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Abstract 

For more than two decades, methods for the noninvasive exploration of cutaneous 

microcirculation have been mainly based on optical microscopy and laser Doppler techniques.  

In this review we discuss the advantages and drawbacks of these techniques. Although optical 

microscopy-derived techniques, such as nailfold videocapillaroscopy, have found clinical 

applications they mainly provide morphological information about the microvessels. Laser 

Doppler techniques coupled to reactivity tests are widespread in the field of microvascular 

function research, but many technical issues need to be taken into account when performing 

these tests. Post-occlusive reactive hyperemia and local thermal hyperemia have been shown 

to be reliable tests, although their underlying mechanisms are not yet fully understood. 

Acetylcholine and sodium nitroprusside iontophoresis, despite their wide use as specific tests 

of endothelium-dependent and independent function, respectively, show limitations. The 

influence of the skin site, recording conditions and the way of expressing data are also 

reviewed. Finally, we focus on promising tools such as laser speckle contrast imaging. 

 

Keywords: microcirculation; capillaroscopy; laser Doppler; laser speckle; iontophoresis; 

local thermal hyperemia; post-occlusive hyperemia. 
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Why and how to assess skin microvascular function? 

 

Since the development of methods allowing the study of microcirculation, 

microvascular dysfunction has been associated with several vascular diseases as well as in 

aging [1]. The role of generalized microvascular dysfunction in the pathophysiology or as a 

consequence of these diseases has also been questioned. Indeed, patients with impaired 

coronary microvascular function also have evidence of impaired peripheral microvascular 

function, suggesting a generalized disorder in the regulation of the microvasculature [2].  

Similar findings have been reported of correlated abnormalities between cutaneous and retinal 

microvasculature in diabetic patients [3].  

As the skin is readily accessible, it provides an appropriate site to assess peripheral 

microvascular reactivity. Moreover, recent technological advances have provided simple and 

non-invasive methods to assess skin microvascular function. Therefore, human cutaneous 

circulation could be used as a surrogate marker of systemic microvascular function in various 

diseases. However, this raises the issue of how representative the microcirculation in the skin 

is to the microcirculation in other organs. To date, the skin has been used as a model of 

microcirculation to investigate vascular mechanisms in a variety of diseases, including 

hypertension and other cardiovascular risk factors [4-6], diabetes [3, 7], or end-stage kidney 

disease [8]. Skin microcirculation has also been used as a model of microvascular function in 

experimental shock [9]. The issue of human cutaneous circulation as a model of generalized 

microvascular function has been discussed in a recent viewpoint by Holowatz et al [10]. 

In other cases, skin microvasculature is specifically affected, e.g. systemic sclerosis 

[11, 12], burns, flaps or wounds. Altered skin microvascular function could therefore be a 

surrogate marker in these pathologies. 
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 Finally, noninvasive and reliable tests would be useful to evaluate the effect of drugs 

on the peripheral microvascular system. 

 For more than two decades, methods for the noninvasive exploration of 

cutaneous microcirculation have been mainly based on optical microscopy and laser Doppler 

techniques [13], as well as the evaluation of tissue oxygenation. Capillaroscopy is an optical 

in vivo microscopy technique allowing direct visualization of superficial skin microvessels, 

which has been mostly used in the study of rheumatic diseases, especially systemic sclerosis  

[14]. More sophisticated techniques have recently been developed, including orthogonal 

polarization spectral (OPS) imaging [15] and most recently sidestream dark field (SDF) 

imaging [16]. Besides microscopy techniques, laser Doppler provides an index of skin 

perfusion by measuring the Doppler shift induced by coherent light scattering by moving red 

blood cells [17]. Laser Doppler techniques offer a simple and non-invasive estimate of skin 

perfusion. However, despite extensive use over the past thirty years, they still suffer from lack 

of standardization. 

In this review we will describe recent advances in methods and discuss the issue of 

data expression. An evaluation of tissue oxygenation is beyond the scope of this review; the 

different techniques including venous oxygen saturation, PO2 electrodes, reflectance 

spectroscopy, near-infrared spectroscopy and PCO2-derived measurements, have been 

expertly reviewed by De Backer et al [18]. 

 

 

Optical microscopy-derived techniques 

 

Videocapillaroscopy 

Videocapillaroscopy consists of the direct in vivo observation of skin capillaries using 

a microscope with an epi-illumination system and image transmission to a video camera [19]. 
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Recently available digital systems have made the technique more reliable and user-friendly 

[20].  

The skin site most studied using videocapillaroscopy is the periungueal region. Indeed, 

nailfold capillaries are parallel to the surface of the skin which facilitates their observation. 

Nailfold videocapillaroscopy (NVC) allows the visualization of erythrocytes but not vessel 

walls. As a consequence, only microvessels with circulating erythrocytes at the time of the 

examination are visible [13]. The normal NVC pattern is characterized by a homogeneous 

distribution of parallel capillary loops from 6 to 15 µm in diameter [13] (Figure 1A). 

Abnormal patterns are observed in diseases affecting digital skin microvasculature 

(e.g. systemic sclerosis, Figure 1B), showing morphological abnormalities of the capillaries 

(enlarged loops, giant capillaries, ramifications, capillary disorganization), micro-

hemorrhages and lower density (capillary loss) [20]. Capillary abnormalities in systemic 

sclerosis have been classified into early, active or late patterns by Cutolo et al [21]. Since the 

first description of abnormal finger capillary patterns in connective tissue diseases using 

capillaroscopy [22], the technique has played an increasing role in the early diagnosis of 

scleroderma spectrum disorder [20], and when used significantly improves the sensitivity of 

the American College of Rheumatology (ACR) criteria in the  diagnosis of patients with 

limited systemic sclerosis [23]. Finally, a prognostic capillaroscopic index has been proposed 

to identify patients with Raynaud’s phenomenon in whom the risk of developing scleroderma 

spectrum disorders is high [24]. 

Although less widely used than in the diagnosis and follow-up of systemic sclerosis, 

several other applications of NVC in autoimmune diseases have been suggested. Indeed, 

capillary abnormalities have been described in some patients with systemic lupus 

erythematosus [25] or rheumatoid arthritis [26], although no specific patterns have been 

identified. 
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Elsewhere to the periungueal region capillaries are perpendicular to the skin’s surface 

and using videocapillaroscopy only the top of perfused loops are visible, which appear as red 

spots. This technique does not allow morphological observation of capillaries but provides the 

density of functioning capillaries per field. Reactivity tests, including venous occlusion and 

arterial post-occlusive reactive hyperemia (PORH), have been proposed to enhance capillary 

recruitment. They allow the assessment of total maximal density with good reproducibility 

[27]. When performed on the dorsum of the finger, venous congestion showed better results 

than brachial PORH [28]. Using such methods, both baseline and maximal capillary 

recruitment were significantly lower in patients with essential hypertension than in 

normotensive controls [4]. We note that some authors have described a reversion of both 

functional and structural capillary rarefaction in patients under effective antihypertensive 

treatment [29, 30]. Similar studies have shown impaired capillary recruitment (i.e. an absolute 

difference or percentage increase between functional and maximal densities) in patients with 

type 1 diabetes compared to controls, although the baseline density was higher in these 

patients [31]. Chang et al did not observe any difference in capillary density between patients 

with diabetes mellitus (with or without retinopathy) but morphological capillary abnormalities 

in patients with retinopathy compared to patients without retinopathy and controls [3].  

The injection of a dye (e.g. fluorescein) coupled to capillaroscopy has been used to 

assess transcapillary and interstitial diffusion patterns. Indeed, fluorescein-enhanced 

capillaroscopy improves contrast and provides an index of capillary permeability. This 

technique has been used to study the influence of age on microcirculation [32] and  in various 

diseases including diabetes [33], systemic sclerosis [34], psoriasis [35], or to evaluate the 

vascular integrity of skin flaps [36, 37]. This technique however is increasingly replaced by 

orthogonal polarization spectral (OPS) and sidestream dark field (SDF) imaging (see below), 

which are safer, non-invasive and provide better contrast. 
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In conclusion, nailfold videocapillaroscopy has found clinical applications in diseases 

affecting digital skin microcirculation (e.g. systemic sclerosis). Otherwise, skin capillaroscopy 

provides low-contrast images and only allows capillary density to be quantified.  A 

morphological study of the microvessels in areas other than the periungueal region has not 

found any clinical application. Indeed, it would require transillumination or fluorescent dyes, 

which, in vivo, is hardly compatible with a non-invasive exploration. 

 

 

Orthogonal polarization spectral (OPS) and sidestream dark field (SDF) imaging 

In OPS imaging the tissue is illuminated with linearly polarized green light and the 

remitted light is provided by depolarized photons scattered by the deeper layers of the tissue, 

imitating transillumination of the superficial layer [15]. SDF imaging is a closely related 

technique, but illumination is provided by concentrically placed light emitting diodes 

surrounding a central light guide [16]. The green light is scattered by the deeper layers of the 

tissue while it is absorbed by hemoglobin, providing an image in which RBCs appear as dark 

moving spots against a white/grayish background [16].  

OPS imaging is a relatively inexpensive technique and has the advantage of being 

portable [38]. It provides optimal image resolution on organs covered by a thin epithelial layer 

and does not require the injection of fluorescein to obtain an excellent level of contrast [38].  

OPS and SDF have been used during surgery to assess the microcirculation of several 

organs including the brain [39, 40], the kidney [41] or the liver [42]. The most studied site 

however is the sublingual region, where the density of perfused capillaries can be non-

invasively assessed [18]. Semi-quantitative analysis of the microcirculation has been proposed 

with OPS, based on a scoring including both the measurement of perfused capillary density 

and the flow heterogeneity between the different areas [43]. The main applications of OPS 
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and SDF concern critical care medicine. De Backer et al showed that microcirculation 

assessed with OPS on the sublingual mucosa was impaired in severe sepsis [44]. In the same 

way, SDF allowed identifying significant abnormalities in microvascular density during early 

post-resuscitation phase, which returned to baseline within 48h after cardiac arrest [45]. 

Although the image quality is not as good as on mucosa, OPS has also been used on lower 

limb skin to evaluate microcirculation in chronic venous insufficiency [46]. Other 

applications of skin OPS imaging include the assessment of microcirculation in burn wounds 

[47, 48]. Nonetheless, OPS use in burn wound severity is still predominantly used for research 

[38].  

Application of pressure with OPS or SDF probes during examination modifies the 

flow velocity in vessels under investigation [49] and therefore induces artifacts. Moreover, 

motion-induced image blurring is another limitation of OPS, attenuated in SDF imaging. 

Finally, they cannot be used in individuals with phototypes IV, V and VI according to 

Fitzpatrick classification because melanin absorbs light of a similar wavelength than 

hemoglobin [50]. 

In conclusion, OPS and SDF imaging are semi-quantitative techniques implemented in 

small devices that can be used at the bedside. They provide good quality images of 

microvessels on thin epithelial layers. The most studied site is the sublingual region, and has 

been used mainly in critically ill patients. The main limitations of OPS and SDF imaging are 

the artifacts induced by movement and pressure. Finally, quantitative assessment of skin 

blood flow is not fully automatized yet, although this could be achieved by the development 

of new software [18]. 
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Techniques 

Laser Doppler is based on the backscattering of a beam of laser light. The light 

undergoes changes in wavelength (Doppler shift) when it hits moving blood cells. The 

magnitude and frequency distribution of these changes in wavelength are related to the 

number and velocity of red blood cells [17]. Laser Doppler does not directly measure skin 

blood flow but provides an index of skin perfusion, quantified as the product of average red 

blood cell velocity and their concentration, often referred to as flux. Most of the current 

devices use a wavelength of 780 nm, which provides good skin penetration independently of 

skin color and oxygen saturation [51].  

The first laser Doppler technique developed is called flowmetry (LDF), also referred 

to as laser Doppler perfusion monitoring (LDPM). Single point LDF assesses blood flow over 

a small volume (1 mm
3
 or smaller) with a high sampling frequency (often 32 Hz) and is 

accurate at detecting and quantifying relative changes in skin blood flow in response to a 

given stimulus [52]. However, the regional heterogeneity of skin perfusion [53] leads to 

spatial variability, which contributes to the relatively poor reproducibility of the technique 

[54]. 

In contrast, the more recently developed laser Doppler imaging (LDI), or laser 

Doppler perfusion imaging (LDPI), provides 2D images using the same physical principle as 

LDF [52]. In LDI, the laser beam is reflected by a computer-driven mirror to progressively 

scan the area of interest. A fraction of the backscattered light is detected and used to map 

tissue blood flux, each pixel representing a perfusion value. LDI decreases spatial variability 

but it is much slower than LDF making rapid changes in skin blood flow over the larger areas 

more difficult to record. Nevertheless, more recent imagers use a multi channel laser Doppler 

line permitting faster scanning. 
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A linear relationship between the laser Doppler signal and microvascular flow has 

been demonstrated in the range from 0 to 300 mL.min
-1

 per 100 g tissue [55]. However, it 

does not provide an exact measure of flow (i.e. mL.min
-1

) as can be extrapolated when using 

strain gauge plethysmography. Therefore, laser Doppler is mostly used to assess 

microvascular reactivity, by challenging microvessels with various tests. Among the different 

tests used in combination with laser Doppler, the most common are iontophoresis of 

vasoactive drugs, post-occlusive reactive hyperemia (PORH) and thermal challenges. Results 

are often expressed as arbitrary perfusion units (PU; 1 PU = 10 mV) or as cutaneous vascular 

conductance [CVC, i.e. flux divided by arterial pressure (in mV/mm Hg)] [52]. 

Microdialysis is a technique consisting of the intradermal insertion of small fibers with 

semi-permeable membranes and is mostly used for the continuous sampling of small water-

soluble molecules within the extracellular fluid space in vivo [56]. Nonetheless, it can also be 

used to deliver drugs to a small area of tissue, avoiding confounding systemic effects [52]. 

Although minimally invasive, microdialysis offers the advantage of a controlled drug infusion 

rate and the absence of current-induced vasodilation, compared with iontophoresis. However 

it is painful and justifies the use of local anesthesia. Both local inflammation and anesthetic 

drugs may interfere with the response. This approach coupled with LDF has been used to 

assess the role of NO in skin post-occlusive and thermal hyperemia [57, 58]. 

 

Acetylcholine and sodium nitroprusside iontophoresis 

Iontophoresis is a method for non-invasive transdermal drug delivery based on the 

transfer of charged molecules using a low-intensity electric current (Figure 2). Among the 

factors involved in iontophoretic drug transfer, the concentration and the pH of the solution, 

the intensity of the current applied, the duration of iontophoresis, and the nature of the skin 

surface (thickness, glabrous or not) play a key role [59]. Combined with laser Doppler, 
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acetylcholine (Ach) and sodium nitroprusside (SNP) iontophoresis have been widely used to 

assess microvascular endothelial dependent and independent vasodilation, respectively [52, 

60]. It is of note that vasodilator iontophoresis has been proposed as a new therapy in diseases 

affecting skin microcirculation of the digits, such as systemic sclerosis [61, 62]. This is 

particularly interesting but must be distinguished from iontophoresis as a tool to explore 

microvascular function, and is beyond the scope of this review.  

The mechanisms by which Ach iontophoresis induces vasodilation of the microvessels 

remain unclear [52, 60]. A Cyclooxygenase (COX)-dependent pathway seems to be 

predominant [63-65], although data are conflicting [66, 67]. On the other hand, nitric oxide 

(NO) does not extensively contribute to the response [63, 64]. Interactions between 

prostaglandin and NO pathways could explain the discrepancies between the results of these 

different studies [60]. Besides the endothelium-dependent vasodilation, iontophoresis of Ach 

induces C-fiber (axon reflex)-mediated vasodilation [66]. The variable effect of COX 

inhibition and local anesthesia [66, 67] on Ach-induced vasodilation may be attributed to 

these different components of the response to Ach iontophoresis.   

One of the main issues to be taken into account with iontophoresis is the non specific 

effect of the current itself, which interferes with the vasodilation potency of administered 

drugs. Indeed, current-induced vasodilation is observed when pure water alone is used in 

iontophoresis (sometimes referred to as “galvanic response”); the reaction is more pronounced 

at the cathode and delayed at the anode [68, 69]. The amplitude of current-induced 

vasodilation depends on the delivered electrical charge (i.e. the product of current intensity by 

duration of application) [69] (Figure 3) and the current delivery pattern. For a similar charge, 

repeated applications induce more non specific effects than continuous iontophoresis [70]. 

Durand et al showed that current-induced vasodilation was abolished by local anesthesia and 

largely reduced after desensitization of C-nociceptive fibers by capsaicin [69], suggesting a 
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role of neural axon reflex. Moreover, prostaglandins are likely to be essential for this axon 

reflex-related vasodilatation [71], mainly through the COX-1 pathway [72]. Nonetheless, the 

exact underlying mechanisms of the interference of current with vasodilation remain unclear. 

Different vehicles have been used to dilute drugs (e.g. tap water, deionized water and 

saline) with various galvanic responses [60]. In the excellent paper by Ferrell et al [73], the 

authors have shown that distilled water alone induces a more pronounced current-induced 

vasodilation than saline [73]. However, it is interesting to note that Ach or SNP iontophoresis 

induced comparable increases in skin blood flow whether diluted in distilled water or saline 

[73]. This is probably due to the presence of ions which reduce the resistance of the solutions 

after drug dilution, whereas deionized solutions show higher resistance. The authors further 

showed a threshold (between 60 and 70 V.min) of the integral of voltage over time beyond 

which current-induced vasodilation is triggered. Although the choice between NaCl and 

deionized water as vehicle has little influence on Ach and SNP iontophoresis, one should bear 

in mind the difference between these vehicles when they are used as controls.  

Besides the resistance of the solution, skin resistance also influences drug delivery 

[74]. Skin resistance is variable between individuals and between different skin areas, 

depending on the density of sweat ducts or hair follicles [60]. Ramsay et al showed a 

significant linear inverse correlation between skin resistance and the response to Ach or SNP 

iontophoresis [74]. Monitoring voltage across the iontophoretic circuit seems useful in order 

to take into account resistance, although it is rarely done today. General good practice 

however includes mild epidermal stripping with adhesive tape and an alcohol swap [60]. 

The reproducibility of Ach and SNP iontophoresis is good when assessed with LDI, 

especially when the perfusion is corrected by the resistance time integral [75]. Seven-day 

reproducibility of the peak SNP iontophoresis assessed with LDI has provided a within 

subject coefficient of variation (CV) of 22% and an intra-class coefficient of correlation (ICC) 
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of 0.72 [76]. When using LDF, the reproducibility of Ach iontophoresis was poorer (ranging 

from 25% to 35% depending on the way of expressing data) [77]. Some authors have recently 

proposed the use of methacholine chloride instead of Ach. Indeed, iontophoresis of 

methacholine exhibited less inter-site and interday variability than Ach [78]. The 

reproducibility of SNP iontophoresis assessed with LDF is extremely poor. In 14 healthy 

subjects, the CV ranged from 69% to 160% on the dorsum of the finger (according to the way 

of expressing data) whereas it ranged from 63% to 95% on the forearm (personal unpublished 

data). This suggests that the spatial variability of Ach and SNP iontophoresis is high; although 

this can be overcome by using large study areas assessed with LDI. 

Another limitation is the site of iontophoresis. Indeed, on the finger pad, we did not 

observe any vasodilation on SNP iontophoresis in patients with SSc and in controls [79]. This 

could be due to rapid dermal clearance of the drug on the finger pad. In contrast, vasodilation  

has been reported on the dorsum of the finger [61]. 

In conclusion, iontophoresis of Ach and SNP have been used extensively to assess 

microvascular endothelium dependent and independent vasodilation, respectively. However, 

the complexity of the underlying mechanism of the reaction to the iontophoresis of Ach 

makes its use as a specific test of endothelial function debatable [1]. Moreover, other 

limitations must be acknowledged, including non-specific effects and poor reproducibility 

when LDF is used [80]. Therefore, studies using iontophoresis must be carefully designed to 

reduce these and LDI rather than LDF is recommended to assess perfusion. Provided that a 

low intensity current is used (i.e. <100 µA), saline should be preferred as the control (Figure 

3). Pre-treatment with a local anesthetic is a way to limit axon reflex-induced vasodilation 

[76]. Limiting current density (<0.01 mA/cm²) and charge density (<7.8 mC/cm²) also 

decreases current-induced vasodilation [81]. Finally, skin resistance may be reported and can 

be readily approximated by connecting a voltmeter in parallel [75]. Perfusion data may then 

Deleted: was 

Deleted: es

Deleted: F

Deleted:  

Deleted: disastrous

Deleted: CV 

Deleted: they 

Deleted: s

Deleted: it

Deleted: after 

Deleted: excessive 

Deleted: Such 

Deleted: phenomenon

Deleted: was not observed 

Deleted: used 

Deleted: s of

Deleted: Ach 

Deleted: highly 

Deleted: s

Deleted:  

Deleted: assessed with 

Deleted: limit non specific effects 

Deleted: Provided

Deleted: low intensity current

Deleted: a

Deleted: should 

Deleted: , which 

Deleted: easily 

Deleted: from voltage measured with a 
voltmeter 

Deleted: ed

Page 13 of 56

URL: http://mc.manuscriptcentral.com/tandf/tandf/umic  Email: microcir@msu.edu

Microcirculation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

be normalized to skin resistance, or resistance can be standardized by adjusting the distance 

between the electrodes.  

 

Post-occlusive reactive hyperemia 

Post-occlusive reactive hyperemia (PORH) refers to the increase in skin blood flow 

above baseline levels following release from brief arterial occlusion [52]. Many mediators 

contribute to PORH. Sensory nerves are partially involved through an axon reflex response 

[82, 83]. Local mediators include large-conductance calcium activated potassium (BKCa) 

channels that seem to play a major role [82], suggesting that endothelium-derived 

hyperpolarizing factor (EDHF) is involved; while results are conflicting concerning the 

implication of prostaglandins [67, 84, 85]. The inhibition of NO synthesis does not alter 

PORH on the forearm [58], but recent work suggests that COX inhibition unmasks the NO 

dependence of reactive hyperemia in human cutaneous circulation [85]. On the finger pad 

however, the response seems to be partly NO-dependent [86]. In summary, PORH should not 

be considered as a test for microvascular endothelial function itself, but could be used as a 

tool to detect overall changes in microvascular function. 

Various parameters can be quantified from the flux response after arterial occlusion 

(Figure 4). One of the most commonly used is peak hyperemia, whether expressed as a raw 

value or as a function of baseline, i.e. area under the curve, peak minus baseline or relative 

change between peak and baseline expressed as a percentage, calculated from [(peak − 

baseline)/baseline] × 100. Peak perfusion may also be scaled to the so-called maximum 

vasodilation achieved when the skin is heated to 42°C or higher [87]. Time to peak perfusion 

is another parameter quantified when performing PORH, but its physiological significance as 

a marker of skin microvascular reactivity remains to be established. 
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When assessed with single-point LDF the inter-day reproducibility of PORH is 

variable, depending both on the skin site, the way of expressing data and the baseline skin 

temperature. On the finger pad, the reproducibility is acceptable when PORH is expressed as 

raw peak perfusion or scaled to maximum vasodilation (CV around 25%) [54]. However, 

reproducibility is poor (CV are 45% or higher) when peak perfusion is expressed as a function 

of baseline [54, 80]. Most of the studies exploring PORH reproducibility have been performed 

on the volar surface of the forearm, and results are conflicting. Reproducibility was excellent 

(CV from 6% to 22%) when the locations of the laser probes were marked so that exactly the 

same sites were studied from one day to another [88]. However, reproducibility was only fair 

to good (CV around 20%) when the position of the probe was recorded with less precision 

[77] and decidedly poor when the skin sites were randomly chosen (CV were 40% or higher) 

[54]. 

As temperature plays a key role in baseline flux it is not surprising that  homogenizing 

skin temperature when performing PORH assessed with single-point LDF improved 

reproducibility on the forearm, especially when data were expressed as a function of baseline. 

Maintaining skin temperature at 33 °C throughout the recording provided acceptable 1-week 

reproducibility, whether expressed as peak CVC or as a function of baseline (CV were 33% or 

lower) [89]. However, skin temperature homogenization only partially compensates for 

spatial variability, as the inter-site reproducibility of simultaneous PORH measurements on 

the forearm was poor compared to that of full-field techniques [89]. Therefore, it is likely that 

the variation in capillary density between different skin sites is the major source of variability 

when using single-point LDF. The use of full-field techniques such as LDI could lessen this 

variability. 

However, LDI is not fast enough to accurately assess the kinetics of PORH (which 

lasts only a few seconds) over large areas, resulting in a potential shift of the recorded peak 
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compared to the peak measured with LDF. However, some groups have successfully used 

LDI to assess PORH by studying very small areas, scanning up to 20 images/min with good 

reproducibility (CV ranging between 10 and 15%) [90]. Nevertheless, the major advantage of 

LDI (spatial resolution over large areas) is lost. Line scanning LDI may be another way of 

overcoming this issue. Moreover, the recently developed high frame rate laser speckle 

contrast imaging (LSCI) technique allows continuous assessment of skin perfusion over wide 

areas, and could combine the advantages of both LDF and LDI [89]. 

Another issue when comparing protocols that use PORH is the heterogeneity of study 

designs. Indeed, there is no consensus about the optimum protocol and a wide variety in the 

duration of brachial artery occlusion exists, from 1 to 15 min, with a positive relationship 

between post-occlusive hyperemic response and the duration of arterial occlusion [58, 90, 91]. 

Occlusion lasting 5 min has been extensively used, probably from analogy with brachial 

artery flow-mediated dilation (FMD) methods, a standardized tool used to investigate 

endothelial function in conduit arteries [92]. Such standardization of methods is lacking for 

the evaluation of microvascular function. Nonetheless, different cuff pressures ranging 

between 160 and 220 mmHg did not significantly influence PORH, provided that the applied 

cuff pressure exceeded systolic blood pressure [90]. 

In conclusion, PORH is a widely used test of microvascular function when coupled 

with laser Doppler and provides an overall index of microvascular function, combining axon 

reflex, COX-dependent pathways and probably EDHF effects. All the same, special care 

should be taken to avoid methodological bias. Indeed, the duration of occlusion, baseline skin 

temperature and site of measurement (i.e. glabrous or nonglabrous skin) can influence PORH 

amplitude and reproducibility. Full-field techniques partly overcome these difficulties, but 

LDI is too slow to accurately assess the kinetics of the response over large areas, which limits 
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its interest. Finally, LSCI has shown excellent reproducibility but more data are needed to 

assess the linearity between the LSCI signal and skin blood flow. 

 

Local thermal hyperemia (LTH) 

Among thermal challenges, local heating, also referred to as local thermal hyperemia 

(LTH), provides an integrated index of neurovascular and nitric oxide-dependent cutaneous 

blood flow regulation [52]. In healthy subjects, LTH is characterized by an initial peak within 

the first 5 min, a subsequent nadir followed by a sustained plateau (Figure 5). The initial peak 

mainly depends on sensory nerves as it is significantly attenuated by local anesthesia [57]. 

Although to date, there has been no positive evidence to support this claim, it has been 

suggested that calcitonin gene-related peptide (CGRP) [93], possibly co-released with 

substance P, is responsible for this initial peak [94]. Recent work has shown that transient 

receptor potential vanilloid type-1 (TRPV-1) channels contribute to the initial axon reflex and, 

to a lesser extent, to the late plateau [95]. The late plateau phase however is insensitive to 

local anesthesia and is mostly NO-dependent [57]. The binding of heat shock protein 90 

(HSP90) to endothelial NO synthase (eNOS) may be involved in the late plateau as 

geldanamycin (a HSP90-specific inhibitor) decreased CVC during local heating [96]. As NO 

synthase inhibition does not completely abolish the response, other contributors are thought to 

be involved, including norepinephrine and neuropeptide Y [1]. Recently, reactive oxygen 

species have been shown to play a role in plateau hyperemia by limiting the availability of 

NO [97]. 

The two independent phases of LTH imply a dichotomized analysis of the recording. 

Figure 5 shows the parameters that are frequently used to assess the response, i.e. peak 

perfusion (“axon reflex-dependent vasodilation”) and plateau perfusion (“NO-dependent 

vasodilation”). The issue of data expression is similar to that discussed above for PORH. 
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Indeed, data may be expressed as raw perfusion units or CVC, as a function of baseline or 

scaled to maximal vasodilation. The latter form of expression may be useful when studying 

the initial peak [98]. Interestingly, although the area under the curve of the whole tracing has 

the drawback of masking the existence of these two mechanisms, it has been used as a general  

indicator of endothelial dysfunction [8].  

The reproducibility of LTH is strongly dependent on the way of expressing data and 

the technique used to record skin blood flux. When using single-point LDF, we found the 

inter-day reproducibility of both peak and plateau expressed as raw CVC to be acceptable for 

finger pad measurements (CV were 17 and 25%, respectively) but not for measurements on 

the forearm (CV were 57 and 40%) [54]. Normalizing baseline skin temperature to 33°C 

before heating did not improve the inter-day reproducibility of LTH on the forearm, whatever 

the way of expressing data [89]. Other groups have found better reproducibility of LTH on the 

forearm by using integrating probes (which process an integrated signal taken as the average 

flow value from seven or eight different scattering volumes). Agarwal et al found CV ranging 

from 9 to 38%, depending on the method of data expression [77]; however, the heating 

conditions were different from ours; the heating rate was 10-fold lower and the maximum 

temperature was 41°C. Moreover, Agarwal et al used local anesthesia to avoid axon reflex 

vasodilation, thus providing data only for the plateau [77]. Tew et al, using  a similar protocol 

and form of data expression to ours, showed better reproducibility of LTH on the forearm 

expressed as raw CVC, %CVCmax or %CVCBL, both for the initial peak (CV were 19, 11 and 

32%, respectively) and the plateau (CV were 19, 4 and 30%, respectively) [99].  

The inter-day reproducibility of LTH on the forearm when using full-field techniques 

such as LDI was good for the plateau (CV was 17% when expressed as raw CVC) [89]. 

However, LDI was not as accurate when used to assess the LTH peak on the forearm, 

probably because of its slow kinetics over wide areas (CV for peak was 39% when expressed 
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as raw CVC). The good inter-site reproducibility of peak CVC simultaneously assessed at two 

sites on the same forearm strengthens this hypothesis [89]. As such, lower resolution over  

smaller areas would probably increase peak reproducibility using LDI, but to the detriment of 

the main advantage of LDI, i.e. recording flux over wide areas. We found that the recently 

marketed high frame rate LSCI offers excellent inter-day reproducibility of the LTH peak and 

plateau on the forearm (see below). These results suggest that lowering inter-site variability 

(by using integrating LDF probes or full-field techniques) could be decisive in improving the 

inter-day reproducibility of LTH on the forearm (Table 1). 

Although many heating protocols have been proposed, local warming to 42-43°C is 

usually sufficient to induce maximal vasodilation [100]. In our experience, heating to 44°C is 

well tolerated in healthy subjects but may lead to pain or a burning sensation in patients with 

abnormal microvascular function (e.g. systemic sclerosis). The plateau appears 20-30 min 

after starting heating [1] and when heating is prolonged a “die away” phenomenon (i.e. slow 

reversal towards baseline) is observed. Although this “die away” is most noticeable beyond 

60 min [100], it starts at around the 45
th

-50
th

 min [101], thus justifying heating protocols 

restricted to between 30 and 45 min.  

Finally, the nature of the device used to heat the skin plays a key role. Indeed, all the 

studies showing that maximal vasodilation was reached by heating the skin to 42°C or higher 

have used LDF probes and metallic heaters that were directly applied on the skin. In contrast 

the heating devices used with full-field techniques are water-filled chambers  which the laser 

beam traverses. To study the influence of the water within the chamber, we compared the 

LTH plateau induced with a water-filled heating probe (Moor SHP3) before and immediately 

after probe removal in 12 healthy subjects. The mean (SD) LTH plateau assessed with LSCI 

at the end of heating for 30-min at 43° on the forearm (before probe removal) was 109.7 

(18.2) PU compared to 153.9 (30.1) PU immediately after probe removal (data were averaged 
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over 3 min; P<0.001, Wilcoxon rank test), suggesting a 30% decrease in signal when recorded 

across the chamber (personal unpublished data). Therefore, one should be extremely careful 

as to the methods used when comparing data expressed as %CVCmax between different 

experiments.  

In conclusion, under routine conditions (i.e. unanesthetized skin and  inter-day sites of 

the probes not precisely marked), integrating LDF and full-field techniques show better inter-

day reproducibility of LTH on the forearm than single-point LDF. In all cases, data should 

preferentially be expressed as raw CVC or, for the initial peak, as %CVCmax.  

 

Local cooling 

Although local heating is by far the most common thermal challenge, local cooling has 

also been used, particularly in the study of Raynaud's phenomenon (RP). Several cooling 

methods coupled to LDF have been described, such as immersion of the hand or a finger in 

cold water [102], flexible cold packs [103] or use of a stream of carbon dioxide [104]. Due to 

its relative ease of use, immersion in cold water has been extensively used, including in 

patients with RP [105]. However, this technique induces a systemic sympathetic activation 

[106], which interferes with the local microvascular response. Custom-designed metal LDF 

probes coupled with a Peltier element allow local cooling while recording skin blood flux 

[107], without inducing any effect on ipsilateral and contralateral controls [108], enabling the 

physiology of skin microvascular reactivity to local cooling to be studied.  

Local cooling of the skin induces an initial vasoconstriction followed by transient  

vasodilation and finally, prolonged vasoconstriction [100] (Figure 6). The initial 

vasoconstriction depends on norepinephrine, and would be mainly mediated by the RhoA-

Rho kinase (ROCK) pathway (by translocating α2c-adrenoreceptors) whereas the prolonged 

vasoconstriction probably involves both the ROCK pathway [109] and inhibition of the NO 
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system [100]. Sensory nerves could play a role in the transient vasodilation, which is less well 

understood [100]. Such transient vasodilation is more obvious when the cooling is rapid 

[110], making the rate of cooling an important parameter to consider when studying 

microvascular reactivity to local cooling. 

We recently assessed the reproducibility of skin blood flux measurements while 

cooling locally to 15°C or to 24°C on the forearm. The best seven-day reproducibility of a 30-

min cooling protocol was obtained at 15°C when data were expressed as percentage decrease 

from baseline flux (CV=23%) [108]. This test has been recently used to characterize increased 

vasoconstriction and blunted vasodilation on the finger pad of patients with primary RP 

compared to matched controls [111]. 

 

Laser Speckle Contrast Imaging  

Laser speckle contrast imaging (LSCI) is a recently marketed technique based on 

speckle contrast analysis that provides an index of blood flow [112, 113]. High frame rate 

LSCI allows continuous assessment of skin perfusion over wide areas, thus theoretically 

combining the advantages of LDF and LDI, with very good inter-day reproducibility of 

PORH and LTH measurements, whether data were expressed as raw values or as a function of 

baseline [89]. It should be noted that the skin penetration depth of LSCI is about 300 µm, 

whereas it is deeper (about 1-1.5 mm) with laser Doppler techniques [53, 114].  

There is  little data about the linearity between the LSCI signal and actual skin blood 

flow in human skin, whereas LDI has been shown to provide a valid measure of skin blood 

flow [115, 116]. Recent work based on computer simulations and laboratory measurements 

has shown that LDI and LSCI similarly provide a perfusion index proportional to the 

concentration and mean velocity of red blood cells [117]. In vivo, Stewart et al have shown a 

very good correlation between the two techniques in burn scar perfusion assessment [118]. 
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Such correlation between LSCI and LDI is maintained over a wide range of human skin 

perfusion when data are expressed as raw arbitrary perfusion units [119] (Figure 7). 

Subtracting biological zero (BZ) from raw arbitrary perfusion units did not affect the 

correlation between LSCI and LDI but shifted the regression line towards the origin [119].  

A potential problem of LSCI is its sensitivity to movement artifacts. Mahé et al 

recently showed that movement-induced artifacts may be overcome by subtracting the signal 

backscattered from an opaque adhesive surface adjacent to the region of interest (ROI) [120]. 

This simple method could be useful in many investigations of skin microvascular function 

when strict immobility cannot be ensured. 

Analyzing LSCI is challenging, partly because of the large amount of data (i.e. an 

acquisition rate of 18 Hz provides more than 40 000 images for a single 40-min LTH 

measurement). Rousseau et al recently demonstrated that increasing the size of the ROI 

improves the reproducibility of PORH assessed with LSCI (18 Hz), whatever the “time of 

interest” (TOI) [121]. The authors suggest that at this frequency, ROIs should be larger than 

10 mm² and TOIs longer than 1 s. 

In conclusion, LSCI seems to be a remarkable tool to assess skin blood flux, especially 

when coupled with PORH and LTH. However, data acquisition requires caution, particularly 

regarding movement artifacts.  

 

Methodological issues 

Recording conditions 

Blood circulation in the skin plays a key role in the body’s thermoregulation through 

complex interactions between systemic and local mechanisms. Therefore, besides the issue of 

local thermal challenges (discussed above), environmental temperature influences skin blood 

flow. As a consequence, the room temperature should be controlled when studying skin 

Deleted: is

Deleted: are

Deleted: 6

Deleted: BZ 

Deleted: , suggesting a proportional 
bias

Deleted: issue 

Deleted: adhesive 

Deleted: .

Deleted: region of interest (

Deleted: )

Deleted: s

Deleted: the commonly used reactivity 
tests, i.e. 

Deleted: , and data analysis requires 
sufficient regions of interest

Deleted: Skin 

Deleted: c

Deleted: t

Deleted: ,

Page 22 of 56

URL: http://mc.manuscriptcentral.com/tandf/tandf/umic  Email: microcir@msu.edu

Microcirculation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

microcirculation, especially on the fingers. A three degree Celsius increase in room 

temperature (i.e. from 24°C to 27°C) significantly increased resting CVC, but also the PORH 

peak and the LTH peak and plateau on the finger pad, whereas cooling to 21°C tended to 

decrease resting CVC and the PORH peak but did not affect LTH [54]. The influence of room 

temperature is less obvious for forearm measurements [54].  

In healthy subjects, local non-nociceptive external pressure to the skin induces 

vasodilation (often referred to as “pressure-induced vasodilation”, or PIV) to protect the tissue 

from pressure-induced ischemic damage [122].It is of interest that PIV has been successfully 

used as a reactivity test to show the inability of the skin of diabetic patients to adapt to 

localized pressure [123, 124] and suimilarly in older subjects [125]. Although PIV has been 

observed over a wide range of pressures [126], it is unlikely to occur as a result of the weight 

of the LDF probe alone. Nonetheless, LDI and LCSI are immune to artifacts of this nature. 

The influence of mental stress and fear on the LDF signal has also been studied, with 

conflicting conclusions. Mild mental stress has been shown to drastically decrease baseline 

skin blood flow (from 32 to 42%) whereas it had little influence (8% increase) on mean 

arterial pressure [127].  A similar tendency has been observed by using a Stroop color test 

[54]. In the same way, fear-induced stress evoked marked skin vasoconstriction in the finger 

[128]. On the forearm however, mental stress does not influence skin blood flow during 

normothermia [54, 129] or reactivity tests such as PORH and LTH [54], or slightly increases 

skin blood flux [127]. Although these results suggest regional differences in the effects of 

mental stress, these discrepancies between studies may also reflect differences in 

methodology. 

In conclusion, room temperature (and possibly stress) influence laser Doppler 

measurements, especially when studying digital skin blood flux. Experiments should therefore 

be performed in a temperature-controlled room and recording should start after the 
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participant’s acclimatization. A vacuum cushion may be used to maintain the hand and 

forearm as still as possible and thus reduce movement artifacts. 

 

Characteristics of the population 

Although aging does not affect resting cutaneous blood flow [130], human skin 

vascular response to thermal challenges is impaired in elderly subjects compared to younger 

adults in non-glabrous skin (a subject expertly reviewed by Holowatz and Kenney [131]). No 

difference was shown however after local heating on the finger pad [132].  

Gender is another concern when studying microvascular function. Hormone level 

variations across the physiological menstrual cycle or due to the oral contraceptive pill (OCP) 

regimen affect endothelium-dependent vasodilation of conductance arteries in different ways, 

depending on the OCP formulation [133-135]. The effect of the phase of the menstrual cycle 

or of OCPs on microvascular function has been explored with conflicting results. Resting 

cutaneous blood flux and conductance are affected by gender, females having lower values 

than males [130]. In the same way, local heating induces a lower increase in females than in 

males [130]. The menstrual cycle did not influence microvascular reactivity assessed by the 

iontophoresis of ACh and SNP combined with laser Doppler [136]. However, a recent 

controlled study has shown a small increase in the initial LTH peak after the administration of 

17-β-estradiol, progesterone and a combination in young women in whom the sex hormones 

were suppressed with a gonadotropin-releasing hormone antagonist, whereas there was no 

effect on the LTH plateau or PORH [137]. Finally, healthy females showed greater 

vasoconstriction due to local cooling than males, the response being more pronounced during 

the luteal phase than the follicular phase [138]. The influence of female hormone levels across 

menstrual cycle or OCP on microvascular reactivity deserves further exploration, but  it could 

introduce a confounding factor in studies [139]. 
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Age, gender, phase of the menstrual cycle and contraception should be taken into 

account to limit bias in controlled studies, by appropriate matching or randomization. Finally, 

vasoactive drugs and cigarette smoking also affect microvascular function [140, 141] and 

should therefore be avoided where possible.  

  

Skin sites and data expression 

 As previously mentioned, skin site influences the study of microvascular reactivity. 

The spatial variability of single-point LDF results has been described for almost three decades 

[142]. Braverman explained the variability of the signal by the anatomy of the underlying 

vasculature. Indeed, a high skin blood flux corresponds to underlying ascending arterioles 

whereas lower flux indicates venular predominance [53]. As skin arterioles are separated by 

an average of 1.7 mm on the forearm [53], flux may vary consistently according to the 

position of the LDF probe. This is the cause of the poor inter-day reproducibility of single-

point LDF discussed above, which is a limitation of the technique. 

On the finger pad however (and on non-glabrous skin in general), the skin contains a 

high proportion of arteriovenous anastomoses, making baseline flux highly variable over time 

when assessed with single-point LDF. There is also a higher vessel density and thus baseline 

flux is more elevated than on the forearm. This higher density and easier probe positioning 

decreases spatial variability and therefore improves reproducibility of flux recorded with 

single-point LDF on the finger pad compared to the forearm [54]. This is untrue when data are 

expressed as a function of baseline, probably because of the influence of recording conditions 

on basal digital skin blood flux.  

One major limitation of laser techniques is that they do not provide absolute perfusion 

values (i.e. cutaneous blood flow in mL/min relative to the volume or weight of tissue) [52]. 

Measurements are often expressed as arbitrary PU and referred to as flux. Some groups have 
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proposed to take into account blood pressure variations when expressing laser Doppler data 

[52]. They correct for the short and long term variations in blood pressure which would result 

in variations in cutaneous blood flow. However, this approach may be hampered by regional 

blood flow autoregulation. Blood flow autoregulation is the adjustment of vascular resistances 

in order to maintain constant flow over a wide range of pressures. This phenomenon is very 

efficient in the “protected” cerebral, coronary and renal circulatory systems, while it is much 

inferior in squeletal muscle and intestinal circulation, and absent in pulmonary circulation 

[143]. However, there is little information concerning the relationship between systemic blood 

pressure and skin perfusion pressure. Using large cutaneous island flaps in anesthetized dogs, 

it was shown that a decrease in cutaneous blood pressure was linearly correlated with a 

decrease in cutaneous blood flow, with no evidence of any plateau at a given flow value in 

this model [144],  suggesting a lack of consistent autoregulation [145]. Therefore, it would be 

wise to correct for cutaneous blood flux by mean arterial pressure or if possible using 

peripheral blood pressure. When blood pressure is taken into account, expressing data as 

conductance is more appropriate than when it is expressed as resistance [146].  

However, this does not permit the comparison of absolute flux or conductance values 

across studies in which different probes and/or brands of device and/or sites of measurement 

are used. An illustration of this issue is the comparison between LSCI and LDI. Although 

both signals (expressed as perfusion units) are very well correlated (R>0.85) [118, 119], there 

is a proportional bias between the two techniques whether data are expressed as raw PUs or as 

a percentage increase from baseline, suggesting that one should not assimilate PUs provided 

by the two systems [119]. 

The consequence of the latter limitation is that baseline flux or baseline CVC are of 

little interest when considered individually. Instead, microvessels are challenged with the 

various tests described in this review. Data is then expressed as raw flux or CVC, as a 
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function of baseline (i.e. peak/plateau minus baseline, percentage increase/decrease from 

baseline, area under the curve) or as a percentage of maximal flux or CVC. According to the 

technique (single-point LDF, LDI or LSCI) and the test, the reproducibility of the 

measurements is drastically influenced by the way of expressing data, as detailed above and 

summarized in Table 1.  

Recent work has shown that normalizing data to maximum flux provides similar 

responses to thermal stimuli (skin-surface cooling and whole body heat stress) whether 

assessed with single-point LDF, integrated LDF or LDI [147]. Scaling data to maximal 

vasodilation after local heating to 42-44°C is acceptable in mechanistically driven, carefully 

controlled studies, when skin blood flux is assessed with LDF or LSCI [1, 89]. However, such 

data expression may not be appropriate when studying reactivity in patients, in whom 

maximal vasodilation may be altered [1]. Full-field techniques such as LDI or LSCI may be 

of particular interest in such situations. 

 

Biological zero 

For laser Doppler measurements skin blood flux does not reach the value of zero when 

perfusion is absent due to brownian motion of macromolecules (reached after 3–5 min of cuff 

occlusion) [148]. Part of this signal may also be attributed to remaining red blood cells in 

venules. Whether data analysis should take into account this residual flux (referred to as 

“biological zero”, BZ) remains controversial. Indeed, BZ (recorded with LDF) has been 

shown to be additive to the flow signal [148]. The authors therefore suggested measuring BZ 

under every experimental condition and subtracting it from the flux signal [148]. This is 

technically a wise precaution, but in practice is only possible when considering PORH (during 

which BZ is obtained de facto). In other conditions, occluding large vessels for 3 to 5 min 

would induce tremendous changes in microvascular reactivity, and bias the response. A 
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solution would be to occlude arterial flow after other challenges, but this is not advisable as 

temperature or drugs (i.e. conditions of high blood flux) increase BZ recorded with LDF [148] 

and LDI [149]. In such circumstances, as the absolute difference is small, BZ subtraction has 

little influence when quantifying absolute hyperemic perfusion. Subtracting the biological 

zero did not improve one-week PORH reproducibility [54]. Furthermore, it may introduce 

bias when data are expressed as a percentage increase from baseline flux [149].  

To our knowledge, little data are available concerning BZ assessed with LSCI. A 

recent study has shown higher BZ with LSCI than with LDI, thus again raising the issue of its 

influence on data analysis [119]. Subtracting BZ did not alter its correlation with LDI but 

shifted the regression line towards the origin. However, BZ subtraction introduced some 

variability in baseline, thus worsening the correlation when data was expressed as a 

percentage increase from baseline.  

In conclusion, correction for BZ could be considered when studying PORH with laser 

Doppler or laser speckle. In the latter case, LSCI data should be expressed as raw perfusion 

units, but not as a function of baseline. Overall, correction for BZ makes data analysis more 

complicated without improving reproducibility. 

 

Limits and perspectives 

Among the different techniques reviewed, each has advantages and drawbacks. 

Microscopy-derived techniques are semi-quantitative, implemented in small devices that can 

be used at the bedside; they are mostly used to assess morphology rather than the function of 

the microvasculature. On the other hand, the advantage of laser Doppler and laser speckle 

techniques is that they can be coupled with various reactivity tests to challenge microvessels. 

However, these tests do not specifically assess distinct pathways but provide an overall 

assessment of microvascular function. Indeed, recent studies have shown that the  
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mechanisms underlying of common reactivity tests (i.e. Ach iontophoresis, PORH and LTH) 

are complex and involve several different pathways [150]. Besides deeper an exploration into 

their mechanisms, these tests should be standardized if they are to be used as surrogate 

markers of microvascular function.  

Another approach which has not been explored in this review concerns signal 

processing. Indeed, cutaneous blood flow has been studied through several processing tools 

such as the Fourier transform and the wavelet transform [52]. Other methods such as 

multifractality and sample entropy have recently been applied to LDF signals [151]. 

  

Conclusion 

In conclusion, different techniques have been developed in the past thirty years to 

assess microvascular function. Although optical microscopy-derived techniques (such as 

nailfold videocapillaroscopy) have found clinical applications they mainly provide 

morphological information about the microvessels. Laser Doppler techniques coupled to 

reactivity tests are widespread in the field of microvascular function research. Post-occlusive 

reactive hyperemia (PORH) and local thermal hyperemia (LTH) have been shown to be 

reliable tests, although their underlying mechanisms are not fully understood yet. Despite its 

wide use as a specific test of endothelial function, acetylcholine iontophoresis has many 

limitations. In a general way, all these tests suffer from a lack of standardization and show 

highly variable reproducibility according to the skin site, recording conditions and the way of 

expressing data. Recent techniques such as laser speckle contrast imaging are promising tools, 

although further work is needed to determine the strength of the technique. 
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Table 1. Reproducibility of post-occlusive reactive hyperemia (PORH) and local thermal 

hyperemia (LTH) on the forearm of healthy subjects. 

LDF   

Single-point* 

[54, 89] 

Integrating 

[77, 99] 

LDI 

[89] 

LSCI 

[89, 121] 

CVC / PU 45 / 30 NA NA 8 / 3.1
#
 

CVCPK-CVCBL 19.4
¶
-48 / 33 NA NA 11 

%CVCBL 22.7
¶
-38 / 32 NA NA 15 

AUC 89 / 36 NA NA NA 

PORH Peak 

%CVCmax  41 / 39 NA NA 35 

CVC 57 / 40 19 39 15 

%CVCBL 87 / 51 32 52 21 

Peak 

%CVCmax 19 / 25 11 42 9 

CVC 40 / 42 19 17 15 

LTH 

Plateau 

%CVCBL 92 / 58 30 / 38.5
†
 34 24 

Data are expressed as within subject coefficient of variation (in %) of cutaneous vascular 

conductance (CVC), peak CVC minus baseline CVC (CVCPK-CVCBL), percentage change 

from baseline CVC (%CVCBL), area under the curve of flux (in PU.s), or percentage of 

maximal CVC (%CVCmax). * without normalizing baseline skin temperature / after 

normalizing baseline skin temperature to 33°C. 
†
From ref [77]. 

#
Peak was expressed as 

perfusion units (PU), from ref [121]; 
¶ 
From ref [77]; NA: not available 

 

Deleted: ¶

Page 47 of 56

URL: http://mc.manuscriptcentral.com/tandf/tandf/umic  Email: microcir@msu.edu

Microcirculation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Figure legends 

 

Figure 1. Representative images of nailfold videocapillaroscopy (NVC) with a magnification 

x 100. A, Normal pattern showing homogenous distribution of capillary loops. B, Pattern 

observed in a patient with systemic sclerosis, showing disorganized enlarged/giant capillaries.  

 

Figure 2. A, Cathodal iontophoresis of vasoadilator drug and control while recording skin 

blood flux with laser Doppler imaging (LDI); 1, active electrode containing the drugs; 2, 

passive electrode; 3, current generators connected to the electrodes; vacuum cushion to reduce 

movement artifacts; 5, head of the imager. B, skin blood flux recorded during iontophoresis 

(20 min, 20 µA) of sodium nitroprusside (bottom) and saline (top) after local anesthesia to 

avoid axon reflex vasodilation. C, intensity allows easier positioning of the regions of interest.  

 

Figure 3. Example of current-induced vasodilation observed during cathodal iontophoresis 

(15 min, 20 or 100 µA) of saline and deionized water. The black bar represents the length of 

iontophoresis. Skin blood flux was assessed with laser Doppler imaging (frame rate: 3 

images/min). PU: perfusion units. 

 

Figure 4. Example of post-occlusive reactive hyperemia (PORH) recorded on the forearm 

with laser Doppler flowmetry (LDF). Hyperemia may be either expressed as peak raw value 

(PK), as a function of baseline: peak minus baseline (PK-BL), percentage increase from 

baseline (PK%BL) or area under curve (AUC);  or as the percentage of vasodilation maximal 

vasodilation (reached by heating locally to 4244°C. The kinetics of the response is sometimes 

reported as the time to peak (TP) hyperemia (time from cuff release to peak hyperemia, in 

seconds). BL: baseline; BZ: biological zero. 
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Figure 5. Example of local thermal hyperemia (LTH) recorded on the forearm with laser 

speckle contrast imaging (LSCI). Flux is averaged over 3 min for baseline and plateau, and 

over 1 min for peak (light bars). PU: perfusion units. 

 

Figure 6. Typical tracing of skin blood flux assessed with laser Doppler flowmetry during a 

30-min local cooling at 15 °C on the forearm. An inconstant cold-induced vasodilation is 

observed within the first 10 min. Data are expressed as perfusion units (PU). Reproduced with 

permission from ref [108]. 

 

Figure 7. Measurement of skin blood flux on different skin sites of the forearm (numbered 1 

to 5): unheated, heated to 36°C, to 39°C, to 42°C and to 44°C, respectively, using laser 

speckle contrast imaging (A) and laser Doppler imaging (B). 
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Representative images of nailfold videocapillaroscopy (NVC) with a magnification x 100. A, Normal 

pattern showing homogenous distribution of capillary loops. B, Pattern observed in a patient with 
systemic sclerosis, showing disorganized enlarged/giant capillaries.  

83x67mm (300 x 300 DPI)  
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A, Cathodal iontophoresis of vasoadilator drug and control while recording skin blood flux with laser 
Doppler imaging (LDI); 1, active electrode containing the drugs; 2, passive electrode; 3, current 

generators connected to the electrodes; vacuum cushion to reduce movement artifacts; 5, head of 
the imager. B, skin blood flux recorded during iontophoresis (20 min, 20 µA) of sodium 

nitroprusside (bottom) and saline (top) after local anesthesia to avoid axon reflex vasodilation. C, 

intensity allows easier positioning of the regions of interest.  
382x398mm (96 x 96 DPI)  
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Example of current-induced vasodilation observed during cathodal iontophoresis (15 min, 20 or 100 
µA) of saline and deionized water. The black bar represents the length of iontophoresis. Skin blood 

flux was assessed with laser Doppler imaging (frame rate: 3 images/min). PU: perfusion units.  
106x61mm (300 x 300 DPI)  
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Example of post-occlusive reactive hyperemia (PORH) recorded on the forearm with laser Doppler 
flowmetry (LDF). Hyperemia may be either expressed as peak raw value 

(PK), as a function of baseline: peak minus baseline (PK-BL), percentage increase from baseline 

(PK%BL) or area under curve (AUC);  or as the percentage of vasodilation maximal vasodilation 
(reached by heating locally to 4244°C. The kinetics of the response is sometimes reported as the 
time to peak (TP) hyperemia (time from cuff release to peak hyperemia, in seconds). BL: baseline; 

BZ: biological zero.  
101x41mm (300 x 300 DPI)  

 
 

Page 53 of 56

URL: http://mc.manuscriptcentral.com/tandf/tandf/umic  Email: microcir@msu.edu

Microcirculation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

  

 

 

Example of local thermal hyperemia (LTH) recorded on the forearm with laser speckle contrast 
imaging (LSCI). Flux is averaged over 3 min for baseline and plateau, and over 1 min for peak (light 

bars). PU: perfusion units.  
119x60mm (300 x 300 DPI)  
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Typical tracing of skin blood flux assessed with laser Doppler flowmetry during a 30-min local 
cooling at 15 °C on the forearm. An inconstant cold-induced vasodilation is observed within the first 
10 min. Data are expressed as perfusion units (PU). Reproduced with permission from ref [108].  
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Measurement of skin blood flux on different skin sites of the forearm (numbered 1 to 5): unheated, 
heated to 36°C, to 39°C, to 42°C and to 44°C, respectively, using laser speckle contrast imaging 

(A) and laser Doppler imaging (B).  
170x147mm (96 x 96 DPI)  
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