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Adjustment for reporting bias in network
meta-analysis of antidepressant trials
Ludovic Trinquart1,2,3,4,5*, Gilles Chatellier2,5,6 and Philippe Ravaud1,2,3,4

Abstract

Background: Network meta-analysis (NMA), a generalization of conventional MA, allows for assessing the relative

effectiveness of multiple interventions. Reporting bias is a major threat to the validity of MA and NMA. Numerous

methods are available to assess the robustness of MA results to reporting bias. We aimed to extend such methods

to NMA.

Methods: We introduced 2 adjustment models for Bayesian NMA. First, we extended a meta-regression model that

allows the effect size to depend on its standard error. Second, we used a selection model that estimates the

propensity of trial results being published and in which trials with lower propensity are weighted up in the NMA

model. Both models rely on the assumption that biases are exchangeable across the network. We applied the

models to 2 networks of placebo-controlled trials of 12 antidepressants, with 74 trials in the US Food and Drug

Administration (FDA) database but only 51 with published results. NMA and adjustment models were used to

estimate the effects of the 12 drugs relative to placebo, the 66 effect sizes for all possible pair-wise comparisons

between drugs, probabilities of being the best drug and ranking of drugs. We compared the results from the 2

adjustment models applied to published data and NMAs of published data and NMAs of FDA data, considered as

representing the totality of the data.

Results: Both adjustment models showed reduced estimated effects for the 12 drugs relative to the placebo as

compared with NMA of published data. Pair-wise effect sizes between drugs, probabilities of being the best drug

and ranking of drugs were modified. Estimated drug effects relative to the placebo from both adjustment models

were corrected (i.e., similar to those from NMA of FDA data) for some drugs but not others, which resulted in

differences in pair-wise effect sizes between drugs and ranking.

Conclusions: In this case study, adjustment models showed that NMA of published data was not robust to

reporting bias and provided estimates closer to that of NMA of FDA data, although not optimal. The validity of

such methods depends on the number of trials in the network and the assumption that conventional MAs in the

network share a common mean bias mechanism.

Keywords: Network meta-analysis, Publication bias, Small-study effect

Background
Network meta-analyses (NMAs) are increasingly being

used to evaluate the best intervention among different

existing interventions for a specific condition. The es-

sence of the approach is that intervention A is compared

with a comparator C, then intervention B with C, and

adjusted indirect comparison allows for comparing A

and B, despite the lack of any head-to-head randomized

trial comparing A and B. An NMA, or multiple-

treatments meta-analysis (MA), allows for synthesizing

comparative evidence for multiple interventions by com-

bining direct and indirect comparisons [1-3]. The pur-

pose is to estimate effect sizes for all possible pair-wise

comparisons of interventions, although some compari-

sons have no available trial.

Reporting bias is a major threat to the validity of results

of conventional systematic reviews or MAs [4,5]. Account-

ing for reporting biases in NMA is challenging, because

unequal availability of findings across the network of
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evidence may jeopardize NMA validity [6,7]. We previ-

ously empirically assessed the impact of reporting bias on

the results of NMAs of antidepressant trials and showed

that it may bias estimates of treatment efficacy [8].

Numerous methods have been used as sensitivity ana-

lyses to assess the robustness of conventional MAs to

publication bias and related small-study effects [9-20].

Modeling methods include regression-based approaches

and selection models. We extend these approaches to

NMAs in the Bayesian framework.

Methods
First, we extended a meta-regression model of the effect

size on its standard error, recently described for MAs

[21,22]. In this approach, the regression slope reflects

the magnitude of the association of effect size and preci-

sion (ie, the “small-study effect”), and the intercept pro-

vides an adjusted pooled effect size (ie, the predicted

effect size of a trial with infinite precision). Second, we

introduced a selection model, which models the prob-

ability of a trial being selected and is taken into account

with inverse weighting in the NMA. Both adjustment

models rely on the assumption that biases are exchange-

able across the network, ie, biases, if present, operate in

a similar way in trials across the network. Third, we ap-

plied these adjustment models to datasets created from

US Food and Drug Administration (FDA) reviews of

antidepressant trials and from their matching publica-

tions. These datasets were shown to differ because of

reporting bias [23]. We compared the results of the

BUP

0
.1

.2
.3

.4

-1 -.5 0 .5 1
SMD

CIT

0
.1

.2
.3

.4

S
E

 o
f 

S
M

D

-1 -.5 0 .5 1
SMD

DUL

0
.1

.2
.3

.4

S
E

 o
f 

S
M

D

-1 -.5 0 .5 1
SMD

ESC

0
.1

.2
.3

.4

-1 -.5 0 .5 1
SMD

FLU

0
.1

.2
.3

.4

S
E

 o
f 

S
M

D

-1 -.5 0 .5 1
SMD

MIR

0
.1

.2
.3

.4

S
E

 o
f 

S
M

D

-1 -.5 0 .5 1
SMD

NEF

0
.1

.2
.3

.4

-1 -.5 0 .5 1
SMD

PAR

0
.1

.2
.3

.4

S
E

 o
f 

S
M

D

-1 -.5 0 .5 1
SMD

PAR CR

0
.1

.2
.3

.4

S
E

 o
f 

S
M

D

-1 -.5 0 .5 1
SMD

SER

0
.1

.2
.3

.4

-1 -.5 0 .5 1
SMD

VEN

0
.1

.2
.3

.4

S
E

 o
f 

S
M

D

-1 -.5 0 .5 1
SMD

VEN XR

0
.1

.2
.3

.4

S
E

 o
f 

S
M

D

-1 -.5 0 .5 1
SMD

Figure 1 Contour-enhanced funnel plots for the antidepressant trials with published results. Each funnel plot is the scatter plot of the

treatment effect estimates from individual trials against the associated standard errors; the vertical solid line represents the pooled estimate. In

the absence of reporting bias, we might expect a symmetrical funnel plot. We may find the funnel plot is not symmetrical, ie does not resemble

an inverted funnel, which may be due to reporting bias, however there are other possible sources of asymmetry. The contour lines represent

perceived milestones of statistical significance (long dash p = 0.1; dash p= 0.05; short dash p= 0.01). If studies seem to be missing in areas of non-

significance then asymmetry may be due to reporting bias rather than other factors.
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adjustment models applied to published data and stand-

ard NMA for published and for FDA data, the latter

considered the reference standard.

Datasets used

A previous review by Turner et al. assessed the selective

publication of antidepressant trials [23]. The authors

identified all randomized placebo-controlled trials of 12

antidepressant drugs approved by the FDA and then

publications matching these trials by searching literature

databases and contacting trial sponsors. From the FDA

database, the authors identified 74 trials, among which

results for 23 trials were unpublished. The proportion of

trials with unpublished results varied across drugs, from

0% for fluoxetine and paroxetine CR to 60% and 67% for

sertraline and bupropion (Additional file 1: Appendix 1).

These entire trials remained unpublished depending on

the nature of the results. Moreover, in some journal arti-

cles, specific analyses were reported selectively and effect

sizes differed from that in FDA reviews. The outcome

was the change from baseline to follow-up in depression

severity score. The measure of effect was a standardized

mean difference (SMD). Separate MAs of FDA data

showed decreased efficacy for all drugs as compared to

published data, the decrease in effect size ranging from

10% and 11% for fluoxetine and paroxetine CR to 39%

and 41% for mirtazapine and nefazodone (Additional file 1:

Appendix 1). Figure 1 shows the funnel plots of pub-

lished data. Visual inspection does not suggest stronger

treatment benefit in small trials (ie, funnel plot asym-

metry) for any of the 12 comparisons of each drug and

placebo.

Network meta-analysis

The standard model for NMA was formalized by Lu and

Ades [2,24,25]. We assume that each trial i assessed

treatments j and k among the T interventions in the net-

work. Each trial provided an estimated intervention ef-

fect size yijk of j over k and its variance vijk. We assume

that yijk > 0 indicates superiority of j over k. Assuming

normal likelihood and according to a random-effects

model, yijk�N(θijk,vijk) and θijkeN Θjk ; τ
2

� �
, where θijk is

the true effect underlying each randomized comparison

between treatments j and k and Θjk is the mean of the

random-effects effect sizes over randomized compari-

sons between treatments j and k. The model assumes

homogeneous variance (ie, τjk
2 = τ2). This assumption can

be relaxed [2,26]. The model also assumes consistency

between direct and indirect evidence: if we consider

treatment b as the overall network baseline treatment,

the treatment effects of j, k, etc. relative to treatment b,

Θjb , Θkb , etc., are considered basic parameters, and the

remaining contrasts, the functional parameters, are

derived from the consistency equations Θjk ¼ Θjb � Θkb

for every j, k 6¼ b.

Adjustment models

Meta-regression model

We used a network meta-regression model extending a

regression-based approach for adjusting for small-study

effects in conventional MAs [21,22,27-29]. This regression-

based approach takes into account a possible small-study

effect by allowing the effect size to depend on a measure of

its precision. Here, we assume a linear relationship be-

tween the effect size and its standard error and the model

involves extrapolation beyond the observed data to a hypo-

thetical study of infinite precision. The extended model for

NMA is as follows:

yijkeN γ ijk ; vijk

� �

γijk ¼ θijk þ Iijk � βjk �
ffiffiffiffiffiffi
vijk

p

βjkeN β; σ2
� �

θijkeN Θjk ; τ
2

� �

Θjk ¼ Θjb � Θkb for every j, k 6¼ b

Figure A in Additional file 2 shows a graphical repre-

sentation of the model. In the regression equation, θijk is

the treatment effect adjusted for small-study effects

underlying each randomized comparison between treat-

ments j and k; βjk represents the potential small-study

effect (ie, the slope associated with funnel plot asym-

metry for the randomized comparisons between treat-

ments j and k). The model assumes that these

comparison-specific regression slopes follow a common

normal distribution, with mean slope β and common

between-slopes variance σ2. This is equivalent to the as-

sumption that comparison-specific small-study biases

are exchangeable within the network. Since we assumed

that yijk > 0 indicates superiority of j over k, β > 0 would

mean an overall tendency for a small-study effect (ie,

treatment contrasts tend to be over-estimated in smaller

trials). Finally, Iijk is equal to 1 if a small-study effect is

expected to favor treatment j over k, equal to −1 if a

small-study effect is expected to favor treatment k over j,

and equal to 0 when one has no reason to believe that

there is bias in either direction (e.g., for equally novel ac-

tive vs. active treatment). In trials comparing active and

inactive treatments (e.g., placebo, no intervention), we

can reasonably expect the active treatment to be always

favored by small-study bias.

Selection model

We use a model that adjusts for publication bias using a

weight function to represent the process of selection.
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The model includes an effect size model (ie, the stand-

ard NMA model that specifies what the distributions of

the effect size estimates would be with no selection) and

a selection model that specifies how these effect size dis-

tributions are modified by the process of selection

[14,30]. We assume that the probability of selection

depends on the standard error of the effect size, as a

decreasing function of it. We adopt an approach based

on a logistic selection model, as previously used in con-

ventional MAs [18,31].

yijkeN γ ijk ; vijk

� �

γijk ¼ θijk=wi

logitwi ¼ β0jk þ β1jk � Iijk �
ffiffiffiffiffiffi
vijk

p

β0jk�N(β0, σ0
2) and β1jk�N(β1, σ1

2)

θijkeN Θjk ; τ
2

� �

Θjk ¼ Θjb � Θkb for every j, k 6¼ b

Figure B in Additional file 2 shows a graphical repre-

sentation of the model. In the logistic regression equa-

tion, wi represents the propensity of the trial results to

be published, β0jk sets the overall probability of observ-

ing a randomized comparison between treatments j and

k, and β1jk controls how fast this probability evolves as

the standard error increases. We expect β1jk to be nega-

tive, so trial results yielding larger standard errors have

lower propensity to be published. The model assumes

exchangeability of the β0jk and β1jk coefficients within

the network. By setting γijk= θijk/wi, we define a simple

scheme that weights up trial results with lower propen-

sity of being published so that they have a dispropor-

tionate influence in the NMA model. θijk is the

treatment contrast corrected for the selection process

underlying each randomized comparison between treat-

ments j and k. Finally, Iijk is defined in the same way as

in the preceding section.

Models estimation

We estimated 4 models: standard NMA model of pub-

lished data, 2 adjustment models of published data and a

standard NMA model of FDA data. In each case, model

estimation involved Markov chain Monte Carlo methods

with Gibbs sampling. Placebo was chosen as the overall

baseline treatment to compare all other treatments.

Consequently, the 12 effects of drugs relative to placebo

are the basic parameters. For 2 treatments j and k,

SMDjk > 0 indicate that j is superior to k. In both the

meta-regression and selection models, we assumed that

the active treatments would always be favored by small-

study bias as compared to placebo; consequently, Iijk is

always equal to 1.

In the standard NMA model, we defined prior distri-

butions for the basic parameters Θjb and the common

variance τ2: ΘjbeN 0; 1002ð Þ and τeUniform 0; 10ð Þ . In
the meta-regression model, we further chose vague

priors for the mean slope β and common between-

slopes variance σ2: βeN 0; 1002ð Þ and σeUniform 0; 10ð Þ .
In the selection model, we chose weakly informative

priors for the central location and dispersion parameters

(β0, σ0
2) and (β1, σ1

2). We considered pmin and pmax the

probability of publication when the standard error takes

its minimum and maximum values across the network

of published data and specified beta priors for these

probabilities [32]. The latter was achieved indirectly by

specifying prior guesses for the median and 5th or 95th

percentile [33]. For trials with standard error equal to

the minimum observed value, we assumed that the

chances of pmin being < 50% were 5% and the chances of

pmin being < 80% were 50%. For trials with standard error

equal to the maximum observed value, our guess was

that the chances of pmax being < 40% were 50% and the

chances of pmax being < 70% were 95%. We discuss these

choices further in the Discussion. From this information,

we determined Beta(7.52, 2.63) and Beta(3.56, 4.84) as

prior distributions for pmin and pmax, respectively. Fi-

nally, we expressed β0 and β1 in terms of pmin and pmax

and chose uniform distributions in the range (0,2) on

the standard deviations σ0 and σ1. For each analysis, we

constructed posterior distributions from 2 chains of

500,000 simulations, after convergence achieved from an

initial 500,000 simulations for each (burn-in). Analysis

involved use of WinBUGS v1.4.3 (Imperial College and

MRC, London, UK) to estimate all Bayesian models and

R v2.12.2 (R Development Core Team, Vienna, Austria)

to summarize inferences and convergence. Codes are

reported in the Additional file 1: Appendix 2.

Models comparison

We compared the results of the 2 adjustment models ap-

plied to published data and results of the standard NMA

model applied to published data and the FDA data, the

latter considered the reference standard. First, we com-

pared posterior means and 95% credibility intervals for

the 12 basic parameters and common variance, as well as

for the 66 functional parameters (ie, all 12× 11/2= 66 pos-

sible pair-wise comparisons of the 12 drugs). Second, we

compared the rankings of the competing treatments. We

assessed the probability that each treatment was best, then

second best and third best, etc. We plotted the cumulative

probabilities and computed the surface under the cumula-

tive ranking (SUCRA) line for each treatment [34]. Third,

to compare the different models applied to published data,

we used the posterior mean of the residual deviance and

the deviance information criteria [35].
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Results
In the meta-regression model applied to published data,

the posterior mean slope β was 1.7 (95% credible interval

−0.3–3.6), which suggests an overall tendency for a small-

study effect in the network. The 12 regression slopes were

similar, with posterior means ranging from 1.4 to 1.9. In

the selection model applied to published data, the mean

slope β1 was −10.0 (−18.0 – -2.50), so trials yielding larger

standard errors tended overall to have lower propensity to

be published. In both models, all estimates were subject to

large uncertainty (Additional file 1: Appendix 3).

Table 1 shows the estimates of the 12 basic parameters

between each drug and placebo according to the 4 mod-

els. As compared with the NMA of published data, both

adjustment models of published data showed that the

whole 12 estimated drug effects relative to placebo were

reduced. For the meta-regression model, the decrease in

efficacy ranged from 48% for venlafaxine XR to 99% for

fluoxetine. For the selection model, the decrease ranged

from 13% for escitalopram to 26% for paroxetine. When

considering the functional parameters (ie, the 66 pos-

sible pair-wise comparisons between drugs), we found

differences between the results of adjustment models

and the standard NMA model applied to published trials

(Figure 2). The median relative difference, in absolute value,

between pair-wise effect sizes from the regression model

and the standard NMA model was 57.3% (25% – 75% per-

centile 30.3% – 97.6%); the median relative difference be-

tween the selection model and the standard NMA model

was 29.2% (15.1% – 46.1%).

Figure 3 summarizes the probabilities of being the best

antidepressant. Compared to the standard NMA of pub-

lished data, adjustment models of published data yielded

decreased probabilities of the drug being the best for

paroxetine (from 41.5% to 20.7% with the regression

model or 25.7% with the selection model) and mirtaza-

pine (from 30.3% to 15.7% or 21.9%). They yielded

increased probabilities of the drug being the best for

venlafaxine (from 7.9% to 10.6% or 12.8%) and venlafax-

ine XR (from 14.1% to 21.0% or 23.5%).

Figure 4 shows cumulative probability plots and

SUCRAs. For the standard NMA of published data,

paroxetine and mirtazapine tied for first place and venla-

faxine XR and venlafaxine tied for third. The selection

model applied to published data yielded a slightly differ-

ent ranking, with paroxetine, mirtazapine and venlafax-

ine XR tying for first and venlafaxine was fourth. In the

regression model applied to published data, venlafaxine

XR was first, venlafaxine and paroxetine tied for second

and mirtazapine was fifth.

In adjustment models applied to published data,

between-trial heterogeneity and fit were comparable to

those obtained with standard NMA of published data

(Tables 1 and 2).

The estimated drug effects relative to placebo from the

regression and selection models were similar to those

from the NMA of FDA data for some drugs (Table 1).

There were differences when considering the 66 possible

pair-wise comparisons between drugs (Figure 5). Results

also differed by models regarding the probability of

Table 1 Comparison of network meta-analysis (NMA)-based estimates between the 2 adjustment models applied to

published data and the standard NMA model applied to US Food and Drug Administration (FDA) data and to

published data

FDA data Published data

Standard NMA model Regression model Selection model Standard NMA model

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

ΘBUP 0.176 (0.081) 0.043 (0.256) 0.229 (0.121) 0.271 (0.139)

ΘCIT 0.240 (0.074) 0.081 (0.171) 0.254 (0.073) 0.306 (0.076)

ΘDUL 0.300 (0.054) 0.166 (0.190) 0.340 (0.066) 0.402 (0.058)

ΘESC 0.310 (0.067) 0.165 (0.193) 0.311 (0.070) 0.357 (0.068)

ΘFLU 0.256 (0.081) 0.004 (0.160) 0.215 (0.068) 0.271 (0.074)

ΘMIR 0.351 (0.070) 0.206 (0.331) 0.424 (0.110) 0.567 (0.092)

ΘNEF 0.256 (0.076) 0.112 (0.260) 0.348 (0.094) 0.437 (0.094)

ΘPAR 0.426 (0.063) 0.267 (0.346) 0.438 (0.105) 0.593 (0.078)

ΘPAR CR 0.323 (0.101) 0.174 (0.187) 0.309 (0.083) 0.354 (0.085)

ΘSER 0.252 (0.077) 0.210 (0.231) 0.359 (0.094) 0.419 (0.094)

ΘVEN 0.395 (0.071) 0.199 (0.224) 0.403 (0.092) 0.504 (0.075)

ΘVEN XR 0.398 (0.094) 0.261 (0.273) 0.423 (0.110) 0.506 (0.107)

τ 0.060 (0.037) 0.031 (0.024) 0.024 (0.019) 0.032 (0.025)

Data are posterior means and standard deviations of the basic parameters (Θ), the between-trial heterogeneity (τ).
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being the best drug and the ranking of drugs. In the

standard NMA of FDA data, the probability of being the

best drug was 7.3% for mirtazapine, 33.9% for paroxe-

tine, 19.3% for venlafaxine, and 25.7% for venlafaxine

XR (Figure 3); paroxetine ranked first, and venlafaxine

and venlafaxine XR tied for second (Figure 4).

Discussion
We extended two adjustment methods for reporting bias

from MAs to NMAs. The first method combined NMA

and meta-regression models, with effect sizes regressed

against their precision. The second one combined the

NMA model with a logistic selection model estimating

the probability that a trial was published or selected in

the network. The former method basically adjusts for

funnel plot asymmetry or small study effects, which may

arise from causes other than publication bias. The latter

adjusts for publication bias (ie, the suppression of an en-

tire trial depending on results). The two models borrow

strength from other trials in the network with the as-

sumption that biases operate in a similar way in trials

across the domain.

In a specific network of placebo-controlled trials of

antidepressants, based on data already described and

published previously by Turner et al., comparing the

results of adjustment models applied to published data

and those of the standard NMA model applied to pub-

lished data allowed for assessing the robustness of effi-

cacy estimates and ranking to publication bias or related

small-study effects. Both models showed a decrease in

all basic parameters (ie, the 12 effect sizes of drugs rela-

tive to placebo). The 66 contrasts for all possible pair-

wise comparisons between drugs, the probabilities of

being the best drug and the ranking were modified as
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Figure 2 Difference plots of estimates of pair-wise comparisons of the 12 antidepressant agents and placebo: regression model of

published data vs. standard network meta-analysis (NMA) model of published data (left panel); selection models of published vs.

standard NMA model of published data (right panel). The x-axes show the estimates from the standard NMA model applied to published

data, the y-axes show the differences between the estimates from the adjustment (regression or selection) model of published data and the

estimates from the standard NMA model of published data. Black dots are the 12 estimated drug effects relative to placebo; white dots are the

66 possible pair-wise comparisons between the 12 drugs.
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well. The NMA of published data was not robust to

publication bias and related small-study effects.

This specific dataset offered the opportunity to per-

form NMAs on both published and FDA data. The latter

may be considered "an unbiased (but not the complete)

body of evidence" for placebo-controlled trials of antide-

pressants [28]. The comparison of the results of the 2

models applied to published data and the standard

NMA model applied to FDA data showed that the effect

sizes of drugs relative to placebo were corrected for

some but not all drugs. This observation led to differ-

ences in the 66 possible pair-wise comparisons between

drugs, the probabilities of being the best drug and the

ranking. It suggests that the 2 models should not be

considered optimal; that is, the objective is not to pro-

duce definitive estimates adjusted for publication bias

and related small-study effects but rather to assess the

robustness of results to the assumption of bias.

Similar approaches have been used by other authors.

Network meta-regression models fitted within a Bayesian

framework were previously developed to assess the impact

of novelty bias and risk of bias within trials [36,37].

Network meta-regression to assess the impact of small-

study effect was specifically used by Dias et al. in a re-

analysis of a network of published head-to-head rando-

mized trials of selective serotonin reuptake inhibitors

[38]. Along the line of the regression-based approach of

Moreno et al. in conventional MA, the authors intro-

duced a measure of study size as a regression variable

within the NMA model and identified a mean bias in

pair-wise effect sizes. More recently, Moreno et al. used

a similar approach to adjust for small-study effects in

several conventional MAs of similar interventions and

outcomes and illustrated their method using the dataset

of Turner et al. [39]. Our approach differed in that we

extended this meta-regression approach to NMAs. We

used the standard error of treatment effect estimate as

the regressor. As well, we specified an additive between-

trial variance rather than a multiplicative overdispersion

parameter. With the latter, the estimated multiplicative

parameter may be < 1, which implies less heterogeneity

than would be expected by chance alone. Selection model

FDA data Regression Selection Published
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Figure 3 Probabilities that each antidepressant drug is the best according to standard NMA of FDA data, regression model, selection

model or standard NMA model of published data.
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approaches have been considered recently. Chootrakool

et al. introduced an approximated normal model based on

empirical log-odds ratio for NMAs within a frequentist

framework and applied Copas selection models for some

groups of trials in the network selected according to

funnel plot asymmetry [40]. Mavridis et al. presented a

Bayesian implementation of the Copas selection model

extended to NMA and applied their method on the
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Figure 4 Cumulative ranking probability plots for the 12 antidepressant agents from the standard NMA model applied to FDA data

(bold solid line) and published data (bold dotted line) and from the 2 adjustment models applied to published data (regression model

in plain dashed line and selection model in plain double-dashed line). On each plot, the x-axis shows possible ranks from r= 1 up to r= 13

and the y-axis shows the cumulative probabilities that the corresponding treatment is among the top r treatments. The closer the curve is to the

upper left corner, the better the treatment. The surface under the cumulative ranking line is 1 when a treatment is the best and 0 when a

treatment is the worst. FDA: standard NMA model applied to FDA data (bold plain line); Pub.: standard NMA model applied to published data

(bold dash line); Reg.: regression model applied to published data (dash line); Sln.: selection model applied to published data (long-dash short-

dash line).

Table 2 Comparison of fit and complexity between the 2 adjustment models and the standard NMA model, all applied

to published data

Regression model Selection model NMA model

Mean posterior residual deviance (�Dres) 31.4 31.5 34.4

Effective number of parameters (pD) 15.9 14.7 13.9

Deviance Information Criterion (DIC) 47.3 46.2 48.3

Lower values of �Dres indicate a better fit to the data. Lower values of the DIC indicate a better compromise between model fit and model complexity. A difference

in DICs of 5 or more can be considered substantial (http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/dicpage.shtml).
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network of Turner et al. [41]. In the Copas selection

model, the selection probability depends on both the esti-

mates of the treatment effects and their standard errors.

In the extension to NMA, an extra correlation parameter

ρ, assumed equal for all comparisons, needs to be esti-

mated. When applied to published data of the network of

Turner et al., the selection model we proposed and the

treatment-specific selection model of Mavridis et al.

yielded close results.

The 2 adjustment models rely on the assumption of

exchangeability of selection processes across the network;

that is, biases, if present, operate in a similar way in trials

across the network. In this case study, all studies were, by

construction, industry-sponsored, placebo-controlled trials

registered with the FDA, and for all drugs, results of entire

studies remained unreported depending on the results

[23]. Thus, the assumption of exchangeability of selection

processes is plausible. More generally, if we have no infor-

mation to distinguish different reporting bias mechanisms

across the network, an exchangeable prior distribution is

plausible, "ignorance implies exchangeability" [42,43].

However, the assumption may not be tenable in other

contexts in which reporting biases may affect the network

in an unbalanced way. It may operate differently in

placebo-controlled and head-to-head trials [44], in older

and more recent trials (because of trial registries), and for

drug and non-drug interventions [7]. In more complex

networks involving head-to-head trials, the 2 adjustment

models could be generalized to allow the expected publi-

cation bias or small-study bias for active-active trials to

differ from that of the expected bias in trials comparing

active and inactive treatments [36]. In head-to-head trials,

the direction of bias is uncertain but assumptions in defin-

ing Iijk could be that the sponsored treatment is favored

(sponsorship bias) [45,46] or that the newest treatment is

favored (optimism bias) [37,47,48]. If treatment j is the

drug provided by the pharmaceutical that sponsored the

trial and treatment k is not, Iijk would be equal to 1. Or

Iijk would be equal to 1 if treatment j is newer than treat-

ment k. However, disentangling the sources of bias
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Figure 5 Difference plots of estimates of pair-wise comparisons of the 12 antidepressant agents and placebo: standard NMA model of

published data vs. standard NMA model of FDA data (upper panel); regression model of published data vs. standard NMA model of

FDA data (bottom left panel); selection model of published vs. standard NMA model of FDA data (bottom right panel). The x-axes show

the estimates from the standard NMA model applied to FDA data, the y-axes show the differences between the estimates from the adjustment

(regression or selection) model of published data and the estimates from the standard NMA model of FDA data. Black dots are the 12 estimated

drug effects relative to placebo; white dots are the 66 possible pair-wise comparisons between the 12 drugs.
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operating on direct and indirect evidence would be diffi-

cult, especially if reporting bias and inconsistency are

twisted together or if the assumed bias directions are in

conflict on a loop.

The models we described have limitations. First, they

would result in poor estimation of bias and effect sizes

when the conventional MAs within the network include

small numbers of trials [21]. Second, for the selection

model, we specified the weight function. If the underlying

assumptions (ie, a logistic link form and the chance of a

trial being selected related to standard error) are wrong,

the estimated selection model will be wrong. However, al-

ternative weight functions (e.g., probit link) or conditioning

(e.g., on the magnitude of effect size) could be considered.

Finally, it was implemented with a weakly informative prior,

which mainly suggested that the propensity for results to be

published may decrease with increasing standard error.

There is a risk that prior information overwhelms observed

data, especially if the number of trials is low. Although they

were somewhat arbitrarily set, our priors for the selection

model parameters were in line with the values in previous

studies using the Copas selection model [12,49]. Different

patterns of selection bias could be tested, for instance, by

considering various prior modes for pmin and pmax, the

probabilities of publication when the standard error takes its

minimum and maximum values across the network [15].

Conclusions
In conclusion, addressing publication bias and related

small-study effects in NMAs was feasible in this case

study. Validity may be conditioned by sufficient numbers

of trials in the network and assuming that conventional

MAs constituting the network share a common mean

bias. Simulation analyses are required to determine

under which condition such adjustment models are

valid. Application of such adjustment models should be

replicated on more complex networks, ideally represent-

ing the totality of the data as in Turner's, but our results

confirm that authors and readers should interpret

NMAs with caution when reporting bias has not been

addressed.
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