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Nonlinear mixed-effect models are used increasingly during drug development. For design,

an alternative to simulations is based on the Fisher information matrix. Its expression was

derived using a first-order approach, was then extended to include covariance and imple-

mented into the R function PFIM. The impact of covariance on standard errors, amount of

information and optimal designs was studied. It was also shown how standard errors can be

predicted analytically within the framework of rich individual data without the model. The

results were illustrated by applying this extension to the design of a pharmacokinetic study

of a drug in paediatric development.
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1 INTRODUCTION

Nonlinear mixed-effect models (NLMEM) are used increasingly during drug development

for the analysis of dose-concentration-response data. They allow for a sparse sampling design

with few data points per individual in a set of individuals and estimation of mean parame-

ters, their inter-individual variability and covariate effects. This can be particularly useful

in clinical trials with specific populations, such as children (Tod et al., 2008), where classical

studies with a large number of samples are often limited for ethical or physiological reasons.

An appropriate choice of experimental design for estimating parameters in NLMEM is re-

quired. NLMEM are also now commonly used for the joint modelling of several biological

responses, such as the joint analysis of the pharmacokinetics (PK) and pharmacodynamics

(PD) of a drug, or the PK of parent drugs and their active metabolites.

Designs in NLMEM are called population designs. Population designs consist of a set of

elementary designs to be carried out in a set of individuals (Mentré et al, 1997). Elementary

designs are composed of the design variables to be performed for each individual. Design

variables are for example the number of samples by individual and the location of sampling

times but can be more general. The choice of the design variables and the balance between

the number of individuals and the amount of information by individual have a large impact

on the precision of population parameter estimates. In this work, the sampling times were

considered as the only design variables. Approaches to evaluating and optimizing the designs

are required. To avoid simulations, which are time consuming, designs can be evaluated using

the Fisher information matrix (MF ) and the optimization of its determinant. The expression

of MF for the single-response model was proposed by Mentré et al. (1997) and Retout et al.

(2001), using a first-order Taylor expansion of the model around the expectation of random

effects. The expression of MF for multiple responses was first extended by Hooker and Vicini

(2005), using the same development as for a single-response model. The expression of MF

for nonlinear mixed-effect multiple-response models was also implemented in PFIM, an R

function dedicated to design evaluation and optimization, and was evaluated by simulations

(Bazzoli et al., 2009). Several software packages, which implement an evaluation of the pop-

ulation MF and optimization of the experimental designs in the context of NLMEM, are
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available, notably PFIM in R (Bazzoli et al., 2010).

For MF evaluation, it is often assumed that the variance-covariance matrix of random

effects is diagonal, which means that individual random effects are assumed to be inde-

pendent. The consequence is that covariance terms between parameters are ignored at the

design stage. Ogungbenro et al. (2008) developed an expression of MF that accounts for

covariance between random effects for multiple-response population PK and for population

PK/pharmacodynamics (PD). The objectives of Ogungbenro et al. were to investigate the

implications of including and excluding correlation between random effects and to investigate

the effect of correlation between responses on the optimal sampling times. They performed

a simulation and presented the empirical and expected coefficients of variation of the pa-

rameter estimates for a PK/PD example as well as the mean relative error and root mean

square error for the same example, with and without correlation, to assess the level of bias

and precision of the estimates. The aim of the present work, is to investigate the impact

of the size of covariance between random effects on the optimal sampling-time design for a

pharmacokinetic example and in addition to study its effect on predicted standard errors

(SE), predicted relative standard errors (RSE) and the amount of information, taking into

consideration covariance between random effects. Moreover and conversely to the work of

Ogungbenro et al., in the present work, design optimization allowed several groups of ele-

mentary designs. In addition, it is shown how the SEs in the framework of rich individual

data can be predicted analytically, without using the model. Assuming rich individual data,

it can be assumed that individual parameters of each subject are known without error. Esti-

mation of fixed effects and variance for these parameters is standard and predicted SEs can

be derived analytically.

The results are illustrated by applying these developments to the design of a clinical PK

study in children of a molecule in development. To illustrate the results, a molecule and

its main metabolite were chosen. Indeed, as the parent drug is metabolised into an active

metabolite, concentration-time data of both parent drug and its metabolite are of inter-

est. Developments are applied to the single-response model (parent-drug model) and to the

multiple-response model (joint parent- and metabolite-model). To optimize sampling times,

it is necessary to have a priori information, and in this case, a priori information was model
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and parameters obtained from data generated by the SIMCYP software using the adults-to-

children extrapolation tool, the knowledge of the drug in adults, its physico-chemical proper-

ties and in vitro experimental data. SIMCYP is a software program of Physiologically-Based

PharmacoKinetic (PBPK) modelling (Jamei et al., 2009). PBPK models make it possible to

describe the biodistribution of a substance (absorption, distribution, metabolism, excretion)

and are based on a physiological reality. SIMCYP can predict the evolution of concen-

tration versus time for a given molecule and in a target population (healthy volunteers,

Caucasians, children, etc.). More specifically for the present study, the paediatric module

of SIMCYP took into account all the changes occurring during childhood (Johnson et al.,

2006). Concentration-time profiles for parent and metabolite in children from SIMCYP sim-

ulations have already been analysed by NLMEM with the NONMEM software (Brendel et

al., 2010).

The present article is divided into four sections including the introduction. Section 2

presents the methodological development with notation definitions in 2.1. The calculation of

the SEs of correlation and covariance terms is presented in subsection 2.2, methodology to

approximate MF and the SEs in the framework of individual-rich data is presented in subsec-

tion 2.3. In the fourth subsection (2.4), the focus is on the implementation and optimization

of MF considering covariance between random effects in PFIM. Section 3 first presents the

PK example in paediatrics and the models (3.1). Then, the methods and results concerning

the evaluation of the extension of MF in PFIM are shown (3.2). The two last subsections

present the methods and the results of the approximation of the MF calculation (3.3) and

the impact of covariance on SEs, the amount of information and optimal designs (3.4).

2 METHODOLOGICAL DEVELOPMENT

2.1. Model and notations

A nonlinear mixed-effect multiple-response model, or a multiple response population

model, is defined as follows. The vector of observations Yi for the ith individual is defined

as the vector of the K different responses: Yi = [yTi1, y
T
i2, ..., y

T
iK ]

T , where yik, k = 1, ..., K,
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is the vector of nik observations for the kth response. Each of these responses is asso-

ciated with a known function fk, which defines the nonlinear structural model. The K

functions fk can be grouped in a vector of multiple-response model F, such as F (θi, ξi) =

[f1(θi, ξi1)
T , f2(θi, ξi2)

T , ..., fK(θi, ξiK)
T ]T , where ξi is an elementary design for one individual

i, composed of K sub-designs such that ξi = (ξi1, ξi2, ..., ξiK). ξi is defined by ni sampling

times and its sub-design ξik is defined by (tik1, tik2, ..., tiknik
), with nik sampling times for the

observations of the kth response, so that ni =
K∑

k=1

nik.

θi is the vector of all the individual parameters for all the response models in individual

i. The vector of individual parameters θi depends on β, the p-vector of the fixed effects pa-

rameters and on bi, the vector of the p random effects for individual i. The relation between

θi and (β,bi) is modelled by a function g, that is θi = g(β, bi), which is usually additive, so

that θi = β + bi, or exponential so that θi = exp(β∗ + bi), where exp(β∗) = β. It is assumed

that bi ∼ N(0,Ω) with Ω defined as a p×p-positive definite matrix, for which, each diagonal

element ω2
rr, r = 1, ..., p, represents the variance of the rth component of the vector bi and

ωrs, r = 1, ..., p and s = 1, ...p, with r 6= s, represents the covariance between the rth and the

sth components of the vector bi.

The statistical model is then given by Yi = F (g(β, bi), ξi) + εi, where εi is the vector

composed of the K vectors of residual errors εik, k = 1, ..., K, associated with the K re-

sponses. It is also supposed that εik ∼ N(0,Σik) with Σik a nik × nik-diagonal matrix such

that: Σik(β, bi, σinterk , σslopek , ξik) = diag(σinterk + σslopek × fk(g(β, bi), ξik))
2 where σinterk

and σslopek are two parameters of the model for the variance of the residual error of the

kth response. The case σslopek = 0 returns a homoscedastic error model, whereas the case

σinterk = 0 returns a constant coefficient of variation error model. The case where the two

parameters differ from zero is called a combined error model. The variance of εi over the K

responses is then noted Σi(β, bi, σinter, σslope, ξi), where Σi is a ni × ni-diagonal matrix com-

posed of each diagonal element of Σik with k = 1, ..., K and σinter and σslope are two vectors

of the K components σinterk and σslopek , k = 1, ..., K, respectively. Finally, conditionnally on

the value of bi, it is assumed that the εi errors are independently distributed.

Let λ be the vector of the unknown variance-covariance terms, corresponding to the vec-

tor of the lower triangular of Ω, which contains p(p+1)/2 variance-covariance terms and all
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the parameters of the error model.

Then, λ is expressed as λT = (ω2
11, ..., ω

2
pp, ω21, ω31, ω32, ..., ωp,p−1, σ

T
inter, σ

T
slope). Let Ψ be the

vector of the population parameters to be estimated such as ΨT = (βT , λT ).

For N individuals, a population design is composed of the N elementary designs ξi,

i = 1, ..., N . A population design is therefore described by the N elementary designs for a

total number ntot of observations such as ntot =
N∑

i=1

ni and Ξ = {ξ1, ..., ξN}. Usually, popu-

lation designs are composed of a limited number Q of groups of individuals with identical

designs and identical covariates within each group. Each of these groups is defined by an

elementary design ξq, q = 1, ..., Q, which is composed, for the kth response, especially of

nqk sampling times (tqk1, tqk2, ..., tqknqk
) to be performed in a number Nq of individuals. The

population design can then be written as follows: Ξ = {[ξ1, N1]; [ξ2, N2]; ...; [ξQ, NQ]}.

2.2. Calculation of the standard errors of correlation and covariance

The population Fisher information matrix for a population design Ξ is computed as

the sum of the N elementary Fisher information matrices MF (Ψ, ξi) for each individual i:

MF (Ψ,Ξ) =
N∑

i=1

MF (Ψ, ξi). In the case of a limited number Q of groups, it is expressed by

MF (Ψ,Ξ) =

Q∑

q=1

NqMF (Ψ, ξq).

Ogungbenro et al. (2008) have developed the expression of MF in NLMEM that accounts

for covariance between random effects for multiple responses, i.e. with a non-diagonal Ω

matrix. This expression is implemented in a working version of PFIM and the corresponding

development is detailed in the appendix.

From the square roots of the diagonal elements of M−1
F , the predicted SE for estimated

parameters can be calculated. The aim is to predict the SE for estimated correlation, the

correlation being the ratio of the covariance and the product of the standard deviations. It

should be noted that, if ϕ(θ) is a function of θ, thenMF (θ) = JMF (ϕ(θ))J
T , with J = ∂ϕ(θ)T

∂θ
.

In the following, B11, B22, B33, B12, B13 and B23 are terms of the 3 × 3 sub-matrix of B,

formed of lines and columns corresponding to ωmm, ωll and ωml, respectively. Thus:

SE2(ρ̂ml) = ρ2ml(
1

4ω4
mm

B−1
11 + 1

4ω4
ll

B−1
22 + 1

ω2
mmω2

ll
ρ2
ml

B−1
33 + 1

2ω2
mmω2

ll

B−1
12 − 1

ω3
mmωllρml

B−1
13 − 1

ωmmω3
ll
ρml

B−1
23 )
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And vice versa, if B is now computed as a function of ωmm, ωll and ρml, it becomes

SE2(ω̂ml) = ω2
ml(

1
4ω4

mm
B−1

11 + 1
4ω4

ll

B−1
22 +

ω2
mmω2

ll

ω2
ml

B−1
33 + 1

2ω2
mmω2

ll

B−1
12 + ωll

ωmmωml
B−1

13 + ωmm

ωllωml
B−1

23 )

where estimators are designated with ̂.

2.3. Approximation of the Fisher information matrix for rich design

In NLMEM, the parameters themselves are not estimated, but their mean and variance

are. Let’s consider that the vector of individual parameters θi of each subject is known with-

out error, and estimation of β and Ω is performed from this set of N individual parameters.

The SEs for β̂ and Ω̂ can be predicted analytically without using the model and will depend

on the design only through N, the number of subjects, therefore Ξ = N . To derive the

expression of the MF in that case, we assume that we have N vectors of observation θi with

θ ∼ N(β,Ω). In that case, Ψ∗T = (βT , λ∗T ), where λ∗T = vec(Ω). The general term of the

mth line and lth column of the elementary Fisher information matrix for β and Ω is given by

expression:

M∗
F (Ψ

∗, N)m,l =
∂βT

∂Ψ∗
m

Ω−1 ∂β

∂Ψ∗
l

+
1

2
tr(Ω−1 ∂Ω

∂Ψ∗
m

Ω−1 ∂Ω

∂Ψ∗
l

)

where tr denotes the trace of a matrix.

The derivative of β with respect to fixed effects is equal to 1, and with respect to variance

terms is equal to 0. The derivative of Ω with respect to fixed effects is 0 while the derivative

of Ω with respect to variance terms is equal to a matrix composed of 1 for the corresponding

term and 0 elsewhere. Therefore, the information matrix is block diagonal.

The block of M∗
F for the fixed effects, called block A, is given by M∗

F (β,N) = Ω−1. The block

for λ∗, called block B, has the following components: M∗
F (λ

∗, N)m,l =
1

2
tr(Ω−1 ∂Ω

∂λ∗
m

Ω−1 ∂Ω

∂λ∗
l

),

m, l = 1, ..., dim(λ∗).

The population Fisher information matrix for N individuals is obtained with the above

formula multiplied by N. It is then inverted to obtain SEs.

From these expressions, it can be shown that for β, the diagonal terms of block A−1 are

then equal to 1
N
× ω2

mm in the case of additive random effect and to 1
N
× ω2

mm × β2
m in the

case of exponential random effect, m = 1, ..., p. The standard errors for the fixed effects are
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therefore given by

SE(β̂m) =
1√
N
× ωmm, for additive random effect,

SE(β̂m) =
1√
N
× ωmm × βm, for exponential random effect, respectively.

For Ω, the diagonal terms of the block B−1 are equal to 1
N
× 2 × ω4

mm when the index

corresponds to a variance term and to 1
N
×(ω2

mmω
2
ll+ω2

ml) when it corresponds to a covariance

term. The SE of a variance parameter is equal to

SE(ω̂2
mm) =

1√
N
×

√
2× ω2

mm

and that of a covariance parameter is

SE(ω̂ml) =
1√
N
×

√
ω2
mm × ω2

ll + ω2
ml.

Similarly, the results for the correlation can be obtained:

SE(ρ̂ml) =
1√
N
× (1− ρ2ml).

For variance components, the results are the same for additive and exponential random effect

models.

Using this approach, the SEs can be viewed as lower limits of the expected SEs that we

would get in the case of a rich design, where individual parameters are estimated rather

precisely. They are the lower bound of any design Ξ with N subjects.

2.4. Implementation in PFIM and optimization

Having carried out the extension of the MF for NLMEM with covariance between random

effects, the calculation was implemented into a working version of PFIM, making it possible

to evaluate and optimize designs with covariance between random effects for single- and

multiple-response models. The impact of covariance size on SE and amount of information

was examined. The total information was evaluated through the criterion:

criterion = det(MF )
1/P

with P being the total number of parameters in Ψ.

Optimization was performed using the Federov-Wynn algorithm implemented in PFIM. The
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Federov-Wynn algorithm maximises the determinant of MF using statistical design within

a finite set of sampling times. It can be used to optimize both the structure (number of

groups, number of subjects per group, number of samples per group) and the sampling times

from a finite set of times (Retout et al., 2007). Only one elementary design in all patients

(i.e. one group, with a fixed number of samples) can be assumed.

3 EVALUATION VIA A PHARMACOKINETIC EX-

AMPLE IN PAEDIATRICS

3.1. Presentation of the example

In this section, the PK examples, to which the new developments will be applied, are pre-

sented. Data used to derive the models were ”simulated” plasma concentration versus time

in patients between 0 and 25 years old, obtained via the SIMCYP software using the adults-

to-children extrapolation tool, the knowledge of the drug in adults, its physico-chemical

properties and in vitro experimental data (Perdaems et al., 2010). As the parent drug is

metabolised into an active metabolite, concentration-time profiles of both the parent drug

and its active metabolite were predicted in children. The plasma concentration-time profiles

resulted from an intravenous bolus dose of 0.1 mg/kg in 400 children.

After intravenous injection in children, concentration-time data of the parent drug were

described by a 3-compartment model (single-response model), which is written in ordinary

differential equations as follows:





dA1(t)
dt

= k21A2(t) + k31A3(t)− (k12 + k13 + k10)A1(t)

dA2(t)
dt

= k12A1(t)− k21A2(t)

dA3(t)
dt

= k13A1(t)− k31A3(t)

A1, A2 and A3 being the amount of parent drug in the first, second, third compartment

respectively, kij being the distribution rate constant from compartment i to compartment

j. For each compartment, Ci(t) = Ai(t)
Vi

and C1 is the concentration of the parent drug in
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plasma. According to these notations, initial conditions are: A1(0) = Dose, A2(0) = 0,

A3(0) = 0.

The model is composed of 6 parameters: CLP = k10×V1, which represents the elimination

clearance, Q2 = k12 × V1 = k21 × V2, the inter-compartmental clearance from compartment

1 to compartment 2, Q3 = k13 × V1 = k31 × V3, the inter-compartmental clearance from

compartment 1 to compartment 3, and V1, V2, V3 the volumes of the central compartment

and of the two peripheral compartments, respectively.

The distribution for the parameters was exponential. Inter-individual variabilities were

found on the CLP clearance and on the volume of the central compartment V1 and were

significantly correlated. The residual error model was a combined error model. σinterP

corresponds to the additive error for the parent molecule and σslopeP corresponds to the pro-

portional part. Table 1 shows the parameter values: as the dose was given per kilogram, all

the parameters and dose are expressed by kilogram.

Regarding the multiple-response model, both parent and metabolite concentration-time

profiles were described by a 4-compartment model. Figure 1 represents the model and the

ordinary differential equations describing the model are presented below:





dA1(t)
dt

= k21A2(t) + k31A3(t)− (k12 + k13 + k14 + k10)A1(t)

dA2(t)
dt

= k12A1(t)− k21A2(t)

dA3(t)
dt

= k13A1(t)− k31A3(t)

dA4(t)
dt

= k14A1(t)− k40A4(t)

A4 is the amount of metabolite and C4(t) =
A4(t)
V4

is the metabolite concentration in plasma.

The initial conditions are the same as before, with A4(0) = 0.

For reasons of model identifiability, metabolite volume (V4) was fixed as being the sum

of the three volumes of the parent, that is, V4 = V1 + V2 + V3. As before, CLP represents

the elimination clearance for the parent, CLPM, defined as k14×V1, represents the clearance

from the parent to the metabolite, and CLM, defined as k40 × V4, represents the elimination

clearance for the metabolite.
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The parameter distribution was also exponential. Inter-individual variabilities were found

on the CLP, CLPM and CLM clearances, and on the volume of the central compartment of

the parent V1. As some of the corresponding random effects were significantly correlated,

a full covariance matrix for those four parameters was retained. The residual error model

was a combined error model. σinterP (σinterM ) corresponds to the additive error for the parent

molecule (metabolite, respectively) and σslopeP (σslopeM ) its proportional part. The parameter

values are presented in Table 1 and Figure 2 shows the mean PK profiles of the subjects;

the parent on the left, and metabolite on the right.

3.2. Evaluation of the extension of the Fisher information matrix

including covariance between random effects in PFIM

3.2.1. Methods

To evaluate the extension of MF including covariance between random effects in PFIM

for single- and multiple-responses, the results, with and without covariance, predicted by

PFIM were compared with those obtained by both NONMEM and MONOLIX obtained

from simulated data, using the models presented in the previous section. The parameter

values used for the simulation are described in Table 1.

Data was simulated, using a rich design with 22 sampling times at 0.1, 0.2, 0.4, 0.6, 0.8,

1, 1.3, 1.6, 1.8, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16 and 24 hours after dose injection, with

82 subjects and a dose equal to 0.1 mg/kg. The simulations with and without covariance

were performed for both the single-response model (parent drug only) and for the multiple-

response model (joint parent- and metabolite-model). In each case, only one simulation

was performed because we put ourself in the framework of rich design. The model without

covariance was the same as that with covariance, except for the covariance terms, which

were equal to zero. Two estimation methods were used to estimate parameters: First Order

Conditional Estimate with Interaction (FOCEI) method in NONMEM version 6 (Sheiner and

Beal, 1998) and the Stochastic Approximation Expectation-Maximization (SAEM) algorithm

in MONOLIX version 3.2 (Samson et al., 2006). The estimation methods are different

and so too were the calculations of MF . NONMEM estimates the covariance and its SE,
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whereas MONOLIX estimates the correlation and its SE. Estimating parameters with two

different software programs provides a more accurate evaluation of the prediction using

PFIM to observed SE. Parameter estimates obtained were called N and M for NONMEM

and MONOLIX, respectively, whereas the parameters of the model are called the reference

parameters (P) (Table 1).

The multiple-response model was implemented in PFIM, whereas the single-response

model was available in the PFIM library (Dubois et al., 2011). The SE of parameters

predicted by PFIM for the 2 models using the reference parameter values (Table 1) were

then compared to SEs obtained by NONMEM and MONOLIX. Given that MONOLIX gives

the SE of correlation and not of covariance, the SE of covariance was then derived by the

approach detailed in section 2.3.

Moreover, a comparison between results obtained by PopDes, the software for optimal

design developed by Ogungbenro et al. (Gueorguieva et al., 2007), and results obtained by

PFIM, was performed for the multiple-response model with and without covariance.

3.2.2. Results

The objective was to compare the SEs predicted by PFIM to those obtained with both

NONMEM and MONOLIX, in both cases, i.e., with and without covariance. Table 2 presents

the reference parameters with and without covariance of the single-response model (par-

ent molecule model), as well as the parameter estimates obtained with NONMEM (N) and

MONOLIX (M). The SEs predicted by PFIM, and those obtained by NONMEM and MONO-

LIX with and without covariance for the PK model of the parent molecule, are also shown in

Table 2. First of all, it can be seen that all parameters were accurately estimated and close

to the reference parameter values. The SE values obtained in the case of the model without

covariance with NONMEM and MONOLIX were very close to those predicted by PFIM for

the single-response model. The largest difference between the SE of parameters was for Q3

between MONOLIX and both PFIM and NONMEM, and was equal to 0.030. It corresponds

to a relative standard error (RSE) equal to 12% for both PFIM and NONMEM and to 9%

for MONOLIX. Similar differences were observed for the RSE of variance parameters (an

absolute difference respectively equal to 3% and 4% between the RSEs for the variances of
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CLP and V1 obtained from PFIM and those obtained from MONOLIX). It can be observed

that the differences between the SE of the other parameters were small (lower than 0.010).

In the case of model with covariance, the SEs given by NONMEM and MONOLIX were also

very close to the SE predicted by PFIM (the largest difference is still for Q3 and is equal to

0.020 between NONMEM and MONOLIX and to 0.010 between PFIM and NONMEM). In

terms of RSE, the differences between PFIM, NONMEM and MONOLIX for Q3 were very

small since the RSEs were equal to 12%, 12% and 11%, respectively. For the covariance term,

the difference between the SE predicted by PFIM and the SEs obtained by both NONMEM

and MONOLIX was equal to 0.0060, which is small. The main differences regarding the

RSE of parameters were for the variance and covariance terms: the largest difference was

equal to 10% between PFIM and NONMEM for the variance of V1. The SEs predicted by

PFIM were similar to those obtained with NONMEM and MONOLIX, in both cases, with

and without covariance, for the single-response model. Moreover, it was observed that the

SEs of parameters were almost identical with and without covariance for PFIM, whether

for fixed effects or variance components. The same results can be observed from the SEs

obtained for both NONMEM and MONOLIX.

Table 3 displays the parameters and corresponding SE predicted by PFIM and obtained

with NONMEM and MONOLIX, with and without covariance, for the PK model of parent

and metabolite. The same conclusions can be drawn with the multiple-response model. As

for the single-response model, it can be noted that PFIM accurately predicted the SE with

and without covariance when compared to both NONMEM and MONOLIX. For some co-

variance terms corresponding to very small correlations, it was observed that the parameter

values estimated by NONMEM and MONOLIX were different from the simulated values.

However, the SEs of the parameters that were predicted by PFIM were in a similar range

to those obtained with NONMEM and MONOLIX, with and without covariance, for the

multiple-response model. Same conclusions are observed for the RSE. Moreover, the predic-

tions were identical for the fixed effects and variance parameters, with and without covari-

ance.

It has therefore been demonstrated that the development of MF for covariance terms and

its implementation in a working version of PFIM in R were satisfactory because the SEs of
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parameters predicted by PFIM were similar to those obtained with NONMEM and MONO-

LIX, and that was also true for the SE of covariance terms. Table 4 also shows a comparison

of RSEs obtained by PopDes and RSEs obtained by PFIM, for the multiple-response model

with and without covariance. This evaluation shows the appropriateness of the extension

of the population Fisher information matrix with covariance in PFIM. Moreover, it was ob-

served that the results with covariance were similar to those without covariance for the SE

and RSE of fixed effects and variance components.

3.3. Evaluation of approximation of the Fisher information matrix

for rich design

To evaluate the results of the approximation of MF in the framework of individual-rich

data, the SEs obtained by analytical predictions, using the formula of section 2.3 assuming N

= 82, were compared with those predicted by PFIM for both single- and multiple-response

models for the parameters with inter-individual variability (Table 5). This approach can

only be applied to parameters with non-null variance of random effects.

The analytical SEs were very close to the SE predicted by PFIM for both single- and

multiple-response models. The results obtained by analytical predictions assuming rich data

were similar to those given by PFIM using the model on a rich design and the same number

of patients. They represent the lower limits of what could be observed with a sparse design.

3.4. Influence of covariance on designs

3.4.1 Methods

First, the impact of the size of covariance on the SEs, the RSEs and the amount of in-

formation for the single-response model (parent-drug model) was considered. Using PFIM,

the SE and the RSE on fixed effects and variance components assuming different values of

covariance between the two random effects, i.e. CLP and V1, were predicted. The influence

of the covariance on SE, RSE and amount of information was tested on a range of covariance
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from -0.12 to 0.12 (correlation from -0.9 to 0.9).

Second, the sampling time optimization for both the single- and multiple-response mod-

els with and without covariance is taken into consideration. The impact of covariance was

studied on an optimal design with 6 sampling times out of 12 for the single-response model

and with 4 out of 12 for the multiple-response model. For the latter, both response measure-

ments (i.e. parent and metabolite concentrations) were carried out at each sampling time,

i.e. a total of 8 measurements. The number of measurements was chosen depending on the

number of fixed effects, 6 for the parent model and 8 for the joint parent and metabolite

model. The design domain took place over a 24-hour period with allowed sampling times at

0.1, 0.2, 0.4, 0.8, 1, 2, 4, 6, 8, 12, 16 and 24 hours after dose injection.

Sampling time optimization was performed using the Federov-Wynn algorithm imple-

mented in PFIM, which makes it possible to test for design with only one group (one) or

with several groups (several). Optimal designs for the single-response model (single) and

the multiple-response model (multiple) without covariance (nocov) were studied, as well as

the covariance values of Table 1 (cov). For the single-response model, which had a covari-

ance equal to 0.10, design was optimized for a covariance of 0.12 (highcov), correspond-

ing to a correlation of 0.9. Optimizing design with the highest covariance value makes it

possible to be in the furthest case and thus to have an idea of the impact of the covari-

ance value when the latter is high. The corresponding designs were called Ξsingle nocov one,

Ξsingle cov one, Ξsingle highcov one, Ξsingle nocov several, Ξsingle cov several, Ξsingle highcov several for the

single-response model and Ξmulti nocov one, Ξmulti cov one, Ξmulti nocov several and Ξmulti cov several

for the multiple-response model. Then, the optimized designs obtained with and with-

out covariance were evaluated considering a model with a covariance equal to 0.12 for the

single-response model and with covariance terms of Table 1 for the multiple-response model.

Therefore, the optimized designs obtained with and without covariance were then evaluated

taking into consideration a model with covariance, i.e. the same model was used with these

two different designs, concerning the parent in a first time and concerning both parent and

metabolite in a second time. The focus was then on the relative standard error (RSE) of

parameters and the criterion.
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3.4.2 Results

As expected, regardless of the value of covariance between -0.12 and 0.12, the SEs and

the RSEs for fixed effects, variances and error terms were similar (results not shown). Figure

3 shows how the covariance had an impact on the SE and the RSE of covariance and the

amount of information. The SEs of covariance increased for large values of covariance, but

were similar for covariance between -0.03 and 0.03. On the other hand, the RSE decreased

and the amount of information increased for large value of covariance.

Focus on the influence of covariance on optimal designs: for the single-response model

and one group, the optimized designs with 6 times were identical for a covariance equal to

0 and equal to 0.10 (covariance value of Table 1) and the optimal sampling times were 0.1,

0.4, 0.8, 2, 6 and 16 hours after dose injection (Ξsingle nocov one and Ξsingle cov one). For the

Ξsingle highcov one design, where cov = 0.12, the optimal sampling times were the same as those

of the Ξsingle nocov one and Ξsingle cov one designs, except for the second sampling time which

was 0.2 instead of 0.4. These designs were then evaluated taking into consideration a model

with covariance equal to 0.12. Figure 4 shows the RSE of parameters obtained for each

design. It can be seen that the RSEs were very similar between these two evaluations. The

criterion, was equal to 1955 for evaluation of the Ξsingle nocov one and Ξsingle cov one designs,

and 1971 for evaluation of the Ξsingle highcov one design. So, the efficiency loss was minor as it

was below 1%.

Concerning the comparison of the optimal Ξsingle nocov several and Ξsingle highcov several de-

signs: Table 6 shows the elementary design and the number of subjects for the two different

designs. As previously demonstrated, several optimal sampling times obtained were not the

same, whether taking into consideration the covariance or not. However, similar to the op-

timizations with one group, when the criteria were compared between the Ξsingle nocov several

and Ξsingle highcov several designs, respectively, equal to 1996 and 2025, the efficiency loss was

very low (1.5%). Therefore, even if the optimal designs were not exactly the same with or

without covariance, the design efficiency was barely affected.

Focus on the influence of the covariance on optimal designs for the multiple-response

model: one optimal sampling time differed between the Ξmulti nocov one and the Ξmulti cov one
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designs. The Ξmulti nocov one design was composed of optimal sampling times at 0.2, 2, 8 and

24 hours after dose injection and in the Ξmulti cov one design, the second sampling time was

not at 0.2 but rather at 0.1. Then, these two optimal designs were evaluated with a covari-

ance term model. It was observed that RSEs were very similar between the Ξmulti nocov one

and Ξmulti cov one designs, be it for fixed effect parameters, variance parameters or covari-

ance terms. Moreover, when the two criteria obtained for these two designs were compared,

they were equal to 1612 (Ξmulti nocov one design) and 1622 (Ξmulti cov one design), respectively.

Therefore, the efficiency loss here was still below 1%.

Considering several groups of subjects with 4 sampling times, Table 7 shows the differ-

ent elementary designs with the corresponding number of subjects. The number of groups

was different and some groups were present in the Ξmulti nocov several design and not in the

Ξmulti cov several design and vice versa. Evaluating these designs with a covariance model,

the RSEs of Ξmulti nocov several design and the RSEs of Ξmulti cov several design were very sim-

ilar. Similarly, the criteria for these two designs were equal to 1747 and 1758, respectively.

Therefore, the efficiency loss here is still minor (lower than 1%).

4 DISCUSSION

The first objective was to extend the Fisher information matrix in PFIM software for

covariance between random effects and to evaluate it. For the evaluation, a comparison of

the SEs of parameters predicted by PFIM and those given by two nonlinear mixed effect

estimation software, NONMEM and MONOLIX, was carried out. To that end, data were

simulated, using a rich design with 22 sampling times, a dose equal to 0.1 mg/kg in 82 indi-

viduals and with the single-response model and a more complex joint parent and metabolite

model. Only one simulation was performed, it should not affect the results because it is a

rich design with many subjects, so only very little changes are expected across replication.

Also, the objective was the comparison between observed SE and predicted SE and not an

evaluation of empirical SE. This comparison showed agreement between results predicted by

PFIM and those obtained by both the NONMEM and MONOLIX software.

To carry out an optimal design, it is necessary to have a priori information, and in this
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paediatric example, the a priori information was model and parameters obtained from data

generated by the SIMCYP software. The population PK models were fitted to the predicted

SIMCYP data, which were ”simulated” plasma concentration versus time for a parent drug

and its active metabolite.

Then, the impact of the size of covariance was studied. In their work, Ogungbenro et

al. (2008) showed that RSE were very similar for fixed effect parameters, while for variance

parameters, they are slightly higher for design without covariance compared to design with

covariance, especially for pharmacodynamic parameters. Regarding the SEs for the present

work, they did not differ for the fixed parameters or the variance parameters, no matter

the size of the covariance. Similarly, regardless of the value of covariance, the RSEs did

not differ for the fixed parameters or the variance parameters. Therefore, it is perhaps not

necessarily useful to incorporate covariance in design stage for those parameters. But further

comparisons would be needed. On the other hand, it was observed that the SE of covariance

increased when covariance was large whereas the RSE of covariance decreased. Concerning

the amount of information, it increased for very large values of covariance. The amount of

information was lower without covariance, which means that the corresponding MF was a

lower limit of the information computed with covariance terms.

Concerning the approximation of the calculation of the SEs without using the model,

which mimics the case of individual-rich data, it was possible to obtain an idea of the pre-

cision of estimates quickly, and to see if the number of subjects was large enough. Indeed,

these analytical predictions were the lower limits of the SEs that could be obtained by the

population approach, and could not be improved by increasing the number of samples per

patient.

Focusing then on the influence of covariance on optimal designs, as Ogungbenro et al.

(2008) demonstrated, it was shown that optimal design depends on the covariance between

parameters. Indeed, the values of covariance terms can affect optimal sampling times, how-

ever it was rather slight in the case of a one-group design. When considering several groups

of subjects, optimal sampling times and groups can be different with and without covari-

ance, but the efficiency loss was very low for both one group and several groups. Further

comparisons should be performed. Also, the design variables chosen in this work were the
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location of sampling times but it would be possible to extend to other design variables, as

for example the dose (Nyberg et al., 2009).

In the present work, the calculation of MF was proposed using a first-order linearization

of the model by the Taylor expansion. The derivative of the variance of observations accord-

ing to β was assumed to be zero. Therefore, MF was expressed as a block diagonal matrix.

An extension of MF considering the dependence of the observations on the parameters of

the model, that is, a complete MF with an additional off-diagonal block, was also proposed

(Retout and Mentré, 2003). However, Mentré et al. (2011) showed on two examples that if

a linearization of the model was carried out, it is better to have a block diagonal expression

for MF . Mielke and Schwabe (2010) also showed that an approach with block diagonal MF

was more reliable than one with the full MF . But it is not the case for all situations, as

shown by Nyberg et al. (2008). In the MONOLIX software, the observed MF calculated by

linearization of the model also had a block diagonal expression. It is known that linearization

can lead to problems when a very nonlinear model is used. An alternative to linearization,

for example the Gaussian quadrature (Guedj et al., 2007; Nguyen et al., 2011), could also

be developed for models with covariance.

In conclusion, the extension of MF including covariance between random effects in PFIM

provides a useful computing tool for design evaluation and optimization, and this extension

will be available in the next version of PFIM. The size of covariance had no impact on the

SE of fixed effects or variance parameters. Omitting the covariance at the design stage influ-

enced the optimal sampling times, but barely had an influence on efficiency, and predicted

SEs were only slightly changed.

5 APPENDIX

The Fisher information matrix MF (Ψ, ξi) for multiple-response models for the individual

i with design ξi is given by MF (Ψ, ξi) = E(−∂2Li(Ψ;Yi)
∂Ψ∂ΨT ), where Li(Ψ;Yi) is the log-likelihood

of the vector of observations Yi of that individual for the population parameters Ψ. Because

F is nonlinear, there is no analytical expression for the log-likelihood and a first-order Taylor

expansion of the model F (θi, ξi) = F (g(β, bi), ξi), around the expectation of bi, that is to say
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around 0, is used: F (g(β, bi), ξi) ∼= F (g(β, 0), ξi) + (∂F
T (g(β,bi),ξi)

∂bi
)bi=0

bi.

Therefore, Yi
∼= F (g(β, 0), ξi) + (∂F

T (g(β,bi),ξi)
∂bi

)bi=0bi + εi.

Using this linearization, the approximated marginal expectation Ei and variance Vi of Yi are

given by:

E(Yi) ∼= Ei = F (g(β, 0), ξi)

V ar(Yi) ∼= Vi = (
∂F T (g(β, bi), ξi)

∂bi
)bi=0Ω(

∂F (g(β, bi), ξi)

∂bTi
)bi=0 + Σ(β, 0, σinter, σslope, ξi)

The log-likelihood Li is approximated by:

−2Li(Ψ;Yi) ∼= niln(2π) + ln(|Vi|) + (Yi − Ei)
TV −1

i (Yi − Ei)

The elementary Fisher information matrix for a multiple-response model with non-diagonal

variance matrix is derived from this expression of the log-likelihood. In the following, the i

index for the individual is omitted for the sake of simplicity.

MF (Ψ, ξ) = EY (−
∂2(L(Ψ, Y )

∂Ψ∂ΨT
)

The elementary MF depends on the approximated marginal expectation E and variance V

of the observations. Assuming that the derivative of V does or does not depend on the fixed

effects, the elementary MF is a full matrix or a block diagonal matrix. It was suggested

(Mentré et al., 2011; Mielke and Schwabe, 2010) that for derivation of MF using first-order

linearization, the block diagonal expression might be better. This is not always the case, as

presented by Nyberg et al. (2008). Here, the block diagonal expression for MF was chosen

and is expressed as:

MF (Ψ, ξ) ∼= 1
2


A(E, V ) 0

0 B(E, V )




where

(A(E, V ))ml = 2
∂F T

∂βm

V −1 ∂F

∂βl

with m and l = 1, ..., p and

(B(E, V ))ml = tr(
∂V

∂λm

V −1 ∂V

∂λl

V −1)
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with m and l = 1, ..., dim(λ).

The calculations of the Fisher information matrix with all covariance terms in Ω were

developed. For block A, it is the same calculation with and without covariance, except that

the Ω matrix is full when covariance is considered. On the other hand, the calculations are

different for block B. Indeed

∂V

∂λm

= (
∂F T (g(β, b), ξ)

∂b
)b=0

∂Ω

∂λm

(
∂F (g(β, b), ξ)

∂bT
)b=0 + (

∂Σ(β, b, σinter, σslope, ξ)

∂λm

)b=0

with m = 1, ..., dim(λ).

And depending on whether m corresponds to a variance or covariance term, ∂Ω
∂λm

contains

one or two terms different from zero, respectively. For a variance term, that is for λ1 to λp

(corresponding to ω2
11 to ω2

pp), the general term for the derivation of the matrix V according

to λm, m varying from 1 to p, for one response, is expressed as:

∂fk(g(β, 0), tj)

∂bm

∂fk(g(β, 0), tj′)

∂bm

with j = 1, ..., nk the line index, j′ = 1, ..., nk the column index and k corresponding to the

kth response.

For a covariance term from λp+1 to λp(p+1)/2 (corresponding to ω21 to ωp,p−1), the deriva-

tion of the matrix V, for one response, according to λm is expressed as:

∂fk(g(β, 0), tj)

∂br

∂fk(g(β, 0), tj′)

∂bs
+

∂fk(g(β, 0), tj)

∂bs

∂fk(g(β, 0), tj′)

∂br

with r, s = 1, ..., p, r 6= s, j = 1, ..., nk the line index, j′ = 1, ..., nk the column index, and k
corresponding to the kth response.

Note that (
∂Σ(β,b,σinter,σslope,tj)

∂λm
)b=0 is equal to zero when m does not correspond to an

item of an error parameter. Otherwise, the derivation of the matrix V according to λm,

λm = σinterk , is equal to 2 × diag(σinter + σslope × fk(g(β, 0), tj)) and the derivation of the

matrix V according to λm = σslopek is 2× diag(fk(g(β, 0), tj)(σinter +σslope× fk(g(β, 0), tj))),

with j = 1, ..., nk and k corresponding to the kth response.

20



ACKNOWLEDGMENTS

C. Dumont was supported by a grant from Institut de Recherches Internationales Servier,

France.

The authors would like to thank Kay Ogungbenro (University of Manchester) for running

PopDes on the example and for providing the results presented in Table 4.

21



REFERENCES
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Dubois A, Bertrand J, Mentré F. Mathematical expressions of the pharmacokinetic and pharma-

codynamic models implemented in the PFIM software.

http://www.pfim.biostat.fr/PFIM_PKPD_library.pdf.
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Table 1: Population pharmacokinetic parameter values for the parent drug and the joint

model of the parent drug and its metabolite

Parameters (units) Parameter values

Parent drug Joint model

βCLP (L.h−1.kg−1) 0.81 0.61

βCLPM (L.h−1.kg−1) - 0.11

βV1 (L.kg−1) 0.88 0.97

βQ2 (L.h−1.kg−1) 0.58 0.12

βV2 (L.kg−1) 1.0 0.41

βQ3 (L.h−1.kg−1) 1.3 0.69

βV3 (L.kg−1) 0.39 0.87

βCLM (L.h−1.kg−1) - 0.91

ω2
CLP 0.23 0.25

ω2
CLPM - 1.4

ω2
V1

0.075 0.070

ω2
CLM - 0.27

ωCLP,V1 0.10 0.045

ωCLP,CLPM - 0.036

ωV1,CLPM - 0.024

ωCLP,CLM - 0.091

ωV1,CLM - 0.083

ωCLPM,CLM - -0.045

σinterP (µg.L
−1) 0.22 0.072

σslopeP 0.10 0.16

σinterM (µg.L−1) - 0.011

σslopeM - 0.053
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Table 2: SE of the parameters with and without covariance predicted by PFIM (P), and obtained by NONMEM (N) and

MONOLIX (M) on a simulated data set for the parent molecule and the rich design in 82 patients (22 observations per patient)

Model without covariance Model with covariance

Reference Estimated Predicted Obtained Reference Estimated Predicted Obtained

parameters parameters SE SE parameters parameters SE SE

Parameters P N M P N M P N M P N M

βCLP 0.81 0.87 0.87 0.043 0.052 0.051 0.81 0.88 0.87 0.043 0.053 0.053

βV1
0.88 0.88 0.88 0.037 0.037 0.037 0.88 0.91 0.89 0.037 0.042 0.040

βQ2
0.58 0.56 0.53 0.031 0.029 0.030 0.58 0.55 0.54 0.031 0.034 0.030

βV2
1.0 1.0 1.0 0.024 0.022 0.025 1.0 1.0 1.0 0.024 0.026 0.025

βQ3
1.3 1.3 1.3 0.15 0.15 0.12 1.3 1.4 1.4 0.15 0.16 0.14

βV3
0.39 0.39 0.41 0.027 0.021 0.026 0.39 0.40 0.41 0.027 0.025 0.027

ω2
CLP

0.23 0.28 0.28 0.036 0.038 0.044 0.23 0.30 0.30 0.036 0.039 0.047

ω2
V1

0.075 0.086 0.088 0.013 0.015 0.016 0.075 0.097 0.098 0.013 0.020 0.017

ωCLP,V1
(ρCLP,V1

) - - - - - - 0.10(0.78) 0.14(0.84) 0.14(0.84) 0.019 0.025 0.025

σinterP 0.22 0.28 0.22 0.011 0.011 0.011 0.22 0.28 0.22 0.011 0.011 0.011

σslopeP
0.10 0.13 0.11 0.0020 0.0030 0.0030 0.10 0.13 0.11 0.0025 0.0025 0.0028
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Table 3: SE of the parameters with and without covariance predicted by PFIM (P), and obtained by NONMEM (N) and

MONOLIX (M) on a simulated data set for parent and metabolite and the rich design in 82 patients (22 observations per

patient)

Model without covariance Model with covariance

Reference Estimated Predicted Obtained Reference Estimated Predicted Obtained

parameters parameters SE SE parameters parameters SE SE

Parameters P N M P N M P N M P N M

βCLP 0.61 0.67 0.67 0.034 0.041 0.040 0.61 0.68 0.67 0.034 0.041 0.041

βV1
0.97 0.97 0.95 0.030 0.028 0.027 0.97 0.98 0.98 0.030 0.026 0.026

βQ2
0.12 0.098 0.13 0.044 0.038 0.045 0.12 0.11 0.14 0.044 0.041 0.047

βV2
0.41 0.37 0.44 0.093 0.079 0.089 0.41 0.39 0.47 0.093 0.083 0.094

βQ3
0.69 0.69 0.65 0.037 0.031 0.038 0.69 0.68 0.65 0.037 0.034 0.041

βV3
0.87 0.89 0.80 0.097 0.085 0.094 0.87 0.86 0.78 0.097 0.089 0.099

βCLPM 0.11 0.11 0.11 0.015 0.015 0.015 0.11 0.11 0.11 0.015 0.015 0.016

βCLM 0.91 0.93 0.91 0.054 0.048 0.050 0.91 0.95 0.95 0.054 0.048 0.050

ω2
CLP

0.25 0.30 0.29 0.040 0.039 0.046 0.25 0.30 0.30 0.040 0.037 0.046

ω2
V1

0.070 0.063 0.056 0.012 0.012 0.010 0.070 0.053 0.048 0.012 0.011 0.0090

ω2
CLPM

1.4 1.6 1.6 0.21 0.22 0.25 1.4 1.6 1.6 0.21 0.22 0.25

ω2
CLM

0.27 0.23 0.23 0.043 0.036 0.036 0.27 0.21 0.21 0.043 0.039 0.034

ω(CLP,V1)(ρCLP,V1
) - - - - - - 0.045(0.34) 0.044(0.35) 0.043(0.36) 0.016 0.012 0.014

ωCLP,CLPM (ρCLP,CLPM ) - - - - - - 0.036(0.061) 0.13(0.19) 0.12(0.18) 0.065 0.073 0.077

ωV1,CLPM (ρV1,CLPM ) - - - - - - 0.024(0.078) -0.015(-0.052) -0.0050(-0.018) 0.036 0.040 0.031

ωCLP,CLM (ρCLP,CLM ) - - - - - - 0.091(0.35) 0.082(0.33) 0.081(0.32) 0.031 0.028 0.029

ωV1,CLM (ρV1,CLM ) - - - - - - 0.083(0.61) 0.052(0.49) 0.049(0.49) 0.019 0.017 0.012

ωCLPM,CLM (ρCLPM,CLM ) - - - - - - -0.045(-0.075) -0.14(-0.23) -0.13(-0.22) 0.068 0.073 0.066

σinterP 0.072 0.095 0.076 0.0061 0.0045 0.0052 0.072 0.094 0.076 0.0061 0.0047 0.0052

σslopeP
0.16 0.19 0.17 0.0032 0.0031 0.0036 0.16 0.19 0.17 0.0032 0.0030 0.0036

σinterM 0.011 0.015 0.011 0.00082 0.00073 0.00062 0.011 0.014 0.012 0.00082 0.00064 0.00062

σslopeM
0.053 0.057 0.049 0.0014 0.0012 0.0013 0.053 0.057 0.049 0.0014 0.0011 0.0013
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Table 4: RSE (%) of the parameters with and without covariance predicted by PopDes and PFIM for the parent and metabolite

and the rich design in 82 patients (22 observations per patient)

Model without covariance Model with covariance

Parameters Parameter values PopDes PFIM Parameter values PopDes PFIM

βCLP 0.61 5.6 5.6 0.61 5.6 5.6

βV1
0.97 3.0 3.1 0.97 3.0 3.1

βQ2
0.12 32 38 0.12 32 38

βV2
0.41 20 23 0.41 20 23

βQ3
0.69 4.7 5.4 0.69 4.7 5.4

βV3
0.87 9.7 11 0.87 9.7 11

βCLPM 0.11 13 13 0.11 13 13

βCLM 0.91 5.8 5.8 0.91 5.8 5.8

ω2
CLP

0.25 16 16 0.25 16 16

ω2
V1

0.070 17 17 0.070 17 17

ω2
CLPM

1.4 16 16 1.4 16 16

ω2
CLM

0.27 16 16 0.27 16 16

ω(CLP,V1) - - - 0.045 35 36

ωCLP,CLPM - - - 0.036 183 183

ωV1,CLPM - - - 0.024 147 148

ωCLP,CLM - - - 0.091 34 34

ωV1,CLM - - - 0.083 22 22

ωCLPM,CLM - - - -0.045 151 151

σinterP 0.072 7.7 8.3 0.072 7.7 8.3

σslopeP
0.16 1.8 2.0 0.16 1.8 2.0

σinterM 0.011 5.1 5.3 0.011 5.1 5.3

σslopeM
0.053 2.0 2.4 0.053 2.0 2.4
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Table 5: Comparison of SEs obtained by analytical predictions and SEs predicted by PFIM

for both single- and multiple-response models for the parameters with inter-individual vari-

ability, in the framework of rich design in 82 patients (22 observations per patient)

Single-response model Multiple-response model

Parameters Parameter Analytical PFIM Parameter Analytical PFIM

values predictions predictions values predictions predictions

βCLP 0.81 0.043 0.043 0.61 0.034 0.034

βV1
0.88 0.027 0.027 0.97 0.028 0.028

βCLPM - - - 0.11 0.014 0.014

βCLM - - - 0.91 0.052 0.052

ω2
CLP

0.23 0.036 0.036 0.25 0.039 0.039

ω2
V1

0.075 0.012 0.012 0.070 0.011 0.011

ω2
CLPM

- - - 1.4 0.22 0.22

ω2
CLM

- - - 0.27 0.042 0.042

ω(CLP,V1) 0.10 0.018 0.018 0.045 0.015 0.015

ωCLP,CLPM - - - 0.036 0.065 0.065

ωV1,CLPM - - - 0.024 0.035 0.035

ωCLP,CLM - - - 0.091 0.030 0.030

ωV1,CLM - - - 0.083 0.018 0.018

ωCLPM,CLM - - - -0.045 0.068 0.068
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Table 6: Optimal designs with 6 points with several groups for the single-response model:

Ξsingle nocov several design is for a model with covariance = 0 and Ξsingle highcov several design

for a model with covariance = 0.12

Time (in hour) Number of subjects

Ξsingle nocov several Ξsingle highcov several

0.1, 0.2, 0.4, 2, 6, 16 0 16

0.1, 0.2, 0.8, 2, 6, 16 0 28

0.1, 0.2, 0.8, 4, 12, 16 5 22

0.1, 0.4, 0.8, 2, 4, 12 5 14

0.1, 0.4, 0.8, 2, 6, 16 52 0

0.1, 0.4, 1, 4, 12, 16 18 0

0.1, 0.4, 2, 6, 16, 24 2 2
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Table 7: Optimal designs with 4 points with several groups for the multiple-response model:

Ξmulti nocov several design is for a model with every covariance = 0 and Ξmulti cov several design

with at least one covariance 6= 0 (see Table 1)

Time (in hour) Number of subjects

Ξmulti nocov several Ξmulti cov several

0.1, 0.8, 4, 12 22 21

0.1, 0.8, 12, 24 3 2

0.1, 2, 6, 16 0 5

0.1, 2, 8, 24 37 42

0.1, 2, 12, 24 0 2

0.1, 6, 16, 24 14 10

0.2, 2, 8, 24 1 0

0.8, 4, 12, 24 4 0

2, 6, 16, 24 1 0
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Figure 1: Structural PK model with 4 compartments: 3 compartments for the parent drug

and one additional compartment for the metabolite.
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Figure 2: Mean concentration-time profiles for the parent (left) and for the metabolite (right)

for 22 sampling times per subject.
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Figure 3: Influence of covariance on SE (left, �) and RSE (right, •) of covariance for the

single-response model (top), and influence of covariance on criterion for the single-response

model (bottom).
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Figure 4: Predicted RSE (%) of fixed effect parameters (top) and variance components

(bottom) for Ξsingle nocov one and Ξsingle cov one designs in black (optimized with a covariance

= 0 and with a covariance = 0.10) and the Ξsingle highcov one design in white (optimized with

covariance = 0.12) for the single-response model with covariance = 0.12.

35


