J. M. Van-den-berg, E. Van-koppen, A. Ahlin, B. H. Belohradsky, E. Bernatowska et al., Chronic Granulomatous Disease: The European Experience, PLoS ONE, vol.8, issue.4, p.5234, 2009.
DOI : 10.1371/journal.pone.0005234.t017

URL : https://hal.archives-ouvertes.fr/hal-00382226

L. Yu, L. Zhen, and M. C. Dinauer, Biosynthesis of the Phagocyte NADPH Oxidase Cytochromeb 558: ROLE OF HEME INCORPORATION AND HETERODIMER FORMATION IN MATURATION AND STABILITY OF gp91 phox and p22 phox SUBUNITS, Journal of Biological Chemistry, vol.272, issue.43, pp.27288-27294, 1997.
DOI : 10.1074/jbc.272.43.27288

A. Aliverti, C. M. Bruns, V. E. Pandini, P. A. Karplus, M. A. Vanoni et al., Involvement of Serine 96 in the Catalytic Mechanism of Ferredoxin-NADP+ Reductase: Structure-Function Relationship As Studied by Site-Directed Mutagenesis and X-ray Crystallography, Biochemistry, vol.34, issue.26, pp.8371-8379, 1995.
DOI : 10.1021/bi00026a019

K. Bedard and K. H. Krause, The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology, Physiological Reviews, vol.87, issue.1, pp.245-313, 2007.
DOI : 10.1152/physrev.00044.2005

J. Marcoux, P. Man, I. Petit-haertlein, C. Vivès, E. Forest et al., p47phox Molecular Activation for Assembly of the Neutrophil NADPH Oxidase Complex, Journal of Biological Chemistry, vol.285, issue.37, pp.28980-28990, 2010.
DOI : 10.1074/jbc.M110.139824

H. Sumimoto, Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species, FEBS Journal, vol.19, issue.13, pp.3249-3277, 2008.
DOI : 10.1111/j.1742-4658.2008.06488.x

D. Durand, D. Cannella, V. Dubosclard, E. Pebay-peyroula, P. Vachette et al., Modular Protein, Biochemistry, vol.45, issue.23, pp.7185-7193, 2006.
DOI : 10.1021/bi060274k

M. H. Paclet, L. M. Henderson, Y. Campion, F. Morel, and M. C. Dagher, Localization of Nox2 N-terminus using polyclonal antipeptide antibodies, Biochemical Journal, vol.382, issue.3, pp.981-986, 2004.
DOI : 10.1042/BJ20040954

URL : https://hal.archives-ouvertes.fr/hal-00820738

L. M. Henderson, Role of Histidines Identified by Mutagenesis in the NADPH Oxidase-associated H+ Channel, Journal of Biological Chemistry, vol.273, issue.50, pp.33216-33223, 1998.
DOI : 10.1074/jbc.273.50.33216

K. J. Biberstine-kinkade, L. Yu, and M. C. Dinauer, Mutagenesis of an Arginine- and Lysine-rich Domain in the gp91phox Subunit of the Phagocyte NADPH-oxidase Flavocytochromeb 558, Journal of Biological Chemistry, vol.274, issue.15, pp.10451-10457, 1999.
DOI : 10.1074/jbc.274.15.10451

X. J. Li, D. Grunwald, J. Mathieu, F. Morel, S. et al., Crucial Role of Two Potential Cytosolic Regions of Nox2, 191TSSTKTIRRS200 and 484DESQANHFAVHHDEEKD500, on NADPH Oxidase Activation, Journal of Biological Chemistry, vol.280, issue.15, pp.14962-14973, 2005.
DOI : 10.1074/jbc.M500226200

URL : https://hal.archives-ouvertes.fr/hal-00382074

K. Von-löhneysen, D. Noack, M. R. Wood, J. S. Friedman, and U. G. Knaus, Structural Insights into Nox4 and Nox2: Motifs Involved in Function and Cellular Localization, Molecular and Cellular Biology, vol.30, issue.4, pp.961-975, 2010.
DOI : 10.1128/MCB.01393-09

A. W. Segal, I. West, F. Wientjes, J. H. Nugent, A. J. Chavan et al., is a flavocytochrome containing FAD and the NADPH-binding site of the microbicidal oxidase of phagocytes, Biochemical Journal, vol.284, issue.3, pp.781-788, 1992.
DOI : 10.1042/bj2840781

D. Rotrosen, C. L. Yeung, T. L. Leto, H. L. Malech, and C. H. Kwong, Cytochrome b558: the flavin-binding component of the phagocyte NADPH oxidase, Science, vol.256, issue.5062, pp.1459-1462, 1992.
DOI : 10.1126/science.1318579

H. Sumimoto, N. Sakamoto, M. Nozaki, Y. Sakaki, K. Takeshige et al., Cytochrome b558, a component of the phagocyte NADPH oxidase, is a flavoprotein, Biochemical and Biophysical Research Communications, vol.186, issue.3, pp.1368-1375, 1992.
DOI : 10.1016/S0006-291X(05)81557-8

X. J. Li, F. Fieschi, M. H. Paclet, D. Grunwald, Y. Campion et al., Leu505 of Nox2 is crucial for optimal p67phox-dependent activation of the flavocytochrome b558 during phagocytic NADPH oxidase assembly, Journal of Leukocyte Biology, vol.81, issue.1, pp.238-249, 2007.
DOI : 10.1189/jlb.0905541

URL : https://hal.archives-ouvertes.fr/hal-00382255

W. R. Taylor, D. T. Jones, and A. W. Segal, ??-chain, Protein Science, vol.84, issue.10, pp.1675-1685, 1993.
DOI : 10.1002/pro.5560021013

M. J. Stasia, L. , and X. J. , Genetics and immunopathology of chronic granulomatous disease, Seminars in Immunopathology, vol.35, issue.Suppl 1, pp.209-235, 2008.
DOI : 10.1007/s00281-008-0121-8

URL : https://hal.archives-ouvertes.fr/hal-00382245

L. Zhen, A. A. King, Y. Xiao, S. J. Chanock, S. H. Orkin et al., Gene targeting of X chromosome-linked chronic granulomatous disease locus in a human myeloid leukemia cell line and rescue by expression of recombinant gp91phox., Proceedings of the National Academy of Sciences, vol.90, issue.21, pp.9832-9836, 1993.
DOI : 10.1073/pnas.90.21.9832

L. Zhen, L. Yu, and M. C. Dinauer, Probing the Role of the Carboxyl Terminus of the gp91phox Subunit of Neutrophil Flavocytochrome b558 using Site-directed Mutagenesis, Journal of Biological Chemistry, vol.273, issue.11, pp.6575-6581, 1998.
DOI : 10.1074/jbc.273.11.6575

C. Bionda, X. J. Li, R. Van-bruggen, M. Eppink, D. Roos et al., Functional analysis of two-amino acid substitutions in gp91phox in a patient with X-linked flavocytochrome b558-positive chronic granulomatous disease by means of transgenic PLB-985 cells, Human Genetics, vol.115, issue.5, pp.418-427, 2004.
DOI : 10.1007/s00439-004-1173-z

D. Baniulis, Y. Nakano, W. M. Nauseef, B. Banfi, G. Cheng et al., Evaluation of two anti-gp91phox antibodies as immunoprobes for Nox family proteins: mAb 54.1 recognizes recombinant full-length Nox2, Nox3 and the C-terminal domains of Nox1-4 and cross-reacts with GRP 58, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1752, issue.2, pp.186-196, 2005.
DOI : 10.1016/j.bbapap.2005.07.018

S. Vergnaud, M. H. Paclet, J. Benna, M. A. Pocidalo, and F. Morel, Complementation of NADPH oxidase in p67-phox-deficient CGD patients, European Journal of Biochemistry, vol.269, issue.4, pp.1059-1067, 2000.
DOI : 10.1046/j.1432-1327.2000.01097.x

L. Cohen-tanugi, F. Morel, M. C. Pilloud-dagher, J. M. Seigneurin, P. Francois et al., Activation of O2--generating oxidase in an heterologous cell-free system derived from Epstein-Barr-virus-transformed human B lymphocytes and bovine neutrophils. Application to the study of defects in cytosolic factors in chronic granulomatous disease, European Journal of Biochemistry, vol.265, issue.2, pp.649-655, 1991.
DOI : 10.1016/0006-291X(89)90063-6

URL : https://hal.archives-ouvertes.fr/hal-00820807

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, vol.72, issue.1-2, pp.248-254, 1976.
DOI : 10.1016/0003-2697(76)90527-3

M. F. Fillat, D. E. Edmondson, and C. Gomez-moreno, Structural and chemical properties of a flavodoxin from Anabaena PCC 7119, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1040, issue.2, pp.301-307, 1990.
DOI : 10.1016/0167-4838(90)90091-S

A. Aliverti, L. Piubelli, G. Zanetti, T. Lübberstedt, R. G. Herrmann et al., The role of cysteine residues of spinach ferredoxin-NADP+ reductase as assessed by site-directed mutagenesis, Biochemistry, vol.32, issue.25, pp.6374-6380, 1993.
DOI : 10.1021/bi00076a010

J. H. Leusen, M. De-boer, B. G. Bolscher, P. M. Hilarius, R. S. Weening et al., A point mutation in gp91-phox of cytochrome b558 of the human NADPH oxidase leading to defective translocation of the cytosolic proteins p47-phox and p67-phox., Journal of Clinical Investigation, vol.93, issue.5, pp.2120-2126, 1994.
DOI : 10.1172/JCI117207

V. Nivière, F. Fieschi, J. L. Deaeout, and M. Fontecave, The NAD(P)H:Flavin Oxidoreductase from Escherichia coli: EVIDENCE FOR A NEW MODE OF BINDING FOR REDUCED PYRIDINE NUCLEOTIDES, Journal of Biological Chemistry, vol.274, issue.26, pp.18252-18260, 1999.
DOI : 10.1074/jbc.274.26.18252

N. B. Calcaterra, G. A. Picó, E. G. Orellano, J. Ottado, N. Carrillo et al., Contribution of the FAD binding site residue tyrosine 308 to the stability of pea ferredoxin-NADP+ oxidoreductase, Biochemistry, vol.34, issue.39, pp.12842-12848, 1995.
DOI : 10.1021/bi00039a045

M. Y. Park, S. Imajoh-ohmi, H. Nunoi, and S. Kanegasaki, Synthetic Peptides Corresponding to Various Hydrophilic Regions of the Large Subunit of Cytochrome b558Inhibit Superoxide Generation in a Cell-Free System from Neutrophils, Biochemical and Biophysical Research Communications, vol.234, issue.2, pp.531-536, 1997.
DOI : 10.1006/bbrc.1997.6672

S. Hashida, S. Yuzawa, N. N. Suzuki, Y. Fujioka, T. Takikawa et al., Binding of FAD to Cytochrome b558 Is Facilitated during Activation of the Phagocyte NADPH Oxidase, Leading to Superoxide Production, Journal of Biological Chemistry, vol.279, issue.25, pp.26378-26386, 2004.
DOI : 10.1074/jbc.M309724200