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Abstract

Definition of the disease: Dominant Optic Atrophy (DOA) is a neuro-ophthalmic condition characterized by a

bilateral degeneration of the optic nerves, causing insidious visual loss, typically starting during the first decade of

life. The disease affects primary the retinal ganglion cells (RGC) and their axons forming the optic nerve, which

transfer the visual information from the photoreceptors to the lateral geniculus in the brain.

Epidemiology: The prevalence of the disease varies from 1/10000 in Denmark due to a founder effect, to 1/30000

in the rest of the world.

Clinical description: DOA patients usually suffer of moderate visual loss, associated with central or paracentral

visual field deficits and color vision defects. The severity of the disease is highly variable, the visual acuity ranging

from normal to legal blindness. The ophthalmic examination discloses on fundoscopy isolated optic disc pallor or

atrophy, related to the RGC death. About 20% of DOA patients harbour extraocular multi-systemic features,

including neurosensory hearing loss, or less commonly chronic progressive external ophthalmoplegia, myopathy,

peripheral neuropathy, multiple sclerosis-like illness, spastic paraplegia or cataracts.

Aetiology: Two genes (OPA1, OPA3) encoding inner mitochondrial membrane proteins and three loci (OPA4, OPA5,

OPA8) are currently known for DOA. Additional loci and genes (OPA2, OPA6 and OPA7) are responsible for X-linked

or recessive optic atrophy. All OPA genes yet identified encode mitochondrial proteins embedded in the inner

membrane and ubiquitously expressed, as are the proteins mutated in the Leber Hereditary Optic Neuropathy.

OPA1 mutations affect mitochondrial fusion, energy metabolism, control of apoptosis, calcium clearance and

maintenance of mitochondrial genome integrity. OPA3 mutations only affect the energy metabolism and the

control of apoptosis.

Diagnosis: Patients are usually diagnosed during their early childhood, because of bilateral, mild, otherwise

unexplained visual loss related to optic discs pallor or atrophy, and typically occurring in the context of a family

history of DOA. Optical Coherence Tomography further discloses non-specific thinning of retinal nerve fiber layer,

but a normal morphology of the photoreceptors layers. Abnormal visual evoked potentials and pattern ERG may

also reflect the dysfunction of the RGCs and their axons. Molecular diagnosis is provided by the identification of a

mutation in the OPA1 gene (75% of DOA patients) or in the OPA3 gene (1% of patients).

Prognosis: Visual loss in DOA may progress during puberty until adulthood, with very slow subsequent chronic

progression in most of the cases. On the opposite, in DOA patients with associated extra-ocular features, the visual

loss may be more severe over time.

Management: To date, there is no preventative or curative treatment in DOA; severely visually impaired patients

may benefit from low vision aids. Genetic counseling is commonly offered and patients are advised to avoid

alcohol and tobacco consumption, as well as the use of medications that may interfere with mitochondrial

metabolism. Gene and pharmacological therapies for DOA are currently under investigation.
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Review
Disease name/synonyms

DOA: Dominant Optic Atrophy (OMIM #165500), ini-

tially called Kjer’s Optic Atrophy, was first described by

the Danish ophthalmologist Dr. Poul Kjer [1]. DOA

is also called Autosomal Dominant Optic Atrophy

(ADOA), to emphasize its autosomal mode of inheritance,

in contrast with Leber Hereditary Optic Neuropathy

(LHON), inherited by mutations on the mitochondrial

genome and maternal lineage.

DOAD-DOAplus: Dominant Optic Atrophy and Deaf-

ness and DOAplus (both OMIM #125250) are syndromic

forms of DOA associating neurosensory deafness (DOAD)

and/or other clinical manifestations (DOAplus) like myop-

athy, progressive external ophthalmoplegia, peripheral

neuropathy, stroke, multiple sclerosis or spastic paraplegia.

DOAC: Dominant Optic Atrophy and Cataract

(OMIM #606580) is a rare form of DOA associated to

cataract.

Orphanet reference numbers are ORPHA98673 for

DOA, and ORPHA1215 for DOAplus.

Definition

DOA is an optic neuropathy due to the degeneration of

optic nerve fibers. It belongs to the group of inherited

optic neuropathies (ION), which are genetic conditions

affecting the retinal ganglion cells (RGCs) whose axons

form the optic nerve. Because RGCs are neurons origin-

ating from an extension of the diencephalon, DOA is a

disease of the central nervous system [2].

DOA is a mitochondriopathy, as the genes respon-

sible for DOA encode proteins ubiquitously expressed,

imported into the mitochondria and associated to

the inner membrane [3]. As such, DOA may be syn-

dromic and include extra-ocular symptoms, mostly

neuro-muscular, that are frequently found in mito-

chondriopathies [4].

Epidemiology

DOA is a relatively common form of inherited optic

neuropathy. Its prevalence is 3/100,000 in most popula-

tions in the world, but can reach 1/10,000 in Denmark

where a founder effect was identified [5, 6]. DOA pene-

trance is around 70%, but depending on families,

mutations and study criteria [6,7], it can vary from 100%

[5] to 43% [8]. Syndromic DOAD and DOAplus ac-

count for some 20% of all DOA cases and are fully

penetrant [9].

Clinical description

The disease was first described at the end of the 19th

century [10,11]. Large families were then reported in UK

[12], USA [13] and France [14], but it was after the re-

port of 19 DOA families by the Danish ophthalmologist

Kjer that this clinical entity was recognized and assigned

his name [1].

Non syndromic dominant optic atrophy

In most cases, DOA presents as a non syndromic, bilat-

eral optic neuropathy. Although DOA is usually diag-

nosed in school-aged children complaining of reading

problems, the condition can manifest later, during adult

life [15-17]. DOA patients typically experience a slowly

progressive, insidious decrease of vision, which can

rarely be asymmetric, although rapid decline has also

been reported in adults [18,19]. The visual impairment

is irreversible, usually moderate (visual acuity: 6/10 to 2/

10) and highly variable between and within families.

However, extreme severity (legal blindness) or very mild

presentation (subclinical decrease in visual acuity) can

be encountered [20,21].

On fundus examination, the optic disk typically pre-

sents a bilateral and symmetrical pallor of its temporal

side, witnessing the loss of RGC fibers entering the optic

nerve (Figure 1A). The optic nerve rim is atrophic and a

temporal grey crescent is often present. Optic disc exca-

vation is not unusual, but its clinical features vary in

most of the cases from that of glaucoma. Optical Coher-

ence Tomography (OCT) discloses the reduction of the

thickness of the peripapillary retinal nerve fiber layer

in all four quadrants, but does not disclose alteration

of other retinal layers [22,23] (Figure 1B). The visual

field typically shows a caecocentral scotoma, and less

frequently a central or paracentral scotoma, while

peripheral visual field remains normal (Figure 1C).

Importantly, there is a specific tritanopia, i.e. a blue-

yellow axis of color confusion, which, when found, is

strongly indicative of Kjer disease [24,25] (Figure 1D).

However, in severe cases or in patients with congeni-

tal dyschromatopsia (daltonism), interpretation of the

color vision defect may be more difficult. The pupillary re-

flex and circadian rhythms are not affected, suggesting

that the melanopsin RGC are spared during the course of

the disease [26,27].

Some patients harboring the pathogenic OPA1 muta-

tion can be asymptomatic; at the opposite end of the

clinical variability spectrum, mutations of the OPA1 gene

have been reported to enhance multisystemic deficits

while sparing totally the optic nerve.

Anterior and/or posterior blue-dot cerulean cata-

ract occurs in the rare DOA patients with an OPA3

mutation [28].

Although typical DOA is associated with a progressive

and irreversible loss of vision, we reported the case of a

young man (23 years) who developed an isolated, pro-

gressive, painless bilateral optic neuropathy as a result of

central scotomas that spontaneously recovered partial vi-

sion six months later. The patient harbored a novel
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Figure 1 (See legend on next page.)
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heterozygous mutation in OPA1 exon 5b (c.740G>A)

which was the first mutation to be described in one of

the three alternative OPA1 exons [29]. In addition, we

identified another original case presenting a late onset

(62 years) sequencial and acute loss of vision, associated

to a novel dominant mutation (c.2794C>T) in OPA1

[30], suggesting that atypical natural histories of DOA

can be related to OPA1 mutations.

Syndromic dominant optic atrophy

Syndromic DOAD and DOAplus patients experience full

penetrance and usually more severe visual deficits

[9,31,32].

DOAD and DOAplus with extra-ophthalmological ab-

normalities represent up to 20% of DOA patients with an

OPA1 mutation [6]. The most common extra-ocular sign

in DOA is sensori-neural hearing loss, but other asso-

ciated findings may occur later during life (myopathy and

peripheral neuropathy), suggesting that there is a con-

tinuum of clinical presentations ranging from a mild

“pure DOA” affecting only the optic nerve, to a severe

and multisystemic presentations. Sensori-neural hearing

loss associated to DOA may range from severe and con-

genital to subclinical [31-36] with intra- and inter- familial

variations, and mostly segregate with the OPA1 R445H

(c.1334G>A) mutation. In general, auditory brain stem

responses, which reflect the integrity of the auditory path-

way from the auditory nerve to the inferior colliculus, are

absent, but both ears show normal evoked oto-acoustic

emissions, reflecting the functionality of presynaptic ele-

ments and in particular that of the outer hair cells [37].

Peripheral axonal sensory and/or motor neuropathy

and proximal myopathy may be diagnosed in some DOA

patients from their third decade of life onwards, as well

as a combination of cerebellar and sensory ataxia in

adulthood, multiple sclerosis-like illness and spastic

paraplegia [9,16,38,39]. Progressive external ophthalmo-

plegia is also frequently diagnosed in syndromic DOA-

plus patients [9]. One report of a Behr syndrome

associating DOA to pyramidal signs, ataxia and mental

retardation was linked to an OPA1 mutation [40] and

another report describing a severe neuromuscular

phenotype associated to optic atrophy was described in

two OPA1 compound heterozygote siblings [41]. Muscle

biopsy from DOAplus patient revealed features typical of

mitochondrial myopathy, as approximately 5% of all

fibers were deficient in histochemical COX activity and

several fibers showed evidence of subsarcolemmal accu-

mulation of abnormal mitochondria, a phenotype known

as ragged red fibers [9,31,32].

Etiology

Loci and genes

DOA is not genetically highly heterogeneous, in com-

parison with many other ophthalmologic or neurodegen-

erative disorders (Table 1). The first DOA locus, OPA1,

localised on 3q28 was initially considered as unique

[42,43]. But since the discovery of the OPA1 gene in

2000 [44,45], two other loci, OPA4 and OPA5, were fur-

ther identified in few families (1 for OPA4 and 2 for

OPA5) presenting pure DOA [46,47]. Additional loci

and genes were identified as responsible for Optic Atro-

phy, but either with a X-linked mode of inheritance

(OPA2) [48,49], a recessive mode of inheritance (OPA6

and OPA7) [50,51] or as syndromic recessive or domin-

ant forms (OPA3 and OPA8) [28,52,53]. Thus to date,

OPA1 is the major gene responsible for DOA, account-

ing for at least 75% of all the patients, whereas all the

other genes or loci only contribute each for less than 1%

of the patient cohort [7].

Mutations in OPA genes and their consequences on the

mitochondrial physiology

Three genes have been identified to date, OPA1, OPA3 and

TMEM126A (OPA7) (Table 1); all encode mitochondrial

(See figure on previous page.)

Figure 1 Ophthalmological description of a DOA patient. Results from ophthalmological examination of a paradigm Dominant Optic Atrophy

patient with the c.2708delTTAG mutation in OPA1 (Right) compared to a control patient (Left). (A): Eye fundus examination showing the pallor of

the optic nerve in the DOA patient, in particular on the temporal side, whereas the rest of the retina appears totally unaffected. (B): Optical

Coherence Tomography measures of the retinal nerve fiber layer thickness (black line), at the emergence of the optic disc. In a DOA patient,

there is a general reduction in all quadrants, prevailing on the temporal side, compared to a control patient. (C): Visual field examination

disclosing the caeco-central scotoma in the DOA patient, whereas only the blind spot is detected in control patient. (D): Results from a

desaturated 15-Hue test presenting the characteristic tritanopia (blue-yellow axis) dyschromatopsia defect in the DOA patient.

Table 1 DOA loci and genes

Locus Chromosome Gene Mode of inheritance

OPA1 3q28-29 OPA1 dom.

OPA2 Xp11.4-p11.21 ? X-link

OPA3 19q13.2-q13.3 OPA3 dom./ress.

OPA4 18q12.2-q12.3 ? dom.

OPA5 22q12.1-q13.1 ? dom.

OPA6 8q21-q22 ? ress.

OPA7 11q14.1-q21 TMEM126A ress.

OPA8 16q21-q22 ? dom.

legend: dom: dominant; ress: recessive.
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proteins ubiquitously expressed and associated to the inner

mitochondrial membrane, due to the presence of at least

one transmembrane domain in their sequence [51,54,55].

In OPA1, 27% of the mutations are missense, 27% are splice

variant, 23.5% lead to frame shift, 16.5% are nonsense

and 6% are deletion or duplication [7]. Most of them

are leading to a haplo-insufficiency situation where

the mutated transcript is degraded by mRNA decay,

thus leading to a reduction of 50% in the amount of

OPA1 protein. As a direct consequence, the different

mutations in OPA1 are not related to the severity of

the disease, and genotype/phenotype correlations are

difficult to infer [25]. In this respect, secondary nu-

clear genes, but not the mitochondrial genome, are

suspected to control the severity of the disease in

non-syndromic patients [56]. Conversely, few missense

mutations in the GTPase domain of OPA1 are re-

sponsible for syndromic cases with severe dominant

negative effects [9], because the mutated protein might

interfere with and inhibit the wild-type protein. Im-

portantly, sporadic cases, cases with de novo mutation

and cases with unknown familial history, account to-

gether for 50% of all patients. Concerning OPA3, in-

direct evidences suggest that the 2 mutations so far

reported in DOAC affect the trans-membrane do-

main, are fully penetrant and act in a dominant nega-

tive manner, as heterozygous carriers of a recessive

mutation leading to the inhibition of OPA3 expression

are asymptomatic [52]. In the case of TMEM126a,

the consanguineous recessive disease is associated to

a mutation introducing a stop codon at position 55,

thus deleting 140 out of the 195 amino-acids composing

the protein [51].

Analysis of OPA1 functions in common cell lines

(HeLa, COS) and dysfunctions in patient fibroblasts

revealed a systematic susceptibility to apoptosis and mild

to severe alteration of the mitochondrial respiration ac-

tivity, essentially associated to a reduced energetic coup-

ling [28,51,57-60]. In addition, the 8 OPA1 isoforms that

result from alternate splicing of 3 exons (4, 4b and 5b)

have discrete functions in structuring the cristae, in

mitochondrial membrane dynamics, maintenance of the

membrane potential, calcium clearance, interaction with

the respiratory chain complexes and maintenance of

mitochondrial genome integrity [61-65]. As a conse-

quence, and as revealed by numerous patient fibroblast

studies, mutations in OPA1 can have a direct although

variable impact on these functions, [31,33,57-59,66], and

possibly the genetic background and aging might con-

tribute to the mitochondrial phenotype, either in a com-

pensatory or in an accentuating manner.

Importantly, the OPA1 gene is the fifth identified nu-

clear gene responsible for generating multiple deletions

in the mitochondrial DNA, together with POLG1 (DNA

polymerase γ), PEO1 (twinkle), SLC25A4 (ANT1) and

TP (thymidine phosphorylase). The presence of multiple

deletions in the mtDNA has been found in the skeletal

muscle of the majority of patients harbouring OPA1

mutations, even in those with isolated optic atrophy

[67]. This OPA1 related genomic instability is likely

to play a crucial role in the pathophysiology of DOA,

taken into account its direct functional consequence

on respiratory chain capacities and may explain the

convergence of clinical expressions between DOAplus

syndromes and other disorders related to mutations

in mtDNA.

Optic nerve and animal models

The major concern in studying DOA pathophysiology

concerns the question why RGCs are most specifically

affected by this disease, while the OPA genes are

expressed in all cells of the body. Histochemical studies

revealed a peculiar distribution of mitochondria in ret-

inal ganglion cells. Indeed, they are accumulated in the

cell bodies and in the intra-retinal unmyelinated axons,

where they form varicosities, and are conversely scarce

in the myelinated part of axons after the lamina cribosa

[68-71]. These observations emphasize the importance

of mitochondrial network dynamic in order to maintain

the appropriate intracellular distribution of the mito-

chondria that is critical for axonal and synaptic func-

tions, and point to a possible pathophysiological

mechanism associated to OPA1 that could jeopardize

RGC survival. Alternatively, RGCs are the only neurons

of the body that are exposed to the day long stress of

light, which generates oxidative species favoring the

apoptotic process [72]. Therefore the mitochondrial fra-

gility conferred by OPA1 mutations, together with the

photo-oxidative stress could precipitate RGCs in pre-

mature cell death. A third pathophysiological hypoth-

esis involves the tremendous energetic requirements of

RGCs, as these neurons permanently fire action poten-

tials, in addition through axons that are not myelinated

in the eye globe. As the energetic fuelling of RGCs

soma is restricted in the central part of the retina, due

to the physical constraints imposed by the macula

blood vessel organization, one can hypothesize that due

to the uncoupling of mitochondrial respiration in

OPA1 cells, the ATP synthesis in patient RGCs is lim-

ited and can not fulfill the physiological energetic

requirements for long term cell survival. Which of

these hypotheses represents the princeps mechanism

responsible for the RGC degeneration remains un-

known. Nevertheless, in the last years, two mouse

models with an Opa1 mutation have been generated

and deeply analyzed in terms of vision; both summarize

DOA in that loss of RGCs is preeminent [73,74]. Re-

duction of the scotopic, but not the photopic evoked
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potential response was found in one mouse model [75],

whereas light-adapted ERG and VEP responses revealed

a significant reduction in their amplitudes in another

mouse model [76]. Histological examinations revealed a

decrease of the dentritic length of the RGC-On subpo-

pulation in the retina [77], and abnormal myelin struc-

tures, increase in micro-glia and autophagy were

noticed in the optic nerve [78]. In addition, some mild

neuromuscular symptoms were found, as locomotor ac-

tivity was reduced and tremor observed in old animals,

but no alteration of the audition was detected [79],

thus these Opa1 animals show some features of the

syndromic DOA forms.

Diagnostic methods

Anamnesis

Interviewing patients about the natural history of the

disease, at best in the presence of the family, is

mandatory to define the timing of visual loss over time.

Suspicion of DOA prompts also the search of similar

visual signs among relatives. Special attention should be

paid on sensorial or peripheral neuropathy symptoms

that would support the hypothesis of a pathophysiology

related to a mitochondrial deficit. Finding at least one

affected member in two consecutive generations is indi-

cative of a dominant trait, or eventually of a mitochon-

drial maternal transmission, that will further orientate

the genetic investigations.

Ophthalmological examination

DOA is characterized by a bilateral symmetric vision

loss. On funduscopic examination, the cardinal sign

consists in an optic nerve pallor usually bilateral and

symmetric on the temporal side in about 50% of

patients and global in the other 50% [80], especially in

old or severely affected patients. In moderate cases,

the optic nerve atrophy may not be visible. The neu-

roretinal rim is often pale and sometimes associated

with a temporal pigmentary grey crescent. OCT exam-

ination discloses and quantifies the thinning of the

fiber layer in the 4 cardinal directions at the optic

nerve rim [23,81]. Profound papillary excavation is

reported in 21% of eyes from OPA1 patients [82]. Vis-

ual fields examination typically reveals a central, cen-

trocecal or paracentral scotoma, which may be large in

severely affected individuals, and the sparing of the

peripheral visual field [20]. Color vision, evaluated by

the desaturated 15-Hue test discloses often a blue-

yellow loss dyschromatopsy, or tritanopia [25].

Electrophysiological assessment

Visual evoked potentials (VEPs) are typically absent or

delayed, but are not characteristic of the disease. In sub-

clinical or mildly affected patients, no alteration of the

VEPs can be found. Pattern electroretinogram (PERG)

shows an abnormal N95:P50 ratio, with reduction in the

amplitude of the N95 waveform suggesting alterations of

the ganglion cells layer [83].

Genetic investigations

The clinical diagnosis of an optic atrophy will orientate

the genetic investigations. After collecting 5ml of blood of

the patient and its relatives and preparing total DNA, the

analysis of OPA1 gene will be performed on the DNA

sample of the index patient by amplifying and sequencing

all the 31 coding exons and their flanking intronic regions.

If a mutation is identified, its segregation in the family

must be analyzed and its identity has to be compared to

the database hosted by the CHU of Angers, France (http://

lbbma.univ-angers.fr/lbbma.php?id=9) to find out if the

mutation is already recognized as pathogenic. If not, the

possible consequence of the mutation on OPA1 transcript

and protein integrity should be analyzed in silico, and by

assessing the expression of the mutated allele by RT-PCR

amplification and sequencing. If no significant mutation is

found in OPA1, then the presence of a deletion in the gene

can be tested with the Multiplex Ligation Probe Amplifi-

cation methodology [84-86]. Otherwise careful reconsider-

ation of the anamnesis might orientate to test either OPA3

gene or the full length mitochondrial genome. If results

are still negative, then when the family is large and many

members are affected, genetic analysis of chromosome

markers can be performed to identify the causative locus

and eventually a novel pathogenic gene. Nevertheless, the

identification of a morbid mutation greatly helps the gen-

etic counseling.

Syndromic cases

Patients with extra-ophthalmological symptoms should be

referred to diagnostic centers specialized in mitochondrial

disorders, in order to obtain additional examinations

by a multidisciplinary team including geneticists, neuro-

ophthalmologists, neurologists, otorhynolaryngologists.

The diagnosis of such multisystemic mitochondrial

disorders often requires the study of the functionality of

the respiratory chain in order to evaluate the severity of

the energetic deficiency. A skeletal muscle biopsy is usu-

ally performed to measure the enzymatic activity of the

5 respiratory complexes and the mitochondrial oxygra-

phy. In addition, it allows anatomo-pathological exami-

nations to check for the presence of mtDNA deletions,

cytochrome c deficient fibers and ragged red fibers. Al-

ternatively, skin fibroblasts are also useful to evaluate

the severity of respiratory chain dysfunction.

Differential diagnosis

The DOA differential diagnosis list includes all the

causes of bilateral optic neuropathies, i.e. compressive,
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inflammatory, demyelinating, ischemic, glaucomatous,

toxic, and metabolic optic neuropathies. However, an ap-

propriate clinical and para-clinical work-up, including

neuro-imaging, biochemical studies or genetic tests, will

rule out these causes in most of the cases.

Among these differential diagnosis, normal tension

glaucoma (NTG) may present with signs consistent with

DOA, such as visual field defects and optic disc excava-

tion. However, NTG occurs late during the adulthood

and central visual loss does not occur until late during

the course of the disease. Interestingly, certain allelic se-

quence variants in OPA1 have been found to be more

prevalent in NTG patients in comparison with controls,

thus suggesting some cross-talk between the patho-

physiological mechanisms of these diseases [87].

Other acquired optic neuropathies with similar present-

ing signs as DOA include the nutritional/toxic optic neu-

ropathies, which may have a mitochondrial dysfunction

basis. Among the toxic optic neuropathies, the most com-

mon is the tobacco-alcohol related optic neuropathy.

Other possible agents causing a toxic optic neuropathy in-

clude methylene, ethylene glycol, cyanide, lead, and carbon

monoxide. Finally, certain medications, including etham-

butol, isoniazid, disulfiram can cause a toxic optic atrophy.

Other hereditary optic neuropathies, such as Leber’s

hereditary optic neuropathy, Wolfram’s syndrome or

other neuropathies associated with neurological diseases

(spinocerebellar ataxias, Friedreich’s syndrome, Charcot

Marie-Tooth type 2A, Deafness-Dystonia-Optic Neur-

opathy syndromes etc.) may, at times, present with simi-

lar signs as DOA, though the general context and the

neurological signs help to differentiate those entities.

Differential diagnosis associated to the OPA loci

Athough OPA loci are all primarly associated to optic at-

rophy, in some cases they can be differentiated by the

presence of secondary symptoms (Table 2) that may orient

toward a particular gene or locus. OPA2: Two families

mapping on the OPA2 locus Xp11.4-p11.21 were identi-

fied [48], both presented optic atrophy from early child-

hood [49], and one associated in some instances optic

atrophy to mental retardation and neurological symptoms

as jerks, dysarthria, dysdiadochokinesia, tremor and gait

[88,89]. In both families, only male are affected and female

carriers showed no abnormalities.

OPA3: Patients presenting dominant mutation in

OPA3 gene display an early optic atrophy followed by a

later anterior and/or posterior cortical cataract and dys-

chromatopsy without systematic axis. In some cases,

patients present tremor, extrapyramidal rigidity, pes

cavus and absence of deep tendon reflex [28]. Patients

with OPA3 recessive mutations present the syndromic

Costeff syndrome (see next paragraph).

OPA4 and OPA5: three families linked to the OPA4 or

OPA5 loci present an optic atrophy that can not be dif-

ferentiated from the phenotype observed in OPA1

patients: i.e. optic nerve pallor, decreased visual acuity,

color vision defects, impaired VEP, and normal ERG and

no extra-ocular findings [46,47].

OPA6 and OPA7: Recessive forms of optic atrophy

were described linked to the OPA6 and OPA7 loci.

OPA6 patients present an early onset optic atrophy

slowly progressing with a red-green dyschromatopsia

[50]. Concerning OPA7, a severe juvenile-onset optic at-

rophy with central scotoma was found in a large multi-

plex inbred Algerian family and subsequently in three

other Maghreb families with the same mutation in the

TMEM126A gene, suggesting a founder effect. In these

family, some patients presented mild auditory alterations

and hypertrophic cardiopathy [51].

OPA8: One large family with a optic atrophy undistin-

guishable from that related to OPA1 was recently

described. In this family late-onset sensorineural hearing

loss, increases of central conduction times at somato-

sensory evoked potentials, and various cardiac abnor-

malities were also described in some patients [53].

DOA differential diagnosis with other hereditary optic

neuropathies

Leber Hereditary Optic Neuropathy (LHON) is the

major differential diagnosis for optic atrophy type 1

(OPA1). LHON typically presents in young adults as

Table 2 Possible symptoms associated to optic atrophy

Locus OpticAtrophy Deafness Poly neuropathy Multiple Sclerosis Myopathy CPEO Cardiopathy Cataract

OPA1 + +/- +\- +\- +\- - -

OPA2 + - - - - - -

OPA3 + - +\- - - - +

OPA4 + - - - - - -

OPA5 + - - - - - -

OPA6 + - - - - - -

OPA7 + +\- - - - +\- -

OPA8 + +\- - - - +\- -

legend: (+): systematic; (+/-): possible; (-): never reported.
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painless acute or subacute visual failure, occurring se-

quentially in both eyes, within six months. The acute

phase begins with blurring of central vision and color

desaturation. The central visual acuity deteriorates to

the level of counting fingers in up to 80% of cases, asso-

ciated with a large centrocecal scotoma. In few cases, in

particular in patients with the m.14484 G>A mutation,

visual acuity may partially improve over time. Males are

more commonly affected than females and women tend

to develop the disorder slightly later in life and may be

more severely affected, sometimes with associated mul-

tiple sclerosis like symptoms. Other neurologic abnor-

malities, such as a postural tremor or the loss of ankle

reflexes are also found. LHON is maternally inherited by

mutation in the mitochondrial genome, in most patients

(95% of cases) by one of the three mutations

m.11778G>A, m.14484T >C, and m.3460G>A [90].

Differential diagnosis between syndromic DOA

and other diseases

Wolfram syndrome Mutations in the WFS1 gene are

generally associated with optic atrophy as part of the

autosomal recessive Wolfram syndrome phenotype

(DIDMOAD, diabetes insipidus, diabetes mellitus, optic

atrophy, deafness) [91,92] or with autosomal dominant

progressive low-frequency sensori-neural hearing loss

that can be associated with DOA, with or without

impaired glucose regulation [93,94], supporting the no-

tion that mutations in WFS1 as well as in OPA1 may lead

to optic atrophy combined with hearing impairment.

Costeff syndrome Truncating mutations in OPA3 gene

are responsible for 3-methylglutaconic aciduria type 3, a

recessive neuro-ophthalmologic syndrome consisting of

early-onset bilateral optic atrophy and later-onset spasticity,

extra-pyramidal dysfunction, and cognitive deficit. Urinary

excretion of 3-methylglutaconic and 3-methylglutaric acids

is increased [52,95].

Charcot-Marie-Tooth type 2A2 (CMT2A) is a periph-

eral distal neuropathy with optic atrophy designated as

hereditary motor and sensory neuropathy type VI (HMSN

VI) [96]. HMSN VI families display subacute onset of

optic atrophy and subsequent slow recovery of visual acu-

ity in 60% of affected individuals. In each pedigree a dom-

inant mutation in the MFN2 gene coding the outer

mitochondrial dynamin mitofusin 2, was identified [97].

Recently a novel mutation in MFN2 as been described in a

patient with a DOAplus clinical presentation, featuring

also mtDNA deletions in the calf muscle [98].

Deafness-dystonia-optic neuronopathy syndrome

(DDON) is a disease associating slowly progressive

decreased visual acuity from optic atrophy beginning

at about 20 years of age with neuro-sensorial hearing

impairment, slowly progressive dystonia or ataxia and de-

mentia beginning at about 40 years of age. Neurologic,

visual, and neuropsychiatric symptoms vary in degree of

severity and rate of progression [99]. As the inheritance is

X-linked, males are only affected, although females may

present mild hearing impairment and focal dystonia. The

DDON syndrome is linked to mutation in TIMM8A or to

a deletion at Xq22, also causing X-linked agammaglobu-

linemia due to the disruption of the BTK gene located

telomeric to TIMM8A [100].

Other inherited disorders of Oxidative Phosphorylation

Mitochondrial diseases featuring a defect in the respira-

tory chain affect about 1/4000 individuals. They include

clinical presentations with widely differing genetic origin

and phenotypic expression. Their clinical expression is

mainly neuromuscular and neurosensorial, but the major

physiological systems and functions may also be affected.

More than a hundred pathogenic mutations have been

described in mitochondrial DNA since 1988, and new

mutations are still regularly being reported. MtDNA

mutations may be secondary to the mutations of nuclear

genes encoding the proteins that ensure the mainten-

ance of mtDNA. Since 1995, more than 70 nuclear genes

have been involved in respiratory chain defects. The

clinical defects identified in DOAplus (deafness, per-

ipheral neuropathy, chronic external ophthalmoplegia,

myopathy, encephalopathy, multiple sclerosis-like syn-

dromes) are typical of those found in multisystemic

mitochondrial diseases that often themselves include

optic atrophy. Thus, facing a multisystemic mitochondrial

syndrome with optic atrophy it is important to check for

OPA1 mutations, but many other mitochondrial diseases

not related to OPA1 can also display a clinical presentation

similar to DOAplus, as recently evidenced by the discov-

ery of a singular mis-sense mutation in the MFN2 gene

leading to a DOAplus phenotype [98]. Interestingly, in a

few cases, the clinical presentations of OPA1 mutations

excluded optic nerve involvement [9,101], suggesting that

rare OPA1-associated diseases may tend towards clinical

phenotypes far removed from the initial description of

DOA.

Genetic counseling

DOA is inherited as an autosomal dominant trait. When

the causative mutation has been identified either in

OPA1 or OPA3 genes, it should be present in one of the

parents except in de novo cases, and will be transmitted

with a 50% chance to the proband sibs. When the causa-

tive mutation is not identified, genetic analysis can be

performed on the family if other members are affected,

in order to localize the locus responsible for the disease.

Nevertheless, in these latter cases, results might not
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be straightforward and genetic counseling could re-

main doubtful. Otherwise, when facing simplex pro-

band without known gene etiology, no genetic

counseling can be provided. Importantly, in isolated

cases, de novo mutations were frequently reported in

OPA1 gene, allowing consequently to provide advises

for family projections. In this respect, prenatal diag-

nosis for pregnancies at risk is feasible but remains

complicated when considering the incomplete pene-

trance and the markedly variable inter- and intra-

familial expressivity of DOA.

Antenatal diagnosis

The optimal time for determining genetic risk and sensi-

tizing future parents to genetic testing is obviously be-

fore pregnancy. If young adults are affected or at risk, it

will be appropriate to discuss the potential risk for their

offspring and the reproductive options, as pre-

implantation genetic diagnosis is available for families in

which the disease-causing mutation or locus has been

identified. Alternatively, prenatal genetic diagnosis for

pregnancies at risk is possible by analysis of DNA

extracted from fetal cells obtained by amniocentesis,

again when the disease-causing allele in the affected

family member has been identified.

Prenatal testing for DOA is controversial and uncom-

mon, especially since the disease does not affect intellec-

tual development or life span. Prenatal testing implies a

thorough discussion between the health care profes-

sionals and the involved parents.

Management including treatment

The management of DOA patient consists in regular

ophthalmologic examination, including measurement of

visual acuity, color vision, visual fields and OCT. To

date, no specific treatment exists, but low-vision aids in

patients with severely decreased visual acuity can be

beneficial. Avoiding tobacco and alcohol intake as well

as medications (antibiotics, antivirals) which can inter-

fere with mitochondrial metabolism can be additional

prophylactic measures.

Cochlear implants have been shown to restore a

marked improved audition in patients with syndromic

DOA with neurosensorial deafness [37].

Prognosis

In most cases, the diagnosis of DOA is established

before adulthood. Subsequent visual loss is mild, but

can at times worsen acutely, while spontaneous im-

provement is exceptionally rare. However, patients

may develop adaptative strategies, allowing them to

fixate within intact retinal regions and thus comply

with a normal familial and social life, although insertion

in the professional life might be compromised by the

visual defect.

Patients with syndromic DOA will experience a

more severe visual defect that often will be followed

by audition impairment, which together will affect

their social communication early in adulthood. Add-

itional symptoms can occur later during the third or

fourth decade of life, and are believed to progress

slowly.

Unresolved questions and conclusions

Although OPA1, the major gene responsible for DOA

has now been discovered more than ten years ago, much

remains to be understood to explain the specificity of

the disease that focus first on the optic nerve integrity.

Indeed two major challenges are unanswered: the identi-

fication of the princeps mechanism that is affected in

DOA, and deciphering why mainly RGCs are degenerat-

ing in this disease. Answering both of these questions

should facilitate the future design of treatments.

The current absence of treatment for DOA raises a

tremendous challenge in testing therapeutic strategies

on the different available models, from cell lines to ani-

mals. It is probably not beyond reasonable hope to think

that in the next ten years, treatments will be found to re-

strain the RGCs loss in DOA.
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