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The streak artifacts caused by metal implants degrade the image quality and limit the applications
of CT imaging. The standard method used to reduce these metallic artifacts often consists of
interpolating the missing projection data but the result is often a loss of image quality with
additional artifacts in the whole image. This paper proposes a new strategy based on a three-
stage process: (1) the application of a large-scale non local means filter (LS-NLM) to suppress
the noise and enhance the original CT image, (2) the segmentation of metal artifacts and metallic
objects using a mutual information maximized segmentation algorithm (MIMS), (3) a modified
exemplar-based in-painting technique to restore the corrupted projection data in sinogram. The
final corrected image is then obtained by merging the segmented metallic object image with the
filtered back-projection (FBP) reconstructed image from the in-painted sinogram. Quantitative and
qualitative experiments have been conducted on both a simulated phantom and clinical CT images
and a comparative study has been led with Bal’s algorithm that proposed a similar segmentation-
based method.

1. Introduction

Metallic objects like dental implants, surgical clips, or steel-hip prostheses lead to severe
shadow and streak artifacts in CT images that superimpose the structures of interest and
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deteriorate image quality. The reason is that metallic objects have a very high density
in the human body, which creates a barrier to the transmitted x-ray beam during CT
examination. It results a lack of data in the projection data that lead to the production of
streak artifacts in CT images [1, 2]. This photo deficiency caused by metallic object would
become more severe under low dose scanning [2]. In the last decade, many approaches have
been proposed to reduce these artifacts. These methods can be roughly classified into iterative
and interpolation-based methods.

Iterative algorithms operate in a feed-back mode in both the image and projection
data spaces [3–5]. However, three major difficulties can be pointed out for that methods: (1)
the well-formatted original raw projection data are often unavailable because the leading
manufacturers of CT imaging devices are often reluctant to provide it; (2) the involved high
computational cost of iterative algorithms often requires an implementation on specialized
processor units; (3) the iterative algorithm still need to be combined with sinogram correction
method when the metal artifacts are rather severe.

Interpolation-based methods correct metal artifacts directly in sinogram space.
Compared to iterative algorithms, these methods are less computationally expensive and
can be implemented without the availability of the original raw projection data. They
aim at identifying the corrupted segments in the sinogram and interpolating the data
from noncorrupted neighboring projections. Some of these methods add other steps to
improve the sinogram correction accuracy and design a four-stage process that consists of
image enhancement, metallic object segmentation, image forward projection, and sinogram
in-painting, final image reconstruction using FBP [6–12]. It is worth notable that the
normalization operation suggested in [9, 10] has been considered to give a more accurate
attenuation estimation.

We propose a new method to suppress the metal artifacts and improve the sinogram
completeness that is based on the above described scheme. The major contribution states at
the image enhancement, segmentation, and sinogram impainting levels with, respectively,
the application of a large scale nonlocal means filter (LS-NLM), a mutual information
maximized segmentation (MIMS), and a modified exemplar-based in-painting technique.
The description of this method is given in Section 2. Comparative experiments with
the method proposed by Bal and Spies in [12] are then provided in Section 3. This
method was chosen for comparison because it made use of a similar strategy to address
the corrupted sinogram problem, that is, Tensor filtering, k-means clustering technique-
based segmentation, and linear interpolation-based sinogram in-painting. It will be referred
thereafter in this paper by “Bal’s algorithm.” We will show that, compared to this algorithm,
our method provides a better sinogram correction. Visual and quantitative analysis are also
reported to highlight this superiority. A CUDA parallelization technique has been applied
to accelerate the calculations of the patch distances involved in the image enhancement and
sinogram inpainting steps, respectively.

2. Method

The proposed sinogram completeness algorithm is divided into four major stages.
Step 1 (prefiltering). The original CT image including metal artifacts is enhanced with the
edge-preserving LS-NLM filter.

Step 2 (image segmentation). The metallic artifacts and objects are respectively extracted
using the MIMS algorithm with a partitioning of the image into different regions.
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Step 3 (sinogram inpainting). Once the metallic objects and artifacts have been extracted,
the segmented artifact image is forward projected to determine the projection data in the
sinogram space which are affected by the artifacts. A subtraction is performed between
the corrupted sinogram and the original one. The missing projection data in the subtracted
sinogram are then restored using a modified exemplar-based in-painting technique.

Step 4 (backward projection of the in-painted sinogram and image correction). The artifact
compensated image is then reconstructed from the in-painted sinogram using the FBP
algorithm. Afterward, the final corrected image is obtained by inserting the previously
segmented metal component into the reconstructed image.

Of all the four steps, Step 2 and Step 3 are the two key steps in which the damaged
sinogram data are estimated and corrected. The above stages are detailed in the following
subsections with the flowchart displayed in Figure 1.

2.1. Image Enhancement

This first stage aims at applying an edge-preserving filtering operation to smooth and denoise
the streak artifacts in the original CT images. The LS-NLM filter has been proven to be
efficient for image denoising with edge preservation. It was, for instance, applied with success
to suppress mottled noise in low-dose abdominal CT images [13]. The principle is to replace
the value of a pixel by the weighted average of pixels located in a neighbourhood window
of size N. Each weight expresses the similarity between the central pixel in the window and
each neighboring pixel and is given by the pair-wise difference between patches surrounding
each pair of considered pixels [14, 15].

Let fO and fF , respectively, denote the images before and after filtering, the filter
output is given by

fF
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∑

j∈Ni
wijf

O
j

∑
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wij
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where fO
i is the pixel located at the center of the neighborhood N and fO

j the pixels located in

the neighborhood of fO
i . wij denotes the weight between pixels fO

i and fO
j and is calculated as

a similarity measure between the two patches si and sj surrounding each pair of pixels i and
j in the neighbourhood Ni, respectively. The decay parameterh acts as a filtering parameter.
In (2.2), a Gaussian kernel of standard deviation α is used to take into account the distance
between the central pixel and other pixels in the patch. The LS-NLM filter involves working
with a large-size neighborhood N and a number of size patches s equal to the number of pixel
in the neighborhood N, which implies high costs for calculating the distance between each
patch pair in each neighborhood N. To accelerate the computation, a GPU parallelization
using the CUDA framework was applied for the original pixel-wise processing based on [16–
18].



4 Mathematical Problems in Engineering

Original image Pre-filtered image

Segmented metal
artifacts

Segmentated metal
part

Original sinogram
Sinogram for the
metal artifacts

Artifact corrected image

Subtracted sinogram Inpainted sinogram

FBP reconstructed image

+

Figure 1: Flowchart of the proposed correction method.
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2.2. Image Segmentation

The MIMS method is based on the maximum mutual information (MMI) and allows
determining the class number n based on the difference of mutual information (DMI) [19].
The mutual information MI(A,B) between image A and B is defined by

MI(A,B) = H(A) +H(B) −H(A,B), (2.3)

where H(A) and H(B), respectively, denote the entropies of the images A and B, and H(A,B)
the mutual entropy. Based on [15, 16], the MI(A,B) can be rewritten as the joint probability
density distribution of images A and B:

MI(A,B) =
∑

P(A,B) log
P(A,B)

P(A)P(B)
, (2.4)

DMIn
(

fF
)

=
MI

(

fF , Sn

)

− MI
(

fF , Sn−1

)

MI
(

fF , fF
) , (2.5)

where P(A), P(B) are the probability density distribution of A and B, respectively, and
P(A,B) the joint probability density function. P(A), P(B), and P(A,B) can be computed
from the histogram quantization [20]. Based on [18], in (2.5), MI(fF , Sn) is the normalized
mutual entropy between the image fFand the current image Sn segmented into n classes,
and DMIn(f

F) the normalized difference between the entropies MI(fF , Sn) and MI(fF , Sn−1).
When the class number increases, DMIn(f

F) decreases while MI(fF , Sn) converges towards
MI(fF , fF). This convergence is reached when DMI becomes smaller than a specified
threshold ε. A local optimality can be obtained when DMI converges towards a local
minimum while the mutual entropy synchronously reaches its maximum [19]. MIMS
implementation only requires to set the maximum class numbers MCN (MCNa and MCNm

for the segmentations of artifacts and metals, resp.) and the threshold ε. A description of
the algorithm is given in Figure 2. The filtered image fF is classified into n classes by using
an intensity threshold vector Gk

n (k being the kth iteration and n referring to the threshold
number). The thresholds in Gk

n and the class centers can be automatically computed within a
simulated annealing- (SA-) based optimization process [21].

2.3. Sinogram In-Painting

The output of the MIMS algorithm provides the segmented metal artifact and object
images. We forward projected the segmented metal artifact image into the sinogram domain,
subtracted then the original sinogram (built from the original image that includes the metallic
objects) with the metal artifact sinogram to delete the corrupted projection data, and applied
an in-painting technique on the subtracted sinogram to restore the missing projection data.
The proposed in-painting technique refers to a modified exemplar-based in-painting method
to find the best matched sinogram patch for the restoration of the missing projection data
[22, 23].

Let consider the following hold.

(1) The splitting of the subtracted sinogram into two regions: Ω the region to be filled
(in which data are missing) and θ the region where the information is complete.
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Figure 2: Flowchart of the MIMS algorithm: J corresponds to MIn(f
F , Sn) and Gk

n is the intensity threshold
vector for the kth iteration with current class number n. fF refers to the filtered image at the previous
stage.

(2) A patch Pp centered on each pixel p located in the region Ω at the border of the
frontier between the two regions Ω and θ so that the patch Pp includes a certain
number of pixels belonging to θ.

(3) A set of patches Pq centered on each pixel q of the region θ.

Then the patch Pp is compared with each patch Pq using the following similarity
metric:

d
(

p, q
)

= ‖Pp − Pq‖, (2.6)

where the distance d(p, q) is calculated between the corresponding pixels in patches Pp and
Pq that belong to the region θ. Pp and Pq are of the same sizes, and ‖ · ‖ denotes the Euclidean
distance between them. The patch Pq that minimizes this distance is selected and its contents
are copied into Pp to restore the missing pixels of Pp that are located in the region Ω. An
automatic region filling process is conducted based on [22] that introduces a filling order of
the pixels located in the region Ω. It goes though the iteration of a three-stage process for each
pixel.

(1) The computation of priority for all the patches Pp whose central pixels p are located
in region Ω but just behind the border line of θ. The priority is computed with the
following function Pr(p) for each of the pixels p:

Pr
(

p
)

= λC
(

p
)

+ (1 − λ)D
(

p
)

, (2.7)

where D(p) and C(p) are, respectively, called data and fidelity term. The latter
one is introduced to quantify the number of points, surrounding the target pixel
p, that are known or have already been in-painted. This term tends to privilege
those patches that have more pixels from the known region θ. D(p) is given by the
scalar product between the vector normal to the front and the maximum gradient
orientation at point p. Its objective is to encourage linear structures to be processed
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first against high curvature line. λ is a weighting coefficient (0 < λ < 1) that controls
the balance between C(p) and D(p). Details of calculus of C(p) and D(p) can be
found in [22].

(2) The choice of the pixel p with the highest priority (calculated by (2.7)) and
the search for the best match between the patch Pp and the set of patches Pq -
determined by the similarity metric (2.6). Then, the pixels of patch Pp located in
the region Ω are then restored with the corresponding known pixels of the patch
Pq.

(3) The updates of the fidelity and data terms for pixels of Pp that have been filled and
are afterward located just behind the border line of θ.

In practice, to increase the accuracy in the in-painting process, the size of patch Pp for in-
painting is in fact set smaller than when applying the search for the best match in (2.6).

3. Experiments

Experiments were conducted both on a simulated phantom and clinical CT images. All the
images have a size of 512 × 512. Clinical CT datasets were acquired from a multidetector
row CT unit with 16 detector rows (Somatom Sensation 16; Siemens Medical Solutions).
The scanning protocol was 100 mAs, 120 kVp, 5 mm slice thickness and the spatial resolution
was 0.457 mm2. The images were reconstructed with a FBP algorithm using a convolution
kernel “B40f.” Here, convolution kernel is used to control the smoothing effect in CT images
for Siemens Somatom Sensation 16 system, and B40f is the routine convolution kernel for
brain CT reconstruction. Figures 3(a), 3(b), and 3(c) display the three original clinical CT
images that include metallic artifacts. The first dataset depicts a chest image in which metallic
artifacts come from a metallic suture material. The two other datasets refer to a brain image
where the metallic artifacts originate from golden earrings. A phantom image including
metallic artifacts was also simulated to allow quantitative comparisons. It consists of a
cylindrical metallic insert incorporated in a cylindrical water container (Figure 4(a)). The
phantom was simulated from an artifact-free phantom CT image (Figure 4(b)) applying
the following intensity settings: air: 0; square container: 500; cylindrical water receptacle:
3000, water: 1000. Subsequently, we name the images in Figures 3(a), 3(b), 3(c), and
4(a), ClinicalImage1, ClinicalImage2, ClinicalImage3 and PhantomImage, respectively. We
applied a parallel geometry for the forward and backward projection operations involved
in the metallic artifact reduction algorithm. This algorithm has been written in C language,
MATLAB (release R2006b), and NVIDIA CUDA libraries. It was then run on a PC with an
Inter Core i5 processor, 2.68 × 4 GHZ, 6 G RAM, and GPU (NVIDIA GTX465).

We compared our method with Bal’s algorithm in [12] which made use of a similar
strategy to reduce the metal artifacts.

(1) A linear structure tensor (LST) filtering proposed in [24] is applied to reduce noise
and smooth the artifacts in the original image with artifacts. Three parameters
needed to be sets: the mask size υ, the scaling factor σ0, and the relationship
between width and length of Gaussian filter.

(2) A cluster-based K-means method to segment the metallic objects. This algorithm
requires a suitable setting of the class numbers and the initial center of each cluster.
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(a) (b) (c)

Figure 3: Clinical CT images including metal artifacts. (a) ClinicalImage1 is a chest image with artifacts
caused by metallic suture material; (b) ClinicalImage2 is a brain image with artifacts caused by one golden
earring; (c) ClinicalImage3 is a brain image with artifacts caused by two golden earrings. Note that the
image quality is severely degraded by metal artifacts.

(a) (b)

Figure 4: Simulated CT images including metal artifacts. (a) Phantom image including simulated metal
artifact (PhantomImage); (b) the original artifact-free phantom image used to create PhantomImage. Note
that the image quality is also severely degraded by metal artifacts.

(3) An in-painting step in which the neighboring sinogram data (from the projection
of above K-means segmentation) is used to complete the tagged metallic projection
for the segmented metallic objects.

The proposed process involves also to specify a certain number of parameters: N, s,
the decaying parameter h in the prefiltering step, the maximum class numbers MCNa, MCNm

to, respectively, extract the metallic artifacts and object, the threshold ε for the segmentation
step, the size of the patches Pp, and the value of λ for the in-painting step.

For both algorithms, the involved parameters were manually set to find the optimal
parameter combination that led to the best qualitative results. This qualitative evaluation
was carried out in collaboration with a radiologist (Xindao Yin 10 years clinical experience).
These optimal parameters are listed in Table 1. It is notable that we used the same parameter
setting in Bal’s method because we found similar results can be obtained when using the
same parameter settings.
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Table 1: Parameter setting for Bal’s algorithm and our proposed method. For our proposed correction, MCNa and MCNm depict the maximum class number
(MCN) in the MIMS segmentation of artifacts and metal components, respectively.

ClinicalImage1 ClinicalImage2 ClinicalImage3 PhantomImage

Bal algorithm in [7]
Prefilterig step

υ = 2, the scaling factor σ0 is set to 10,

the relationship between width and length of Gaussian filter is set to 2 (σ⊥ = 2σ‖).

Segmentation step
K-means segmentation using 5 classes with CT values: −950 (air),

0 (soft tissue), 200 (normal tissue), 750 (bone), 5000 (metal).

Inpainting step Linear interpolation using 5 points in each symmetric side

Our proposed method

Pre-filterig step 41×41N, 11×11s, h = 500 41×41N, 11×11s, h = 450 41×41N, 11×11s, h = 450 41×41N, 11×11s, h = 350

Segmentation step MCNa = 16, MCNm = 22,
ε = 600

MCNa = 12, MCNm = 18,
ε = 600

MCNa = 12, MCNm = 18,
ε = 600

MCNa = 5, MCNm = 7,
ε = 600

In-painting step 11×11Pp, 3×3Piq, λ = 0.65 11 × 11Pp, 3 × 3Piq, λ = 0.3 11 × 11Pp, 3 × 3Piq, λ = 0.3 11×11Pp, 3×3Piq, λ = 0.8
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3.1. Qualitative Study

Figures 5(a) and 5(b) and Figures 5(a) and 5(b) display for comparison each of the steps
of each algorithm (Bal’s algorithm and our proposed method). ClinicalImage1 is used for
validation. From Figures 5(a1) and 5(b1), we can see that the LS-NLM filtering shows better
properties of noise suppression and structure preservation than the ASF filtering used in
Bal’s algorithm. Also, only the metallic object was segmented with Bal’s K-means algorithm
(Figure 5(a2)) while our MIMS algorithm allowed both the artifacts and the metallic objects
to be extracted (Figure 5(b2)). Figures 5(a3) and 5(b3) point up the differences between the
two resulting projected corrupted sinogram. In particular, the corrupted sinogram obtained
from the segmented metallic artifact component in Figure 5(b2) is larger than the one issues
from the segmented metallic component in Figure 5(a2). Figures 5(a4) and 5(b4) provide
the two resulting in-painted sinogram. In the one obtained with Bal’s algorithm, we can see
metallic shadows resulting from the metallic artifacts segmentation (see the red arrow in
the zoomed region in Figure 5(a4)). These shadows are absent in Figure 5(b4), that is, the
sinogram computed from our method. These metallic shadows create new artifacts in the
reconstructed image in Figure 5(a5). Finally, this example illustrates the best performance of
our method on Bal’s algorithm.

Figures 6 and 7 illustrate these results on the other two clinical CT images
ClinicalImage2 and ClinicalImage3, respectively. A region of interest (ROI) delineated by red
lines is zoomed to emphasize the behavior of each algorithm. Severe streak artifacts can be
observed in the original image that spread from the ears at the metallic component location.
The resulting image analysis (Figures 6(c), 6(d), 7(c) and 7(d)) makes appear that each
method provides a substantial reduction of the metallic artifacts. However, results depicted in
(Figures 6(d) and 7(d)) appear smoother with less accentuated artifacts. Structures are better
preserved while in (Figures 6(c) and 7(c)) some artifacts remain that deteriorate the quality
of the image. These artifacts are more pronounced in the close metallic object surrounding.

We can also see in Figures 6(d) and 7(d) that some new streak artifacts (pointed by
black arrows in Figures 6(d) and 7(d)), though not strong, were introduced into the processed
images. The introduced new artifacts might come from the errors of the segmentation and
inpainting in the proposed approach.

3.2. Quantitative Study

A quantitative study was then carried out on the simulated phantom of Figure 4(a) with
respect to the original artifact-free phantom image in Figure 4(b). We displayed the intensity
profiles along a specified horizontal line in the original and corrected images to highlight the
differences in the behavior of each method according to the crossed structure properties. We
also computed the mean square error (MSE) and the standard deviation (STD) in two ROI
located in two different homogeneous regions that is, inside (region1) and outside (region2)
the phantom:

MSE =
1

NΩ

√

√

√

√

∑

j∈Ω

(

f c
j − fo

j

)2
, (3.1)

STD =

√

√

√

√

1

NΩ

∑

j∈Ω

(

f c
j − f

c

Ω

)2
, (3.2)
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(a1) Pre-filtered image (a2) Segmented image

(a3) Segmented metal sinogram (a4) Inpainted sinogram

(a5) Final reconstructed image

(a)

(b1) Pre-filtered image (b2) Segmented image

(b3) Segmented metal sinogram

(b5) Final reconstructed image

(b4) Inpainted sinogram

(b)

Figure 5: Artifact correction on ClinicalImage1 (Figure 3(a)) using: (a), Bal’s algorithm [7]; (b), our
proposed method.
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(a)

(b) (c) (d)

Figure 6: Artifact correction on ClinicalImage2. (a) Original CT image with artifacts; (b) zoomed ROI in
the original image; (c) zoomed ROI in the result image obtained from Bal’s algorithm; (d) zoomed ROI in
the result image obtained from the proposed method.

where NΩ denotes the pixel number in the chosen region Ω (Region1 or Region2). f c
j and

fo
j are the intensity of the pixel within the region Ω in the corrected image f c and the

original reference image fo, respectively. f
c

Ω characterizes the mean intensity in the ROI, in
the corrected images.

The phantom images after correction by Bal’s algorithm and our proposed method
are, respectively, displayed in Figures 8(a) and 8(b). The qualitative evaluation highlights the
capacity of our algorithm to better suppress the metallic artifacts as to provide a superior
consistency in the homogeneous region preservation. Figure 8(c) plots the intensity profiles
along the same given horizontal line in the original (Figures 4(a) and 4(b)) and corrected
(Figures 8(a) and 8(b)) images, respectively. The profiles confirm that our method brings
a better quality correction in the homogeneous region. Table 2 provides the MSE and STD
measures for each method and in each ROI. The figures also confirm the supremacy of our
approach with an MSE and an STD that are the lowest on the image set.

Table 3 provides the total computation costs (in CPU seconds) for each step for each
method. For our method, the computation cost is given without and with GPU acceleration.
This method is rather expensive in computation time. The CUDA parallelization brings
a substantial gain with an acceleration that can reach a rate of 10 to 30 depending on
the complexity of the image. The parallelization makes then our method competitive in
computation time with Bal’s algorithm.
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(a)

(b)

(c)

(d)

Figure 7: Artifact correction on ClinicalImage3. (a) Original CT image with artifacts; (b) zoomed ROI in
the original image; (c) zoomed ROI in the result image obtained from Bal’ algorithm; (d) zoomed ROI in
the result image obtained from the proposed method.

4. Discussion

The proposed strategy adopted for reducing the metallic artifacts in the reconstructed
image relies on a four-stage process that consists of image enhancement, metallic object
segmentation, image forward projection, and sinogram in-painting, final image reconstruc-
tion using FBP. The image enhancement makes use of an LS-NLM filter. This filter exploits
a patch similarity measure to smooth the image while preserving the edges. Its response is
not very sensitive to the size of the neighborhood N and patch s. However, the decaying
parameter h, that quantifies the smoothing rate and how fast the weights decay with
increasing dissimilarity of respective patches, is sensitive to the noise ratio in the image.
Its value is set as a function of the noise variance. The MIMS-based segmentation involves
only to set the maximum class number MCN (MCNa and MCNm for the segmentations
of artifacts and metals, resp.) and the threshold ε that is applied for the convergence of
the difference mutual information (DMI). The choice of this threshold is not sensitive as
we can see in the experiments. Its value is relatively stable on the set of the processed
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Figure 8: Line profile comparison for different artifact corrections. (a) corrected image using Bal’s
algorithm; (b) corrected image using our method; (c) line profiles along a given line in the original image
and each corrected image. The location of the line is drawn in red in the medallion image that appears at
the upper left part of the plot.

Table 2: MSE and STD on the original corrupted and corrected phantom images. We can see the calculated
MSE and STD are lower for the images corrected with our method.

Original uncorrected
image (Figure 4(a))

Image corrected by the
Bal algorithm
(Figure 8(a))

Image corrected by the
proposed method

(Figure 8(a))

MSE of the whole images 1.37 1.31 1.26

STD
Region1 302.98 64.21 42.20

Region2 293.52 99.04 56.81

MSE
Region1 15.15 3.27 2.16

Region2 6.22 2.66 1.13
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Table 3: Computation cost (in CPU seconds) for each steps in the Bal algorithm and the proposed
correction method.

ClinicalImage1 ClinicalImage2 ClinicalImage3 PhantomImage

Bal’s Method in [7]

Pre-filtering step 0.98 0.97 0.96 0.97

Segmentation step 67.23 23.44 24.21 14.13

Inpainting step 1.32 1.57 1.22 0.85

Total 69.53 25.98 26.39 15.95

Proposed correction
(unparallelized)

Pre-filtering step 237.56 236.92 237.17 236.32

Segmentation step
(metal)

34.45 26.26 28.34 12.39

Segmentation step
(artifacts)

26.21 16.96 16.92 4.93

Inpainting step 44.02 49.09 64.78 52.81

Total 342.24 329.23 347.21 306.45

Proposed correction
(CUDA
parallelized)

Pre-filtering step 6.23 5.97 6.39 5.98

Segmentation step
(metal)

34.45 26.26 28.34 12.39

Segmentation step
(artifacts)

26.21 16.96 16.92 4.93

Inpainting step 1.42 1.58 2.06 1.74

Total 33.86 24.51 25.37 12.65

images (Table 3). The MMI (maximum mutual information) and DMI are computed within
a simulated annealing optimization process. This allows the thresholds in Gk

n and the class
centers to be automatically computed. This guarantees an optimal choice of these parameters.
Moreover, the metal artifacts and objects to be extracted have a very high density and if other
highly contrasted structures are not located in the close neighborhood, the algorithm run
quite well and provides satisfactory results. Considering now the sinogram inpainting stage,
the proposed exemplar-based in-painting technique considers a global similarity measure
and relies on redundant information present in the image. This modified exemplar-based
in-painting method is reasonable for the CT sinogram completion because it is observed
there are lots of repetitive structures in CT sinogram. When a large scale is selected, the
proposed exemplar-based in-painting can give an effective restoration of repetitive structures
in sinogram space. Parameters to be set relate to the sizes of the patches (Table 1) and the
weighting coefficient λ that is used to balance the fidelity and data term in (2.7). We preferred
to consider small patches (3 × 3) for the inpainting process in order not to lose subtle details.

For comparison, Bal’s algorithm used a similar strategy: (1) a linear structure tensor
(LST) filtering was first applied. Its response is highly dependent on the parametric streak
strength and orientation quantification and several parameters were empirically tested to
ensure a satisfying quantification and efficient filtering. (2) A K-means clustering technique
was considered for the metallic artifact segmentation. It required choosing a suitable number
of classes and the initial center of each cluster. The K-means algorithm is based on the
intensity clustering of one single image and appears finally less efficient than the MIMS
method to accurately segment the metallic artifacts. (3) An interpolation technique was
then considered to recover missing or metallic data from neighboring projections from non-
corrupted segments.
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The global process is carried out in a small region surrounding the metallic object.
Artifacts around the metal objects can be removed so as to remove projection data
inconsistencies with data consistent with similar neighborhood. However, image details may
be noticeably altered especially and some remaining artifacts still appear in the regions
closest to the metal objects. The presence of pathology has not yet been considered and is
something to be further evaluated in collaboration with our medical expert. The reason might
be the metallic artefacts can in some situation completely superimpose the structures and the
presence of a pathology may be hidden. Thus, the density change due to the artefact removing
process may be difficult to evaluate.

5. Conclusion

This paper proposed a new strategy for reducing metallic artifacts in CT images. The
proposed method outperforms Bal’s algorithm in each of the three steps: image prefiltering,
image segmentation, and sinogram inpainting. Visual and quantitative analyses on phantom
and clinical data show that the proposed correction method provides a substantial reduction
of the metallic artifacts in the corrected images. The pixel-wise operations in the pre-filtering
and sinogram inpainting steps are greatly accelerated by a CUDA parallelization that makes
the algorithm also competitive in computation time.

Although this algorithm demonstrated a good potential for the reduction of metallic
artifacts in CT images, some improvements have to be further considered. First, segmentation
accuracy might be further increased by applying more dedicate method such as the
segmentation method in [25]. Second, the exemplar-based in-painting procedure is expensive
in computation time due to the search for the patch priorities, which needs to be updated
after the in-painting of each point within the corrupted sinogram. Third, some intensity
inconsistencies can be still observed around the regions of the metallic objects in the corrected
images, and the sinusoid property of sinogram has not be exploited in inpainting the missing
sinogram data [26]. At last, the presence of pathology in the surrounding of the metal object
has not been considered in the evaluation of the algorithm. Thus, further work will be
devoted to solve the set of problems as to perform an extensive evaluation on clinical data.

Abbreviation

CT: Computed tomography
LST: Linear structure tensor
ASF: Adaptive Steering Filter
NAST: Nonlinear anisotropic structure tensor
LS-NLM: Large scale nonlocal means
MIMS: Mutual information Maximized Segmentation
MMI: Maximum mutual information
DMI: Difference of mutual information.
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