessary parameters

for the AutoPEEP detection algorithms. These parameters are the so-called waveform

vector (pk for the k-th breath) and the noise standard deviation estimate (σ̂ ). The wave-

form vector will be used to aggregate multi-samples at the end of the expiratory phase

of a breath into a decision (cf. Section Single-breath detector), while the noise standard

deviation estimate will be provided to adjust the AutoPEEP detector.

AutoPEEP detector The AutoPEEP detector is the main core of the whole platform.

Given a specified tolerance τ and the desired maximum false-alarm rate (level) γ , the

AutoPEEP detector will decide whether an AutoPEEP is present or not for a given breath,

on the basis of its observation Yk and estimated parameters pk , σ̂ .

AutoPEEP detectors

Given tolerance τ and observation yn of the noisy flow signal, the AutoPEEP detec-

tion is the testing of the null hypothesis |ftk | ≤ τ against the alternative one |ftk | > τ .

The SNT (Signal Norm Testing) problem introduced in [7] provides such a test. In this

section, two AutoPEEP detectors are proposed. One is based directly on SNT and takes

each of the breaths into account independently. The other one is an extension of SNT

in a sequential framework. The latter detector is developed under the assumption that

the state (AutoPEEP/NON-AutoPEEP) of the patient-ventilator interface is regular and

remains the same within a certain number of breaths. This assumption usually holds

in practice.

Single-breath detector

Signal Norm Testing To begin with, let us consider the signal model:

z = θ + x

where θ is some unknown clean deterministic signal and z is its observation in noise.

The additive noise x is assumed to be centered and gaussian with variance σ 2
x , i.e. x ∼

N (0, σ 2
x ). Given observation z, SNT is the problem of testing the composite hypothesis

h0 : |θ | ≤ τ versus its alternative h1 : |θ | > τ .

In the sequel, a test T is any measurable map of R into {0, 1}. The value returned by

T indicates the index of the accepted hypothesis. As in [8], the power function of test
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T is defined as the probability that T rejects the null hypothesis h0, regardless of which

hypothesis actually holds, i.e.

βθ (T ) = P[ T (z) = 1] . (1)

The size of T for testing h0 : |θ | ≤ τ is defined as the least upper bound for the

probability of false-alarm, i.e.

α(T ) = sup
|θ |≤τ

βθ (T ) (2)

and its power is the value of βθ (T ) for θ such that |θ | > τ — in other words, the detection

probability. In practice, it is expected to maximize the power of T for a given θ while

restricting the false-alarm rate below some level γ (0 < γ < 1). This value γ is specified

by the clinician with respect to the acceptable number of false-alarms during a period of

time. For instance, a typical value of γ = 0.01 corresponds to an average of one false-alarm

per 5 minutes with the usual frequency of 20 [breaths/min]. The UMP (Uniformly Most

Powerful) test for the problem does not exist (cf. [8]). However, the problem is invariant

to any sign change in θ . Therefore, it is natural that the test itself should also be invariant

to sign changes — that is, T should be an even function. It follows from [7] that the UMP

test among those even tests with size γ is:

T
σxλγ

(

τ
σx

)(z) =

⎧

⎨

⎩

1 if |z| ≥ σxλγ

(

τ
σx

)

0 if |z| < σxλγ

(

τ
σx

) (3)

in which λγ (ρ) is the unique solution in η to the equation 1−[�(η − ρ) − �(−η − ρ)]=
γ , where �(.) is the cumulative distribution of any standard normal random variable.

Additionally, the test is UMPU (UMP unbiased) [7]. This thresholding test will be used

for the detection of AutoPEEP, one of the most frequent abnormalities exhibited during

mechanical ventilation.

Single-breath SNT-based AutoPEEP detector

Although the definition of AutoPEEP is based solely on the final sample of the expira-

tory phase of each breath, it is expected that taking multiple samples into account will

improve the detection performance. By introducing the waveform vector, namely pk , with

dimension L, one can aggregate L samples at the end of the expiration to carry out a single

decision for the breath under consideration. Let Yk be the observation vector containing

the last L samples of the expiratory phase of the k-th breath under consideration. Yk is

modeled as:

Yk = fk + Xk

where fk =
[

ftk−L+1 . . . ftk−1 ftk
]T

is the flow signal vector and Xk ∼ N (0, σ 2IL) is

additive gaussian noise with standard deviation σ . Vector fk can be factorized as:

fk = pk ftk

where pk =
[

p
(k)
1 p

(k)
2 . . . p

(k)
L

]T
is the waveform vector. It should be noted that

p
(k)
L = 1. This vector pk corresponds to the local form of the flow signal near the end of the
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expiratory phase. It is also worth mentioning that this local waveform vector pk depends

mainly on the configuration of the interface, including the patient condition and the ven-

tilator settings. As long as the interface stays unchanged, the waveform vector remains

almost the same regardless whether or not an AutoPEEP might occur. In practice, either

pk is known prior to the detection or it can be estimated from the observation using one

of the methods proposed in Section Waveform regression to compute pk .

To aggregate L observed samples into one decision for the considered breath, Yk is

projected onto the direction generated by pk . We thus have:

uk = ftk + wk (4)

where uk = pT
k
Yk/‖pk‖2, wk = pT

k
Xk/‖pk‖2 and ‖pk‖2 = pT

k
pk is the L2 norm of wave-

form vector pk . By such proceeding, noise wk follows normal distribution with zero mean

and variance σ 2
w = σ 2/‖pk‖2. According to [9, Theorem 27.4, p. 362] and equation (14),

it can be proved that, even when the original noise is not gaussian, the resulting noise

wk tends to a normally distributed random variable, as long as L is large enough and the

original noise samples are i.i.d (independent and identically distributed). In practice, the

i.i.d condition can be significantly relaxed. The problem in (4) is the same as that in pre-

vious section, except that the noise level is reduced (σw ≤ σ ). Moreover, no information

on the correlation among samples of noise vector Xk is required. The two hypotheses are

unchanged: h0 : |ftk | ≤ τ and h1 : |ftk | > τ . The detection is thus carried out as follows.

We decide that there is an AutoPEEP if |uk| > σwλγ ( τ
σw

), where λγ (.) is calculated as

in (3). Otherwise, the considered breath is labeled with Non-AutoPEEP.

It should be noted that ‖pk‖ increases with respect to the number L of samples.

The noise standard deviation σw will thus decreases when more samples are taken into

account. By reducing the noise standard deviation, the detection probability is improved

while the false-alarm rate is still limited to the specified level γ . Theoretically, L is only

limited by the length of expiratory phase. However, L must not be too long so that the

local waveform vector can be considered stable and stays almost unchanged for a large

number of breaths.

Sequential detector

SNT extension in sequential decision framework By using SNT, one can restrict the

false-alarm rate to some value γ . It is has also been shown in [7] that the detection rate

is lower-bounded by γ . Since γ is usually be very small, this bound is of poor inter-

est. In this section, an extension of SNT in a sequential decision framework — namely,

the Sequential SNT — is introduced to improve the detection rate while still limit-

ing the false-alarm rate to the specified value γ . The main idea is to introduce two

detection thresholds: one is calculated to restrict the false-alarm rate as described in

Section Single-breath detector, whereas the other is obtained by exchanging the two

hypotheses to limit the miss-detection rate. In particular, with the same notation as in

Section Single-breath detector, we take both the from-above testing problem considered

in Section Single-breath detector:

{

h0 : |θ | ≤ τ

h1 : |θ | > τ
(5)
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and the from-below one:

{

h′
0 : |θ | > τ

h′
1 : |θ | ≤ τ

(6)

into account. On the one hand, put λ∗
γ = σxλγ ( τ

σx
). As aforementioned, the test:

Tλ∗
γ
(z) =

{

1 if |z| > λ∗
γ

0 if |z| ≤ λ∗
γ

has size γ for problem (5) so that

P
[

|z| > λ∗
γ

]

≤ γ when |θ | ≤ τ . (7)

Tλ∗
γ
is called the thresholding test from above with threshold height λ∗

γ . On the other

hand, according to [7], the UMP (Uniformly Most Powerful) test with size γ for prob-

lem (6) also exists and is the thresholding test from below with threshold height λ∗
1−γ =

σxλ1−γ ( τ
σx

):

Tλ∗
1−γ

(z) =
{

1 if |z| ≤ λ∗
1−γ

0 if |z| > λ∗
1−γ

We also have:

P
[

|z| < λ∗
1−γ

]

≤ γ when |θ | > τ . (8)

For γ < 0.5, it follows from [7] that λ∗
1−γ < λ∗

γ . It is also worth mentioning that γ is

usually set to be small. In practice, γ = 0.001, 0.005, 0.01, 0.05 are typical values. Using

both λ∗
γ and λ∗

1−γ , let us consider the test:

T ∗(z) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if |z| > λ∗
γ

0 if |z| ≤ λ∗
1−γ

?(not decided yet) otherwise

(9)

for testing the hypothesis h0 : |θ | ≤ τ against the alternative one h1 : |θ | > τ . It is

inherited from (7) and (8) that, once the decision has been made by (9), the probability

of false-alarm (PFA) is limited to the specified value γ (i.e. PFA < γ ) and the detection

probability (PD) is guaranteed to be higher than 1 − γ (i.e. PD > 1 − γ ).

In a sequential framework, the test T ∗(z) is firstly carried out to attempt a decision

based on current observation z. If T ∗(z) returns 1 or 0 then the decision is made. The

value returned by T ∗(z) is the index of the accepted hypothesis. Otherwise, the decision

cannot be made yet since current observation z does not provide enough evidence to

either accept or reject any of the two hypotheses. More data are required. The decision is

then postponed until enough evidence has been collected. For AutoPEEP detection, the

process is detailed below.
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Sequential SNT-based AutoPEEP detector

Let us consider K consecutive breaths. Using the same aggregation scheme as in

Section Single-breath detector for each breath, we have:

uk = ftk + wk for k = 1, 2, . . . ,K (10)

and wk
iid∼ N (0, σ 2

w). By averaging over the K breaths, we obtain:

u1:K = ft1:K + w1:K (11)

where:

u1:K = 1
K

K
∑

k=1

uk , ft1:K = 1
K

K
∑

k=1

ftk , w1:K = 1
K

K
∑

k=1

wk .

It is worth mentioning thatw1:K ∼ N (0, σ 2
w,K ) and that σw,K = σw√

K
is strictly decreasing

with the number K of breaths used.

Assuming that the true hypothesis (AutoPEEP/NON-AutoPEEP) remains the same for

K consecutive breaths, the AutoPEEP detection for these breaths amounts to determining

whether or not the average end-expiration flow ft1:K exceeds the specified tolerance τ .

Given level γ , the from-above test for this problem is:

T
λ

(h)
1:K

(u1:K ) =

⎧

⎨

⎩

1 if |u1:K | > λ
(h)
1:K

0 if |u1:K | ≤ λ
(h)
1:K

for testing h0 : |ft1:K | ≤ τ against h1 : |ft1:K | > τ and the from-below test is:

T
λ

(ℓ)
1:K

(u1:K ) =

⎧

⎨

⎩

0 if |u1:K | > λ
(ℓ)
1:K

1 if |u1:K | ≤ λ
(ℓ)
1:K

for testing h′
0 : |ft1:K | > τ against h′

1 : |ft1:K | ≤ τ . The two associated thresholds are thus:

λ
(h)
1:K = σw,Kλγ (τ/σw,K )

and

λ
(ℓ)
1:K = σw,Kλ1−γ (τ/σw,K )

where λ
(h)
1:K > λ

(ℓ)
1:K for any 0 < γ < 0.5.

Summarizing, in a sequential decision framework, the AutoPEEP detection is carried

out as follows. Firstly, the detector tries tomake a decision based solely on the observation

of the first breath, using the test:

T ∗(u1:1) =

⎧

⎪

⎨

⎪

⎩

1 (AutoPEEP) if |u1:1| > λ
(h)
1:1

0 (NON-AutoPEEP) if |u1:1| ≤ λ
(ℓ)
1:1

? (not decided yet) otherwise

If the decision cannot be made yet (i.e. λ
(ℓ)
1:1 ≤ |u1:1| ≤ λ

(h)
1:1), it will be delayed until

the next observation (i.e. u2) is obtained and the test is performed based on u1:2 using

T ∗(u1:2). If the decision still cannot be performed, it will be delayed again until the next

observation, where the test T ∗(u1:3) is used. The process is iterated until the decision is

made. Then the process is restarted for a new sequence of observations.

As shown in Figure 3, both λ
(h)
1:K and λ

(ℓ)
1:K tend to tolerance τ when σw,K → 0 (the proof

will be carried out in a future work which covers all theoretical aspects of Sequential
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Figure 3 Thresholds convergence. This figure illustrates the convergence of the two thresholds in

Sequential SNT framework. This convergence suggests that, in sequential SNT framework, the decision will

probably be made after a finite number of samples are acquired.

SNT). It should also be noted that σw,K −→
K→∞

0. Therefore, it could be expected that

the probability to make a decision is one when K → ∞. However, if K is too high, the

assumption that the same state remains for the considered K consecutive breaths might

no longer hold. Moreover, a high number of breaths to be acquired may yield an unac-

ceptable delay-to-decision. One simple solution is then to limit the number of breaths to

some value M. If M breaths have been observed but no decision has been made, a hard

decision is then performed. To assure the false-alarm rate, threshold λ
(h)
1:M is used. The

hard decision is carried out by:

T
λ

(h)
1:M

(u1:M) =

⎧

⎨

⎩

1 (AutoPEEP) if |u1:M|>λ
(h)
1:M

0 (NON-AutoPEEP) if |u1:M|≤λ
(h)
1:M

The value M must be chosen so that the assumption mentioned above holds valid and

the delay-to-decision is still in an acceptable range. In our experimental settings, we use

M = 10, which corresponds to about 30 seconds of observation in the usual case with a

breathing frequency of 20 [breaths/min].

Phase change detection

Since the detection is performed on the basis of the flow samples at the end of the expi-

ratory phase of each breath, it is required that the end-expirations are precisely retrieved.

As aforementioned, the main role of the Phase change detection/segmentation block is to

provide a detection of the end-expiration for each breath. This can be achieved by detect-

ing the change in flow signal yn from the expiratory phase of the current breath (negative

values) to the inspiratory phase of the next breath (positive values) (c.f. Figure 1). As long
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as the distortion of the signal caused by noise gets involved and may bias the detection, a

smoothed version of the signal can be used. To be simple, the moving average smoothing

(SMA) method can be considered:

ȳn = SMA(yn) = 1

2h + 1

i=n+h
∑

i=n−h

yi

where 2h + 1 is the length of the moving window.

Since the wavelet transform is a powerful processing tool to retrieve irregularities in a

signal, it can be used to carry out the detection of change from the expiratory phase of a

breath to the inspiratory phase of the next one. The wavelet transform is applied on either

the flow signal yn on its smoothed version ȳn. End-expirations are actually negative peaks

in the detail coefficients (high band). Figure 4 shows an example of these peaks. In this

example, the discrete stationary wavelet transform was used and the number of wavelet

decomposition levels was set to K = 3.

The end-expiration detection is performed by thresholding these peaks in the detail

bands of the wavelet transform coefficients. Let us consider the level-2 detail band

for instance. This detail band signal is composed of noise and peaks, which represent

the irregularities in the original flow signal. Since the flow signal is supposed to be in

independent additive gaussian noise and since the wavelet transform is linear, the noise
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Figure 4 Wavelet decomposition of the flow signal. The peaks in detail bands correspond to changes

from inspiratory phase to respiratory phase and vice versa.
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in detail band is also gaussian. Therefore, each coefficient in the detail band can be mod-

eled as yD = fD + xD, where fD is a signal coefficient and xD is gaussian noise. Let σD

be the standard deviation of this noise and let N be the number of coefficients. It was

shown in [10-12] that the universal threshold: λu(N) = σD
√
2lnN can be interpreted as

the noise maximum absolute value when N is large enough. This threshold λu(N) can

also be thought of as the minimum absolute value of the signal (cf. [13]). Therefore, the

problem amounts to testing the peak absolute value with respect to λu(N). This is, once

again, a SNT problem in the sense given by [7] and Section Single-breath detector. The

peaks in the detail band can thus be detected using the test:

TλSNT(yD) =
{

1 if |yD| > λSNT

0 if |yD| ≤ λSNT

with threshold height λSNT = σDλγ (λu(N)/σD) where λγ (ρ) is defined as in Section Sin-

gle-breath detector. Level γ is set to be very small, for example γ = 10−4, 10−5, 10−7,

etc. Since a peak is only one point, the results of the thresholding test should be post-

processed in such a way that consecutive 1s are removed. In particular, in case of

consecutive decisions equal to 1, only the first one will be kept. End-expirations are

negative peaks.

As long as noise standard deviation σD is concerned, it can be estimated using the

same methods as those described in Section Estimation of the noise standard deviation.

Figure 5 gives a typical result of the end-expiration detection obtained by proceeding as

described above.

Estimation

As aforementioned, some estimations have to be made prior to the AutoPEEP detection,

including: the waveform vector (pk) and the standard deviation of the unknown noise. In

the following, these two estimations will be addressed.

Waveform regression to computepk

With regard to Section Single-breath detector, the waveform vector pk is the key which

makes it possible to aggregate multiple end-expiration flow samples into one decision.

This vector pk can be calculated from the regression of the flow signal at the end of the

expiration. Indeed, during the expiratory phase of a breath, the mechanical ventilation

system works based solely on the passive response of the patient lung. Due to the resis-

tance of the airways and the elasticity of human lung, the flow signal during the expiratory

phase of a breath can be modeled by:

y(t) = C − φe−μt , (12)

with φ > 0 and μ > 0, even in presence of AutoPEEP. This model is used to estimate

the referenced waveform at the end of the expiration using a nonlinear robust regression

method. Given a set of N data points {(ti, y(ti)), i = 1..N} where y(ti) is the observation at

instant ti, the non-linear robust regression aims at solving the least square problem:

(C,φ,μ)∗ = argmin
C,φ,μ

N
∑

i=1

ξi
[

y(ti) − (C − φe−μti)
]2

(13)
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Figure 5 End-Expiration Detection usingWavelet transform. This figure illustrates the detection of

end-expirations based on respiratory flow signal: (top) respiratory flow curve obtained from a patient,

(middle) signal in the level-2 detail band of the wavelet transform coefficients and the calculated detection

threshold, (bottom) detection result, where 1s (peaks) represent end-expirations.

where the introduction of weight vector [ ξ1, ξ2, .., ξN ] makes it possible to reduce the

influence of outliers onto the final result. The MATLAB routine nlinfit performs such

a regression task. This routine uses a weighted version of the Levenberg-Marquardt

algorithm [14] to solve the non-linear least squares problem (13). The weights are itera-

tively updated with respect to corresponding residues |y(ti) − (C − φe−μti)|, i = 1..n to

downweight the outliers and therefore reduce their effects on the final regression curve.

Figure 6 shows an example of the flow signal at the end of the expiratory phase and the

regression resulting from the aforementioned non-linear robust method. The signal is

shown to be well-fitted by the model function (12).

Even though only L samples are required to calculate the L-dimensional vector pk , more

samples should be used to achieve a better regression curve. Let Lext (Lext ≥ L) be the

number of samples to be used. Lext is only limited by the length, namely Te (in samples), of

the expiratory phase, i.e. Lext ≤ Te. Regarding the transition between different respiratory

phases, samples at the beginning of the expiration are very sensitive to transition and may

bias the regression. Therefore, only a proportion of the Te samples of the expiratory phase

should be taken into account:

Lext = ⌊αTe⌋

where 0 < α < 1 is the proportion and ⌊.⌋ is the floor function. Proportion α must be

chosen so that Lext = ⌊αTe⌋ ≥ L. Additionally, to avoid the border effect, one might
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Figure 6 Fitness of the model function. An example of the flow signal at the end of an expiratory phase

with its regression curve using the model function in (12). The result firmly shows the relevance of the

considered model function to the regression task.

consider the weighted regression with a weighting scheme that puts more weight on the

middle samples than on the side ones. Figure 7a shows the regression on end-expiration

samples of a flow signal recorded from a patient. In this example, α is set to 0.75 to avoid

the transition effects at the beginning of the expiratory phase. Since it is not so crucial in

the situation experienced in this work, an unweighted regression was employed.

Figure 7 Detection results on clinical data.
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Given the regression at the end of expiration, namely [ ŷtk−Lext+1, ŷtk−Lext+2, . . . , ŷtk ], the

last L values are used to calculate the estimate p̂k for the considered breath:

p̂k =
[

ŷtk−L+1, ŷtk−L+2, . . . , ŷtk
]T

/ŷtk (14)

According to Section Single-breath detector, waveform vector pk concerns the current

(k-th) breath. However, as aforementioned, this waveform vector does not vary much. It

is then sensible to use estimates from previous breaths so as to improve the estimation of

pk . In this respect, the following strategies can be considered to compute the waveform

vector estimate to be used in AutoPEEP detectors:

Static waveform vector: The waveform vector is computed based on the first Nref

breaths right after a verification/tuning session of the clinician. These Nref breaths are

used as reference after validation by the clinician.

pk = 1

Nref

Nref
∑

k=1

p̂k

This waveform vector will be updated each time the machine is tuned or after a

verification session by the clinician. One may also want to update the estimation on a

regular time basis.

Dynamic waveform vector: The waveform vector to be used is the one estimated

from the current breath:

pk = p̂k

Adaptive waveform vector: In this strategy, the waveform vector is updated every

time a new breath is observed. Previous estimates are taken into account with a

forgetting factor μ such that 0 < μ < 1:

pk = 1 − μ

1 − μk

k
∑

i=1

μk−ip̂i

Estimation of the noise standard deviation

Noise is unknown in practice. As long as the noise standard deviation in concerned, it

must be estimated from the observation. In this work, we propose two solutions: one

based directly on the result obtained by waveform regression, whereas the other is based

on an estimation from the wavelet coefficients of the flow signal.

Estimate from regression

By using the regression, the residue can be considered as noise. Therefore, the noise

standard deviation can be estimated directly from this residue. For the k-th breath,

we have:

σ̂k = 1

Lext − 1

√

√

√

√

tk
∑

i=tk−Lext+1

(

yi − ŷi
)2
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To aggregate σ̂ from σ̂k , the same strategies as those proposed for the waveform vector

can be considered.

Estimation fromwavelet coefficients

Studies on nonparametric estimation based on Wavelet Shrinkage have shown that most

of the wavelet coefficients obtained from the first level wavelet decomposition of a piece-

wise smooth signal are of very small amplitude. Only a small number of these wavelet

coefficients, which correspond to signal, are of higher amplitude [12]. This fact allows

the use of robust estimators on the wavelet coefficients to provide noise estimation. One

can consider the MAD (median absolute deviation) [15,16] to accomplish such a task.

The method is usual [12,15,16] and we recall it for readiness sake. Let c1, c2, . . . cN be the

wavelet coefficients obtained from the first level discrete wavelet decomposition of an

N-sample segment of the flow signal y. The estimate σ̂MAD of σ is then provided by:

σ̂MAD = b × medi|ci − medjcj|

where b ≈ 1.4826. Since the noise is central, white and gaussian, the formula is simplified

to:

σ̂MAD = b × medi|ci|

knowing that medici = 0.

In [17], another robust estimator was proposed, namely the d-dimensional adaptive

trimming estimator (DATE). The method is summarized as follows. Let c(1), c(2), . . . , c(N)

be sequence of wavelet coefficients c1, c2, . . . cN sorted by increasing magnitude. Put

mmin = N
2 −

√

N
4(1−Q)

where Q = 0.95. Let m be the smallest integer, mmin ≤ m ≤ N

such that:

|c(m)| ≤ 2.7238 × 1

m

m
∑

k=1

|c(k)| < |c(m+1)|

If such an integer m does not exist, set m = mmin. The estimate σ̂DATE of σ is then

provided by:

σ̂DATE = 1.2533 × 1

m

m
∑

k=1

|c(k)|

It has been shown in [17] that this estimator outperforms the MAD when the number

of outliers increases. The DATE can thus be employed as an alternative to theMADmen-

tioned above in such situation. For the cases considered in this work, because the number

of large wavelet coefficients pertaining to signal remains small, the two estimators yield

similar performance. The MAD estimator is thus adopted for its lower complexity and

higher rapidity.

Results and discussion

Simulations

To illustrate the detection performance of the proposed algorithms, the flow signal was

first synthesized on computer. For each breath, L end-expiration samples were generated.

The waveform vector was supposed to be known and set to pk = p =[ 1, 1, . . . , 1]T . It is

worth mentioning that, by construction, |p1| ≥ |p2| ≥ . . . ≥ |pL| = 1 and, as a result,

σw = σ
‖pk‖ ≤ σ√

L
. The equality happens when and only when pi = 1 for all i = 1..L.
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With regard to noise level σw, by setting pk = p =[ 1, 1, . . . , 1]T , we considered the worst

case where ‖pk‖2 = L and σw = σ√
L
. For sequential SNT-based detector, M was set

to 10 [breaths], which corresponds to about 30 seconds of observation. The tolerance

was empirically set to τ = 2 [l/min] by clinician. The values of ftk were randomly and

uniformly generated between 0 and − τ
1−π

, where π is the proportion of positive cases

(AutoPEEP). Since the false-alarm rate PFA is always restricted to the specified value γ ,

it is more meaningful to plot the detection rate PD versus different values of π , namely

the detection curve, than to present the usual ROC (Receiver Operating Curve). Figure 8

shows detection curves for different noise levels and different values of L. The detection

rate is significantly improved when more samples are aggregated. Of course, the lower

the noise level, the better the detection. In this respect, the Sequential SNT-based detec-

tor also showed higher detection rate while still keeping the false-alarm rate below the

specified value γ .

Emulations with a respiratory system analog

The proposed AutoPEEP detectors were also tested in a more realistic setting in which

the interface between a ventilator and a lungmodel was established. In these experiments,

the respiratory system analog was constituted by a G5 ventilator (Hamilton Medical,

Bonaduz, Switzerland) connected to the ASL5000 computerized lung model (Ingmar

Medical Ltd., Pittsburgh, PA, USA), making it possible to modify respiratory mechanics.

Thirteen sets of parameters (cf. Table 1) for both the lung emulator and the ventilator,

which correspond to various practical situations, were carried out. The tolerance τ = 2

[l/min] was employed again.With respect to this tolerance, among the 13 settings, 7 cases

were reported as AutoPEEP and the other 6 cases were labeled as NON-AutoPEEP, thanks

to an independent clinical analysis from the Intensive Care unit of Brest University Hos-

pital, Brest, France. The detection was performed on the basis of the flow signal captured

by the sensor integrated in the ASL5000 lung model. For each case, about 1.5 minute of

the signal flow was recorded. The corresponding number of breaths varied from 13 to

34, depending on the setting. In total, 323 breaths were recorded. For both the proposed

detectors, the dynamic waveform vector was employed for its simplicity. Level γ was set

to 0.01. The detection results are reported in Table 1. All the 13 cases were successfully

detected by the two proposed methods: the Single-breath SNT-based detector and the

Sequential SNT-based detector. Moreover, in each case, all the breaths were precisely

classified. No detection error was found among the 323 breaths analyzed.

Analysis of clinical data

For further evaluation, the AutoPEEP detectors were tested ex-vivo on various patient

curves. These curves were retrospectively extracted from data files issued from the

Medical Intensive Care Unit of Brest University Hospital, France and from the Institut

Universitaire de Cardiologie et de Pneumologie de Québec, Canada. For each patient

undergoing mechanical ventilation, the flow signal was recorded. All these data were then

mixed up to form a unique dataset. In total, the final dataset contains 1998 breaths from

15 patients with different health conditions and different treatments. The parameters

of the ventilator also varied depending on the situation. According to the retrospective

aspect of the study and to the fact that the files were anonymized, the study was

considered to be in accordance with French legislation by our local ethics committee.
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Figure 8 Detection curves yielded by the two proposed AutoPEEP detectors with different noise

levels. The simulations were carried out with N = 10000 breaths, tolerance τ = 2 [l/min] and level γ = 0.01.

With the extension of SNT in a sequential framework, the resulting detector yields a significant improvement

in detection rate while the false alarm is still limited to the specific value γ .
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Table 1 AutoPEEP detection results provided by the proposed detectors on emulated flow data

Parameters True N. of Det. by SNT c Det. by Sequential SNT c

Id Ventilator a Lungmodel b Label breaths P N Label P N Label

1 PEP=0, Vt=500, f=15, P=0, I:E=1:2 C=80, R=5 N 21 0 21 N 0 21 N

2 PEP=0, Vt=500, f=15, P=0, I:E=1:2 C=30, R=5 N 20 0 20 N 0 20 N

3 PEP=0, Vt=500, f=25, P=0, I:E=1:2 C=80, R=5 P 33 33 0 P 33 0 P

4 PEP=0, Vt=500, f=25, P=0, I:E=1:1 C=80, R=5 P 34 34 0 P 34 0 P

5 PEP=0, Vt=300, f=20, P=0, I:E=1:2 C=80, R=5 N 27 0 27 N 0 27 N

6 PEP=0, Vt=500, f=12, P=0, I:E=1:2 C=80, R=5 N 16 0 16 N 0 16 N

7 PEP=0, Vt=500, f=20, P=15, I:E=1:3 C=80, R=5 N 27 0 27 N 0 27 N

8 PEP=5, Vt=500, f=20, P=0, I:E=1:3 C=80, R=5 N 27 0 27 N 0 27 N

9 PEP=5, Vt=500, f=20, P=0, I:E=1:2 C=120, R=10 P 27 27 0 P 27 0 P

10 PEP=0, Vt=700, f=20, P=0, I:E=1:2 C=120, R=10 P 27 27 0 P 27 0 P

11 PEP=0, Vt=700, f=20, P=0, I:E=1:6 C=120, R=10 P 24 24 0 P 24 0 P

12 PEP=0, Vt=700, f=20, P=0, I:E=1:1 C=120, R=10 P 27 27 0 P 27 0 P

13 PEP=0, Vt=700, f=20, P=0, I:E=1:2 C=140, R=25 P 13 13 0 P 13 0 P

aVentilator parameters include: Positive Expiratory Pressure PEP [cmH2O], air volume Vt [ml], frequency f [breaths/min], pause time P [%], Inspiratory to expiratory time ratio I:E.
bLung model parameters include: compliance C [ml/cmH2O] and resistance R [cmH2O/l/s].
cFor each of the experiments, the AutoPEEP detection provides: the number of breaths detected as AutoPEEP (denoted as P for Positive), the number of breaths detected as NON-AutoPEEP (denoted as N for Negative) and the overall

label for the considered setting.
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The analysis was performed both manually by a set of experts and automatically by

the proposed methods. On the one hand, each breath was carefully screened by two

experts of the domain. They performed a dual analysis, separately, before confronting

their points of view and delivering a final assessment of the data. For each breath of the

dataset, their decision was then regarded as the ground-truth label (AutoPEEP/NON-

AutoPEEP). On the other hand, the proposed detectors were used to predict the label of

every breath of the dataset. The two analyses were carried out independently and anony-

mously. The results were then compared together to evaluate the detection performance

of the proposed methods.

In these experiments, the tolerance was set to τ = 2 [l/min] as before. In this respect,

the dataset includes 1383 breaths with AutoPEEP and 615 breaths with NON-AutoPEEP.

The dataset is somehow unbalanced with the presence of AutoPEEP in 69% of the cases.

For the proposed detectors, level γ was set to 0.01 as usual. Figure 7 presents a typical

case with the regression at end-expiration and the corresponding detection. It can be seen

that the detection algorithm can precisely reveal the true label for all the breaths.

To quantitatively assess the detection performance of the proposed methods, we con-

sidered four usual evaluation measures: Accuracy, Precision, Recall (Sensitivity) and

Specificity. These measures are defined as follows:

Accuracy = TP + TN

TP + TN + FP + FN

Precision = TP

TP + FP

Recall (Sensitivity) = TP

TP + FN

Specificity = TN

TN + FP

where: TP (resp. TN) is the number of true positives (resp. true negatives), defined as

the number of breaths with (resp. without) AutoPEEP that are correctly predicted; FP

(false positive) is the number of breaths without AutoPEEP that are falsely predicted as

AutoPEEP, and FN (false negative) is the number of breath with AutoPEEP that are not

detected. These four values TP, FP, TN , and FN form the so-call confusion matrix of

the detection. In terms of the four aforementioned evaluation measures, the performance

results for the two proposed detectors are reported in Table 2. The results show that

both the detectors worked very well on patient data with an accuracy higher than 93%, a

precision higher than 99%, a recall (sensitivity) higher than 90% and a specificity higher

Table 2 Detection performance with flow data from patients

Measure Single-breath SNT-based detector Sequential SNT-based detector

Accuracy 93.09% 93.09%

Precision 99.44% 99.37%

Recall 90.53% 90.60%

Specificity 98.86% 98.70%

The experiments were carried out with τ = 2[l/min]. For both the detectors, the level was set to γ = 0.01, which corresponds to

an average of 1 false-alarm per 5 minutes (with the usual breathing frequency of 20 [breaths/min]).
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than 98%. For the considered dataset, the two proposed AutoPEEP detectors provided

similar results. It is worth mentioning that, by reducing the noise impact, the Sequential

SNT-based detector is aimed at improving the detection performance of the Single-breath

detector in case the latter fails to reveal ‘twilight region’ AutoPEEP, i.e. AutoPEEP with an

end-expiration flow value near the given tolerance τ . Thence, the higher the number of

twilight-region AutoPEEPs in the dataset, the more significant the performance improve-

ment can be observed. However, in the considered clinical dataset, the number of twilight

region AutoPEEPs, which are also difficult for the clinician to analyze, was very limited.

Therefore, no significant difference in detection performance could be seen. However, the

use of the Sequential SNT-based detector is recommended for better performance and

robustness.

Conclusion

To the best of our knowledge, this is the first work on the automatic detection of

AutoPEEP for continuous monitoring of the patient-ventilator interface during controlled

mechanical ventilation. With the introduction of the waveform vector to aggregate mul-

tiple samples into a unique decision, the SNT has been successfully applied to provide

a good AutoPEEP detector. Finally, we have extended SNT in a sequential framework,

namely Sequential SNT. The resulting sequential AutoPEEP detector has been shown to

yield high detection performance. Besides, the proposed algorithms have very low com-

plexity and require very little computational power. The platform can then be deployed

as a real-time functional block.

Although the algorithm is proposed for the detection of AutoPEEP during controlled

mechanical ventilation, it could be extended to assisted mechanical ventilation and pres-

sure support ventilation since the algorithm investigates the expiratory part of the flow

curve, which mainly depends on characteristics of the patient rather than on the ventila-

tory settings and mode of ventilation. The platformmay also be extended to the detection

of other types of ventilatory abnormalities that are deviations of the observed signal from

some reference. In this respect, other signals such as pressure and volume curves could

also be taken into account.

For the present work, by using the retrospective data files with a double-blinded and

dual expert analysis, we were able to assess whether the system automatic analysis was

concordant with that of the experts. In the next validation step, continuous and prospec-

tive recordings of the curves will be carried out to get better insight into cases where any

disagreement between the proposed system and the therapist might occur. Furthermore,

it is also worth performing a semi-closed-loop analysis, in which the therapist super-

vises, validates the decisions yielded by the proposed platform and adjusts the ventilatory

parameters to correct any possible abnormality.

The deviation detection approach proposed in this paper is very general and could be

used in many other applications, including fault detection and structural health monitor-

ing. A theoretical general approach in Sequential SNT should also be investigated.
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