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Abstract

The vasculature of the kidney is a heterogeneous structure, whose functional integrity is essential for the regulation

of renal function. Owing to the importance of the endothelium in vascular biology, chronic endothelial alterations

are therefore susceptible to impair multiple aspects of renal physiology and, in turn, to contribute to renal fibrosis.

Although systemic endothelial dysfunction is undoubtedly associated with chronic kidney disease, the role of the

renal endothelium in the initiation and the progression of renal fibrosis remains largely elusive. In this article, we

critically review recent evidence supporting direct and indirect contributions of renal endothelial alterations to

fibrosis in the kidney. Specifically, the potential implications of renal endothelial dysfunction and endothelial

paucity in parenchymal hypoxia, in the regulation of local inflammation, and in the generation of renal

mesenchymal cells are reviewed. We thereafter discuss therapeutic perspectives targeting renal endothelial

alterations during the initiation and the progression of renal fibrogenesis.

Introduction

The kidney receives approximately 20% of the cardiac

output, and many essential functions of the organ are

supported by the complex organization of renal micro-

vasculature. Therefore primitive or secondary pathologi-

cal changes in arterioles, glomerular capillaries, vasa

rectae and/or peritubular capillaries are susceptible to

impair different aspects of renal physiology and, in turn,

to contribute to the progression of chronic kidney dis-

ease (CKD). Endothelial cells constitute the inner lining

of the vessels and are a cornerstone of vascular homeos-

tasis. Besides its classical barrier function, the endothe-

lium is a key player in physiological processes such as

the regulation of vasomotor tone, the control of tissue

inflammation and of thrombosis [1,2]. Within the renal

microvasculature, the endothelium is characterized by a

remarkable structural heterogeneity, related to the dif-

ferent and highly specialized functions of endothelial

cells, from the preglomerular arterioles to the peritubu-

lar capillary bed.

The term “endothelial dysfunction” has been used to

define diverse syndromes characterized by changes in dis-

tinct endothelial functions, related to a cellular phenotypic

switch from a quiescent to an activated state. No clear

definition of endothelial dysfunction has been established

so far, and this multifaceted disorder actually encompasses

a spectrum of disturbances in vasomotor responses,

antithrombogenic properties, vascular permeability, leuko-

cyte recruitment and endothelial cell proliferation. In the

clinical setting endothelial dysfunction may be detected

non-invasively by functional tests evaluating the vasomo-

tor effects of pharmacological substances such as acetyl-

choline, or of flow-mediated vasodilation after transient

ischemia on distal conduit arteries [3,4]. Considerable

interest has also been focused on the identification of cir-

culating markers associated with endothelial dysfunction.

These include endothelin 1 (ET-1), metabolites of NO

(nitrites, nitrates), markers of fibrinolysis and anticoagu-

lant activity (plasminogen activator inhibitor 1, soluble

thrombomodulin), and soluble endothelial adhesion mole-

cules (s-E-selectin, s-ICAM, s-VCAM) [5]. More recently
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endothelial progenitor cells have been proposed as alterna-

tive markers of endothelial cell dysfunction [6].

Cardiovascular outcomes are the major cause of death in

end-stage renal disease patients [7]. During the past dec-

ade endothelial dysfunction has emerged as an important

intermediate factor in CKD. Indeed, with the decreasing

glomerular filtration rate, the vasculature is progressively

exposed to a burden of pathogenetic conditions responsi-

ble for severe functional changes in the endothelium, such

as reactive oxygen species (ROS), assymetrical dymethylar-

ginine (ADMA), homocysteine or glycosylated end pro-

ducts [8-11]. We and others have identified ADMA, an

endogenous inhibitor of NO synthase (NOS) elevated in

CKD patients, as a mediator of endothelial dysfunction,

oxidative stress and fibrogenesis [12,13]. Oxidative stress

plays an important role in cellular responses to injury, and

is a central process in the pathophysiology of endothelial

dysfunction. In endothelial cells, ROS can be generated by

uncoupled eNOS, which normally produces NO, and lead

to the production of oxygen peroxide and subsequent

modifications of the cellular phenotype [2,14].

Although the recognition of a systemic endothelial

disease related to CKD has led to significant research

interest, fewer studies have specifically focused on

endothelial alterations within the diseased kidney. We

have shown that pharmacological NO deficiency led to

ET-1 production in the injured renal endothelial cells

with direct profibrotic consequences in the kidney [15].

Recent evidence provides novel insights on the patho-

physiological role of intrarenal endothelium in the pro-

gression of CKD (Figure 1). In this review we analyze

direct and indirect consequences of endothelial altera-

tions on hemodynamics, inflammation and fibrogenesis

in the kidney, and discuss therapeutic issues targeting

this underestimated culprit in renal fibrosis.

Review

Renal endothelial injury contributes to parenchymal

hypoxia

Chronic hypoxia mediates the progression of renal fibro-

sis, even from the early stages of CKD [16]. Interstitial

fibroblasts, epithelial cells and endothelial cells develop

different responses to hypoxia, which may directly or

indirectly contribute to profibrotic mechanisms. Human

renal fibroblasts exposed to experimental hypoxic condi-

tions increase collagen production and decrease the

expression of extracellular matrix remodeling enzymes

[17]. Aerobic oxidative metabolism-dependent epithelial

cells physiologically adapt to a reduction in oxygen ten-

sion by increasing HIF (hypoxia inducible factor)-depen-

dent signaling, which in turn promotes cell survival [18].

In chronic hypoxic conditions these tubular adaptive

mechanisms may be overrun and cell function and viabi-

lity compromised.

Although the endothelium receives direct oxygen sup-

ply from red blood cells, global or regional hemodynamic

disturbances may also be responsible for endothelial

hypoxia and activate the endothelial cells. In a rat model

of renal artery clamping with rescue by non-injured

endothelial cells, Brodsky and colleagues identified acute

endothelial dysfunction as a contributor to the hemody-

namic “no-reflow” phenomenon in post-ischemic kidneys

[19]. In this setting, endothelial activation and subse-

quent adhesion of leukocytes to the endothelium was

believed to create hemodynamic resistances which reduce

regional blood flow.

Peritubular capillaries constitute the major network sup-

plying oxygen to the nephrons. Therefore capillary func-

tional alterations, by reducing blood flow or leading to

subsequent reduction of vascular density, are susceptible

to be a major determinant of kidney disease progression.

Consistently, studies on human biopsies have associated

microvascular rarefaction with the progression of renal

failure, while evidence for a pathogenetic role of capillary

endothelial alterations in CKD progression via chronic

tubulointerstitial hypoxia stems from experimental mod-

els. In renal biopsies of CKD patients, Choi and colleagues

have demonstrated that morphological alterations of peri-

tubular capillaries were strongly associated with para-

meters of tubulointerstitial injury [20]. Similarly a

histomorphological evaluation of cadaveric kidney allo-

grafts performed at the time of transplantation showed

that sustained kidney injury is associated with a reduction

in Von Willebrand Factor staining on peritubular capil-

laries (but not on renal arteries or arterioles) [21]. In

experimental renovascular disease therapeutic prevention

of vascular rarefaction by intrarenal administration of

VEGF leads to the preservation of renal blood flow and a

reduction in subsequent fibrosis [22]. Together with sev-

eral other studies, these results suggest straightforward

pathophysiological consequences of peritubular endothe-

lial alterations on both short- and long-term aspects of

renal function.

Interlobular arteries and afferent arterioles are the major

site for renal blood flow autoregulation. Since endothelial

cells control vasomotor tone in these resistance vessels, in

particular via NO and endothelium-derived hyperpolariz-

ing factors, alterations of the endothelium may also contri-

bute to glomerular hemodynamic disturbances and to

downstream hypoxia in the kidney. Fawn-Hooded hyper-

tensive (FHH) rats present defective renal blood flow auto-

regulation and develop progressive kidney failure with age.

Ochodnicky and colleagues have studied endothelium-

dependent vasodilation in this inbred model of sponta-

neous renal disease and identified that endothelial

dysfunction in the renal artery precedes the development

of kidney damage [23]. Although the mechanistic explana-

tions for these results presumably differ from those related
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to chronic peritubular endothelium injury, this study

establishes that the integrity of preglomerular endothelium

is required for renal vascular homeostasis.

Overall, current evidence underlines renal endothelial

hypoxia as the actor of an important profibrotic vicious

circle in CKD progression (Figure 1).

Endothelial functional alterations promote tissue

inflammation

Exaggerated inflammation has long been identified as a

major player in acute and chronic renal diseases, including

allograft rejection, glomerulonephritis, ischemia-reperfu-

sion or cisplatin-induced nephropathy. The endothelium

is at the interface between blood and circulating cells on

the one hand, and tissue on the other hand. In physiologi-

cal and pathological conditions, endothelial cells integrate

mechanical stimuli related to local hemodynamics and

cytokinic stimuli such as IFN-gamma, IL-1beta or TNF-

alpha. The latter cytokines are able to induce the expres-

sion of distinct patterns of adhesion molecules on the

luminal surface, thereby promoting a site- and cell-specific

recruitment of circulating leukocytes. Schematically leuko-

cyte recruitment is a three-step process. Leukocytes first

roll on the activated endothelium, via the interaction

between selectins (E-selectin, P-selectin) and leukocyte

surface antigens. Firm adhesion is then facilitated by the

endothelial expression of ICAM-1 and VCAM-1, which

also promote subsequent transmigration of the leukocytes

into the tissue, together with PECAM/CD31.

In the kidney pathophysiological implications of

endothelial selectins and adhesion molecules have been

demonstrated in a large variety of clinical settings and

experimental models. In an ischemic model of renal failure,

P-selectin blockade with monoclonal antibodies improved

renal function and the administration of fucoidan, an oligo-

saccharide which non-specifically inhibits P-selectin,

increased renal blood flow [24]. Similarly, transgenic mice

lacking basigin/CD147, a ligand for E-selectin, exhibited

reduced kidney damage after ischemia-reperfusion as

compared to control mice, indicating a critical role for

E-selectin in neutrophil recruitment in this setting [25]. In

rodents, the injection of allo-immune nephrotoxic serum

induced the expression of endothelial selectins and leuko-

cyte rolling in glomeruli and capillaries, an event that was

significantly blunted by fucoidan in postcapillary venules

[26,27].

By using anti-ICAM-1 monoclonal antibodies in rats

and ICAM-1 transgenic mice, Kelly and colleagues have

shown that this adhesion molecule plays an early and

important pathogenetic role in renal ischemia-reperfu-

sion, via neutrophil infiltration, with both functional and

structural consequences on the kidney [28,29]. Adhesion

of circulating cells to the endothelium of renal vessels

may also contribute to potentially severe hemodynamic

alterations, which can further aggravate tissue injury.

Overall these studies underline the importance of

endothelial activation in the genesis of local inflammation

at early stages of inflammatory kidney diseases.

Figure 1 Schematic view of the pathophysiological role of endothelial activation in chronic kidney disease progression. (ADMA

assymetrical dymethylarginine; ROS reactive oxygen species; AGE advanced glycation end products; TGF transforming growth factor; TNF tumor

necrosis factor; IL interleukin; IFN interferon; EndMT endothelial-mesenchymal transition; Cx40 Connexin 40: Cx43 Connexin 43.)
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Gap-junctional intercellular communication is essential

in the coordination and integration of microvascular func-

tion by the endothelial cells in a very complex manner.

Gap junctions are composed of intercellular channels

formed by connexins (Cx), which allow the direct

exchange of ions, small metabolites and other second mes-

senger molecules between adjacent cells [30]. Each type of

Cx-made channel has a unique inherent gating property,

or permeability to various molecules. Therefore, Cx com-

position of gap junction channels appears to determine

selectivity among second messengers [31].

Alterations of the expression of endothelial Cx have

been associated to the development of chronic and acute

vascular inflammatory diseases [32]. For example, a

decrease in the expression of Cx40 has been reported in

the endothelial layer covering atherosclerotic lesions in the

aorta of hypercholesterolemic mice. Mice in which Cx40

was specifically deleted from the endothelium showed

enhanced monocyte infiltration at the very early stages of

the disease [33]. In contrast to Cx40, Cx43 expression

seems to be upregulated in the dysfunctional endothelium

and endothelium-specific deletion of Cx43 in mice greatly

reduced the TNF-a-induced leukocyte adhesion and

transmigration [34]. It has also been recently suggested

that this Cx may serve as a conducting pathway by ampli-

fying Ca2+-signalling between endothelial cells to spread

inflammatory signals within the lung capillary network

[35]. In addition, Cx43+/- mice were protected against

chronic or acute inflammatory disease, as they displayed

reduced inflammatory cell recruitment at the injured site

[32]. Interestingly, in accordance with the above men-

tioned studies, we recently observed a marked increase of

the expression of Cx43 in the endothelium of peritubular

and glomerular capillaries at the early stages of hyperten-

sion-induced renal disease in mice. The Cx43 expression

pattern was paralleled closely by that of adhesion markers

such as VCAM-1 and ICAM-1, known to play a major

role in the recruitment of inflammatory cells [36].

Although further work is required to clarify the implica-

tion of Cx in renal inflammation, the Cx hypothesis may

be of interest in the recruitment of inflammatory cells in

the kidney, as several studies showed an important role of

these proteins in the inflammatory response.

Endothelial-mesenchymal transition: a new player in renal

fibrosis?

The origin of renal fibroblasts is an evolving and some-

what controversial issue [37-39]. Acquisition of a

mesenchymal-like phenotype by tubular epithelial cells,

named epithelial-mesenchymal transition (EMT), has

been largely studied in renal fibrosis over the past decade.

More recently several research teams have suggested that

endothelial cells may also acquire functional and struc-

tural characteristics of mesenchymal cells after tissue

injury. This so-called endothelial-mesenchymal transition

(EndMT) had previously been recognized in normal con-

ditions, particularly during embryonic development of

the heart. Increasing evidence now argues that EndMT

may play an additional role in a variety of diseases,

including in kidney injury [40].

In vitro, endothelial cells of different origins can acquire

a mesenchymal phenotype, spontaneously or after stimula-

tion by TGF beta. In a model of cardiac overload in Tie2-

Cre;ROSA-STOP-lacZ transgenic mice, the presence of

markers usually expressed by myofibroblasts (FSP-1, alpha

SMA) was partially co-localized with the endothelial fate

tracer lacZ, suggesting the endothelial origin of heart myo-

fibroblasts [41]. Interestingly mice treated with human

recombinant BMP-7 appeared to be protected against

both EndMT and the development of cardiac fibrosis.

During the past 4 years, an EndMT-like process has also

been evidenced in the kidney in several independent

experimental models (unilateral ureteral obstruction, phar-

macological inhibition of eNOS, streptozotocin-induced

nephropathy, Col4a3-deficient mice) [42-44]. We have

also evaluated the modifications of endothelial-cell pheno-

type during the progression of angiotensin II-induced

nephropathy in Sprague Dawley rats, and observed a lim-

ited and focal co-expression of FSP1 with the endothelial

marker RECA1, which suggests the presence of EndMT in

peritubular renal capillaries in hypertensive nephropathy.

Interestingly, features consistent with EndMT were

observed at early stages of the renal disease, before the

onset of significant proteinuria or fibrosis (Guerrot et al.,

unpublished data). Recently, Basile and collegues have

analyzed the phenotypic alterations of endothelial cells

after ischemia-reperfusion in Tie2-Cre;YFP transgenic

mice [45]. The results of this study suggested that the

reduced density of endothelial cells following renal ische-

mia may be due, in part, to EndMT.

Together, these data identify EndMT as a novel aspect

of endothelial dysfunction and show that EndMT may be

associated with kidney disease. Furthermore, they suggest

that endothelial cells which acquire mesenchymal charac-

teristics may directly contribute to early pathogenetic

mechanisms of fibrogenesis. However, owing to the het-

erogeneity of renal endothelial cells, further studies would

be of major interest to better understand the relative

importance, the molecular mechanisms and local conse-

quences of EndMT, especially with respect to the different

compartments of renal microvasculature.

Targeting renal endothelial dysfunction as an innovative

therapeutical approach in renal fibrosis

Since current evidence underlines the importance of

endothelial alterations in CKD progression, the prevention

of renal endothelial injury emerges as a promising treat-

ment strategy in kidney diseases. Depending on the clinical
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setting a reduction of endothelial dysfunction is suscepti-

ble to alleviate inflammation, hemodynamic disturbances,

hypoxia and extracellular matrix synthesis. In renal experi-

mental models, interesting studies have suggested benefi-

cial effects of therapies based on selectin inhibitors, ET-1

antagonists or treatments increasing NO bioavailability

[15,46-48]. These strategies all target distinct aspects of

endothelial pathophysiology, thereby reducing specific

consequences of renal endothelial functional alterations.

In a different approach several teams have also shown pro-

mising results when promoting replacement of the injured

endothelium, either by increasing resident endothelial cell

proliferation, stimulating endogenous progenitor mobiliza-

tion or directly injecting autologous endothelial progenitor

cells into the kidney [49-51].

An important characteristic of endothelial activation in

kidney diseases is de novo expression of surface antigens.

Importantly, critical modifications of the endothelial phe-

notype predominantly occur in the injured region. There-

fore, specifically targeting the activated endothelial cells

may allow selective delivering of drugs to the diseased vas-

cular bed. This strategy has proven to be efficient in preli-

minary studies using liposomes conjugated to anti-E-

selectin antibodies, to address dexamethasone in a model

of allo-immune nephrotoxic serum-induced renal disease

[27,48].

Conclusion

Endothelial dysfunction is a multifaceted disorder that

plays a central role in complications related to kidney dis-

eases. Beside the well established systemic endothelial dys-

function associated with CKD, recent evidence highlights

direct implications of renal endothelial activation in fibro-

genesis. Together these data suggest that the altered renal

endothelium may be a promising therapeutic target and

prompt further studies to evaluate novel specific strategies

for the treatment of CKD progression. Specifically, the

possibility of targeted delivery based on endothelial altera-

tions opens novel therapeutic avenues for the treatment of

renal diseases. Future research directions may also include

inhibition of EndMT, preservation of endothelium-derived

hyperpolarizing factors, pharmacological maintenance of

eNOS activation in altered shear stress conditions, and

silencing of endothelial proinflammatory genes.
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