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Abstract—Our objective is to analyze EEG signals recorded with 

depth electrodes during seizures in patients with drug-resistant 

epilepsy. Usually, different phases are observed during the 

seizure process, including a fast onset activity (FOA). We aim to 

determine how cerebral structures get involved during this FOA, 

in particular whether some structures can “drive” some other 

structures. We compare a transfer entropy based measure with a 

measure related to linear Granger causality index to detect causal 

interdependences in multivariate signals generated either by a 

linear autoregressive model or by a physiology-based model of 

coupled neuronal populations. Experimental simulation results 

support the relevance of the new measure for characterizing the 

information flow for direct and indirect relations. 

Keywords - EEG signal; transfer entropy; physiology-based model; 

causality 

I. INTRODUCTION 

Epilepsy is a neurological disorder characterized by 
repetitive seizures. In 30% of cases, seizures remain drug-
resistant and considerably affect all aspects of the patient’s life 
[1]. Drug-resistant epilepsies are often partial, with an 
epileptogenic zone (EZ) located in a relatively circumscribed 
brain area. For these partial epilepsies, surgical treatment can 
be considered. The difficulty that arises is then to determine the 
organization of the EZ and, thus, the part of the brain that 
should be excised to remove seizures. In some patients, the pre-
surgical evaluation may include recording of intracerebral 
electroencephalographic (iEEG) signals using intracerebral 
depth electrodes. The analysis of such signals which remains a 
difficult task is aimed at determining which sites of the brain 
belong to the EZ, prior to surgery. In this context, signal 
processing techniques can provide some quantitative 
information that cannot be easily obtained by visual inspection. 
This is typically the case of correlation (wide-sense) measures 
that proved useful for assessment of functional couplings 
between distant brain sites. Besides functional connectivity, 
effective connectivity provides complementary information on 
the directionality of couplings, i.e. the way one neural 
population does influence another one. A concept of causality 
between time series was proposed and formulated by Granger 
[2] and led to the so-called Granger Causality Index (GCI). 

Recently, a theoretical information measure named Transfer 
Entropy (TE) was proposed to identify the direction of the 
information flow and to quantify the strength of coupling 
between complex systems [3]. This “model-free” technique is 
based on the transition probabilities between states of the 
considered systems from output signals. This method has been 
applied and tested in some nonlinear benchmark models and 
real EEG signals with no ground reference [4, 5]. In this paper, 
we derive a transfer entropy based measure (named DTE) and 
compare it to a Linear Granger Causality Index based measure 
(named DLGCI) on the basis of a physiologically-plausible 
model used as ground-truth. 

 

II. METHODS AND MATERIALS 

 

A. Linear Granger Causality Index 

Granger causality is classically tested in the context of 

linear regression models [2]. Let X  and Y  be two random 

zero-mean signals whose time observations (realizations) are 

denoted ( )x t  and ( )y t , 1,2,...,t T= , where T  is the signal 

length. If we model independently each observation ( )x t  and 

( )y t  by introducing an univariate AR model of order p [6], 

we have 
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where ( )xu t  and ( )yu t  are white Gaussian noises 

realizations. If we model conjointly the pair ( ( )x t , ( )y t ) by 

bivariate AR models of order , we write p
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where ( )xw t  and ( )yw t  are white Gaussian noises 

realizations. The LGCI from  to y x  is evaluated by 
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Considering the more complicated issue of real data [7], we 

define a selective index of the flow direction, named DLGCI, 

as 
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if the denominator is non null. Otherwise, this index is set to 

zero. 

 

B. Transfer Entropy 

In the sequel, 
( )p
nu  denotes a p-tuple . 

Considering a -order Markov process X, the conditional 

probability measures (continuous or discrete) are such that: 
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The relation in (7) can be extended to the case of “Markov 

interdependence” of two random processes X  and Y . In the 

same way, the absence of information flow from Y to X can be 

formalized by 
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So, in this absence of information flow, the Y process values ( )l
ny  have not influence on the X  transition probabilities from 

state value 
( )k
nx  to state value 1nx + . The deviation from this 

assumption can be quantified using the Kullback entropy, 

which leads to the definition of the transfer entropy 
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where the ratio in (9) corresponds to a derivative of the 

conditional measure in the numerator with respect to the 

conditional measure in the denominator. This measure is not 

symmetric ( )X Y Y XTE TE→ →≠ . The value of k  can be 

determined heuristically from the autocorrelation function of 

X. For the parameter l , a natural choice is to take 1l = , if we 

consider that the current state of the driving system is 

sufficient to modify the dynamics of the driven one. The 

estimation of TE from the observations ( ), , 1,...,n nx y n N= , 

can be obtained [3] using a discrete kernel estimation of 
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which depends on a neighborhood size (radius ). Then, it can 

be used to compute the estimation 
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Practically, the estimations of conditional probabilities in (11) 

are computed from estimated joint probabilities in (10). 

The function ( ).Θ is defined by the step kernel 

( )0 1xΘ > = , ( )0 0xΘ ≤ = ; the norm •  is the maximum 

distance norm and the summation is performed for [ ]1,..., 1m k N∈ + −  by excluding some evident redundancies. 

The value of r  is chosen in the linear region of the curve ( )ln C r  vs. ln  obtained as an average of n over . As 

previously, we define a selective index of the flow direction, 

named DTE, by 

r ,n rC
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if the denominator is non null. Otherwise, this index is set to 0. 

 

C. Model of iEEG Signals Generation 

We used a physiology-based time continuous (Stochastic 

Differential Equation) model to represent the electrical field 

activity of some distant - and possibly coupled - neuronal 

populations. Each of them generates a local field activity that 

can be converted to an iEEG signal in a proximal electrode 

using a quasi-static transfer function [8]. In the model, each 

population contains three subpopulations of neurons that 

mutually interact via excitatory or inhibitory feedback linking 

main pyramidal cells and two other types of local 

interneurons. Since pyramidal cells are excitatory neurons that 

project their axons to other areas of the brain, the model 

accounts for this organization by using the average pulse rate 

of action potentials from the main cells of one population  as 

an excitatory input to main cells inputs of another population j. 

In addition, this connection from population i  to j is 

represented by a parameter K

i

ij which is proportional to the 

number of corresponding axonal links. Appropriate setting of 

this parameter allows for building systems where the neuronal 

populations are unidirectionally or bidirectionally coupled. 

Other introduced parameters are intra-population parameters. 

They include excitatory and inhibitory gains in feedback loops 

as well as coefficients related to the numbers of synaptic 

contacts between subpopulations. These parameters are 

adjusted to control the intrinsic activity of each population 

(normal background versus epileptic activity). 



                                                                                                                                          

III. RESULTS 

Simulations were carried out 100 times on 4096-point 

signals (which corresponds to 8 s of real EEG signals in 

current acquisition systems). In the following tables, the first 

value represents the mean of the indicator and the value in 

parentheses is the standard deviation. Simulation models were 

of two types: a “black box” linear three-population model 

(subsection A) and a physiological non linear three-population 

model (subsection B). Indices DLGCI (6) and DTE (12) were 

estimated for populations pairs by using LGCI and TE 

respectively in place of their theoretical values. 
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Fig. 1. Results of Transfer Entropy between signals x1 and x2 in linear 

system. A. Plot of the mean of Cn,r with respect to n vs. r (in ln scale), 

where Cr and r denote average joint probability and radius in the state 

space respectively. B. Plot of TE (bits) vs. radius r (in ln scale), for 

direction of flow 1ĺ2 (blue solid line) and 2ĺ1 (red dotted line). 

 

TABLE III 

RESULTS ON TE IN LINEAR SYSTEM 

i jx x→  i = 1 i = 2 i = 3 

j = 1 - 
-1.8172 

(1.2036) 

15.5103 

(2.2014) 

j = 2 
235.1368 

(9.0220) 
- 

4.0365 

(1.0664) 

j = 3 
91.4938 

(4.5943) 

40.4462 

(2.3031) 
- 

 

TABLE IV 

RESULTS ON DTE IN LINEAR SYSTEM 

x1ĺx2 1.0000 

x1ĺx3 0.7101 

x2ĺx3 0.8185 

A. Linear System 

For the linear stochastic system we considered, the 

following three signals were generated: 
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where ( )jw t , , were independent white Gaussian 

noises with zero means and unit variances. For each pair of 

signals, k and l were estimated by Akaike’s criterion. 

1, 2,3j =

 

• Results on LGCI and DLGCI 

The means and standard deviations of these indices are 

reported in Table I. From Table I, when a causality relation 

exists (e.g. 1 2x x→ , 1 3x x→ , 2 3x x→ ), the corresponding 

 reveals an important value, and when there is no causal 

relation (

LGCI

2 1x x→ , 3 1x x→ , 3 2x x→ ), the LGCI  remains 

close to zero. In the same way, the selective index DLGCI  

correctly points up all information flow directions (see Table 

II) with the same order of magnitude. 

 

• Results on TE and DTE 

From the Section II.B, the estimation of TE also depends on 

the neighborhood size (radius r ). The results of the mean of 

Cn,r with respect to n vs. r (in ln scale) between signals x1 and 

x2 are plotted in Fig. 1A. The corresponding TE values vs. ln r 

are plotted in Fig. 1B. From this figure, we can find that TE 

can correctly point out the information flow direction in the 

linear region (delimited by the two vertical dash lines). For all 

pairs of signals, the parameters k  and  were in the range [2; 

7], and 

l[ ]1;2.2r . In Table III, TE values correspond to the 

optimal values of r for the different pairs. From this table, we 

note a very high value of TE  from signal 1 to signal 2 

compared to the other ones. The strong relation is highlighted 

in Table IV using DT , and this index is also successful in 

drawing up the complete propagation graph. 

TABLE I 

RESULTS ON LGCI IN LINEAR SYSTEM 

i jx x→  i = 1 i = 2 i = 3 

j = 1 - 
0.0010 

(0.0019) 

0.0016 

(0.0023) 

j = 2 
0.8802 

(0.0619) 
- 

0.0115 

(0.0071) 

j = 3 
0.4644 

(0.0376) 

0.8782 

(0.0469) 
- 

 

TABLE II 

RESULTS ON DLGCI IN LINEAR SYSTEM 

x1ĺx2 0.9977 

x1ĺx3 0.9931 

x2ĺx3 0.9741 

∈

E

 

B. Physiology-based Model 

The model described in Section II.C was used to simulate 

long duration signals (400 s) for a fixed connectivity pattern 

(“ground truth”) among neuronal populations, as illustrated in 

Fig. 2A and Fig. 2B. Sampling rate was equal to 256 Hz. 

Model parameters were such that a fast quasi-sinusoidal (25 

Hz) activity (similar to that observed at seizure onset) was 



                                                                                                                                          

generated by the three populations when they were uni-

directionally coupled (Fig. 2C). The coupling parameters were 

such as: . 12 23
1500K K K= = =

 

 
 

Fig. 2. Simulated signals. A. Considered scenario for connectivity 

among neuronal populations. Epileptic activity in population 2 (resp. 

3) is caused by excitatory drive from population 1 (resp. 2). B. An 

example of output signals when populations are coupled. Time delays 

are not constant over time. C. Power spectral densities (PSD) of the 

signals are similar and match those observed in depth-EEG signals at 

the onset of seizures. 

 

 

TABLE V 

RESULTS ON LGCI IN PHYSIOLOGY-BASED MODEL 

i jP P→  i = 1 i = 2 i = 3 

j = 1 - 
0.0064 

(0.0046) 

0.0058 

(0.0054) 

j = 2 
0.0209 

(0.0099) 
- 

0.0062 

(0.0047) 

j = 3 
0.0059 

(0.0057) 

0.0107 

(0.0073) 
- 

 

 

TABLE VI 

RESULTS ON DLGCI IN PHYSIOLOGY-BASED MODEL 

P1ĺP2 0.5311 

P1ĺP3 0.0085 

P2ĺP3 0.2663 

 

 

TABLE VII 

RESULTS ON TE IN PHYSIOLOGY-BASED MODEL 

i jP P→  i = 1 i = 2 i = 3 

j = 1 - 
-0.1384 

(0.3601)  

0.1237 

(0.1662)  

j = 2 
2.9467 

(1.0288)  
- 

0.1405 

(0.1672)  

j = 3 
0.3689 

(0.1487)  

0.3474 

(0.1579)  
- 

 

 

TABLE VIII 

RESULTS ON DTE IN PHYSIOLOGY-BASED MODEL 

P1ĺP2 1.0000 

P1ĺP3 0.4978 

P2ĺP3 0.4241 

 

• Results on LGCI and DLGCI 

From Tables V and VI, when no causal relation exists, i.e. 

2 1P P→ , 3 1P P→  and 3 2P P→ , the averaged LGCI are very 

similar (around 0.006). In comparison,  is much 

greater, but  and  are not so important 

in spite of the relation between populations 2 and 3. As for 

1 2P PLGCI →
1 3P PLGCI → 2 3P PLGCI →

DLGCI , this index allows detecting the causal relation 

between populations 2 and 3, but, in this particular case, it 

fails in detecting the indirect relation from population 1 to 3. 

 

• Results on TE and DTE 

Simulations were carried out with the following parameters: 

,  and 16k = 1l = [ ]0.2;3.0r∈ . From Tables VII and VIII, it 

comes out that all information flows are correctly detected 

( 1 2P P→ , 1 3P P→  and 2 3P P→ ).  and 

 are significant and the indicator succeeded in 

finding the indirect causal relation 

1 2P PDTE →
2 3P PDTE →

1 3P P→  which was not the 

case with the LGCI based measure. 

 

C. Disconnected Populations 

For pairs of disconnected populations ( 0
ij ji

K K= = , 

results not reported here), DLGCI and DTE are theoretically 
equal to zero, but an error in estimating LGCI and TE can 
induce large errors in DLGCI and DTE estimations. This is 
not a major issue. It only implies to first test the existence of a 
statistically significant link between X and Y (without 
searching directionality information) before measuring 
DLGCI and/or DTE. A standard method to perform this test is 
to use the H2 regression index as in [9]. 

 

IV. CONCLUSION 

In this paper, we focused on extracting information on the 
flow direction in multi-channel EEG recordings. For iEEG 
signals simulated by a physiologically-plausible model, the TE 
based approach performs better than the LGCI based one, 
particularly in the detection of indirect causal relations. 
Furthermore, the DTE index places emphasis on the direction 
of propagation. In a future work, we plan to test other types of 
epileptic signatures and to extend this study to the case of 
bidirectional flows. 
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