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biological signaling: application of Gillespie
algorithm
Gautier Stoll1,2,3*, Eric Viara4, Emmanuel Barillot1,2,3 and Laurence Calzone1,2,3

Abstract

Mathematical modeling is used as a Systems Biology tool to answer biological questions, and more precisely, to
validate a network that describes biological observations and predict the effect of perturbations. This article presents
an algorithm for modeling biological networks in a discrete framework with continuous time.

Background: There exist two major types of mathematical modeling approaches: (1) quantitative modeling,
representing various chemical species concentrations by real numbers, mainly based on differential equations and
chemical kinetics formalism; (2) and qualitative modeling, representing chemical species concentrations or activities
by a finite set of discrete values. Both approaches answer particular (and often different) biological questions.
Qualitative modeling approach permits a simple and less detailed description of the biological systems, efficiently
describes stable state identification but remains inconvenient in describing the transient kinetics leading to these
states. In this context, time is represented by discrete steps. Quantitative modeling, on the other hand, can describe
more accurately the dynamical behavior of biological processes as it follows the evolution of concentration or
activities of chemical species as a function of time, but requires an important amount of information on the
parameters difficult to find in the literature.

Results: Here, we propose a modeling framework based on a qualitative approach that is intrinsically continuous in
time. The algorithm presented in this article fills the gap between qualitative and quantitative modeling. It is based on
continuous time Markov process applied on a Boolean state space. In order to describe the temporal evolution of the
biological process we wish to model, we explicitly specify the transition rates for each node. For that purpose, we built
a language that can be seen as a generalization of Boolean equations. Mathematically, this approach can be translated
in a set of ordinary differential equations on probability distributions. We developed a C++ software, MaBoSS, that is
able to simulate such a system by applying Kinetic Monte-Carlo (or Gillespie algorithm) on the Boolean state space.
This software, parallelized and optimized, computes the temporal evolution of probability distributions and estimates
stationary distributions.

Conclusions: Applications of the Boolean Kinetic Monte-Carlo are demonstrated for three qualitative models: a toy
model, a published model of p53/Mdm2 interaction and a published model of the mammalian cell cycle. Our
approach allows to describe kinetic phenomena which were difficult to handle in the original models. In particular,
transient effects are represented by time dependent probability distributions, interpretable in terms of cell populations.
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Background
Mathematical models of signaling pathways are tools that
answer biological questions. The most commonly used
mathematical formalisms to answer these questions are
ordinary differential equations (ODEs) and Boolean mod-
eling.

Ordinary differential equations (ODEs) have been
widely utilized to model signaling pathways. It is the most
natural formalism for translating detailed reaction net-
works into a mathematical model. Indeed, equations can
be directly derived using mass action laws, Michaelis-
Menten kinetics or Hill functions for each reaction
according to the observed behaviors. This framework
has limitations, though. The first one concerns the dif-
ficulty to assign values to the kinetic parameters of the
model. Ideally, these parameters would be extracted from
experimental data. However, they are often chosen by
the modeler so as to fit qualitatively the expected pheno-
types. The second limitation concerns the cell population
heterogeneity. In this case, ODEs are no longer appropri-
ate since the approach is deterministic and thus focuses
on the average behavior. To include non-determinism, an
ODE model needs to be transformed into a stochastic
chemical model. In this formalism, a master equation is
written on the probabilities of the number of molecules for
each species. In the translation process, the same param-
eters used in ODEs (more particularly in ODEs written
with mass action law) can be used in the master equation,
but in this case, the number of initial conditions explodes
along with the computation time.

Boolean (or logical) formalism is another formalism
used to model signaling pathways where genes/proteins
are parameterized by 0s and 1s only. It is the most nat-
ural formalism to translate an influence network into a
mathematical model. In such networks, each node corre-
sponds to a species and each arrow to an interaction or an
influence (positive or negative). In a Boolean model, a log-
ical rule linking the inputs is assigned to each node. As a
result, there are no real parameter values to adjust besides
choosing the appropriate logical rules that best describe
the system. In this paper, we will refer to a state in which
each node of the influence network has a Boolean value
as a network state, and the set of all possible transitions
between the network states as a transition graph. There
are two types of transition graphs, one deduced from the
synchronous update strategy [1], for which all the nodes
that can be updated are updated in one transition, and
another one deduced from the asynchronous update strat-
egy [2], for which only one node, of all the possible nodes,
is updated in one transition. In the Boolean formalism,
each transition can be interpreted as a “time” step, though
this “time” does not characterize real biological time but
rather an event. Stochasticity is an important aspect when
studying cell populations. In Boolean framework, it can

be applied: on nodes (by randomly flipping a node state
[3,4]), on the logical rules (by allowing to change an AND
gate into an OR gate [5]), and on the update rules (by
defining the probability and the priority of changing one
particular Boolean value before others in an asynchronous
strategy [6] or by adding noise to the whole system in a
synchronous strategy [7]). One of the main drawbacks of
the Boolean approach is the explosion of solutions. In an
asynchronous update strategy, the size of the transition
graph can reach 2#nodes.

Both logical and continuous frameworks have advan-
tages and disadvantages above-mentioned. We propose
here to combine some of the advantages of both
approaches in an algorithm that we call the “Boolean
Kinetic Monte-Carlo” algorithm (BKMC). It consists of
a natural generalization of the asynchronous Boolean
dynamics [2], with a direct probabilistic interpretation. In
BKMC framework, the dynamics is parameterized by a
biological time and the order of update is noisy, which is
less strict than priority classes introduced in GINsim [8].
A BKMC model is specified by logical rules as in regular
Boolean models but with a more precise information: a
numerical rate is added for each transition of each node.

BKMC is not intended to replace existing tools but
rather to complement them. It is best suited to model
signaling pathways in the following cases:

• The model is based on an influence network, because
BKMC is a generalization of the asynchronous
Boolean dynamics. See “Examples” section. Note that
this is a common requirement for most of Boolean
software.

• The model describes processes for which information
about the duration of a biological process is known,
because in BKMC, time is parameterized by a real
number. This is typically the case when studying
developmental biology, where animal models provide
time changes of gene/protein activities [9].

• The model describes heterogeneous cell population
behavior, because BKMC has a probabilistic
interpretation. For example, modeling heterogeneous
cell population can help understand tissue formation
based on cell differentiation [10].

• The model can contain many nodes (up to 64 in the
present implementation), because BKMC is a
simulation algorithm that converges fast. This can be
useful for big models that have already been modeled
with a discrete time Boolean method [11], in order to
obtain a finer description of transient effects (see
webpage for examples of published models: https://
maboss.curie.fr).

Previous published works have also introduced a contin-
uous time approach in the Boolean framework([12-18]).

https://maboss.curie.fr
https://maboss.curie.fr
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In this article, we will first review some of these works and
present BKMC algorithm. We will then describe the C++
software, MaBoSS, developed to implement BKMC algo-
rithm and finally illustrate its use with three examples, a
toy model, a published model of p53-MDM2 interaction
and a published model of the mammalian cell cycle.

All abbreviations, definitions, algorithms and estimates
used in this article can be found in Additional file 1.
Throughout the article, all terms that are italicized are
defined in the Additional file 1, “Definitions”.

Results and discussion
BKMC for continuous time Boolean model
Continuous time in Boolean modeling: past and present
In Boolean approaches for modeling networks, the state
of each node of the network is defined by a Boolean
value (node state) and the network state by the set of
node states. Any dynamics in the transition graph is rep-
resented by sequences of network states. A node state is
based on the sign of the input arrows and the logic that
links them. The dynamics can be deterministic in the case
of synchronized update [1], or non-deterministic in the
case of asynchronized update [2] or probabilistic Boolean
networks [7].

The difficulty to interpret the dynamics in terms of bio-
logical time has led to several works that have generalized
Boolean approaches. These approaches can be divided
in two classes that we call explicit and implicit time for
discrete steps.

The explicit time for discrete steps consists of adding a
real parameter to each node state. These parameters cor-
respond to the time associated to each node state before
it flips to another one ([12,13]). Because data about these
time lengths are difficult to extract from experimental
studies, some works have included noise in the definition
of these parameters [18]. The drawback of this method
is that the computation of the Boolean model becomes
sensitive to both the type of noise and the initial con-
ditions. As a result, these time parameters become new
parameters that need to be tuned carefully and thus add
complexity to the modeling.

The implicit time for discrete steps consists of adding
a probability to each transition of the transition graph in
the case of non-deterministic transitions (asynchronous
case). It is argued that these probabilities could be inter-
preted as specifying the duration of a biological process.
As an illustration, let us assume a small network of two
nodes, A and B. At time t, A and B are inactive: [AB] = [00].
In the transition graph, there exist two possible transitions
at t+1: [00] → [01] and [00] → [10]. If the first transition
has a significant higher probability than the second one,
then we can conclude that B will have a higher tendency
to activate before A. Therefore, it is equivalent to say that
the activation of B is faster than the activation of A. Thus,

in this case, the notion of time is implicitly modeled by
setting probability transitions. In particular, priority rules,
in the asynchronous strategy, consist of putting some of
these probabilities to zero [6]. In our example, if B is faster
than A then the probability of the transition [00] → [10]
is zero. As a result, the prioritized nodes always activate
before the others. From a different perspective but keep-
ing the same idea, Vahedi and colleagues [14] have set up
a method to deduce explicitly these probabilities from the
duration of each discrete step. With the implementation
of implicit time in a Boolean model, the dynamics remains
difficult to interpret in terms of biological time.

As an alternative to these approaches, we propose
BKMC algorithm.

Properties of BKMC algorithm
BKMC algorithm was built such as to meet the following
principles:

• The state of each node is given by a Boolean number
(0 or 1), referred to as node state;

• The state of the network is given by the set of node
states, referred to as network state;

• The update of a node state is based on the signs
linking the incoming arrows of this node and the
logic;

• Time is represented by a real number;
• Evolution is stochastic.

We choose to describe the time evolution of network
states by a Markov process with continuous time, applied
to the asynchronous transition graph. Therefore, the
dynamics is defined by transition rates inserted in a mas-
ter equation (see Additional file 1, “Basic information on
Markov process”, section 1.1).

Markov process for Boolean model
Consider a network of n nodes (or agents, that can rep-
resent any species, i.e. mRNA, proteins, complexes, etc.).
In a Boolean framework, the network state of the sys-
tem is described by a vector S of Boolean values, i.e. Si ∈
{0, 1}, i = 1, . . . , n where Si is the state of the node i. The
set of all possible network states, also referred to as the
network state space, will be called �.

A stochastic description of the state evolution is repre-
sented by a stochastic process s : t �→ s(t) defined on
t ∈ I ⊂ R applied on the network state space, where I
is an interval: for each time t ∈ I ⊂ R, s(t) represents a
random variable applied on the network state space. Thus,
the probability of these random variables is written as:

P [s(t) = S] ∈ [ 0, 1] for any state S ∈ �

with
∑
S∈�

P [s(t) = S] = 1 (1)
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Notice that for all t, s(t) are not independent, therefore
P

[
s(t) = S, s(t′) = S′] �= P [s(t) = S] P

[
s(t′) = S′]. From

now on, we define P [s(t) = S] as instantaneous probabil-
ities. Since the instantaneous probabilities do not define
the full stochastic process, all possible joint probabilities
should also be defined.

In order to simplify the stochastic process, Markov
property is imposed. It can be expressed in the following
way: “the conditional probabilities in the future, related to
the present and the past, depend only on the present” (see
Additional file 1, “Basic information on Markov process”,
section 1.1 for the mathematical definition). The formal
definition of a Markov process is a stochastic process with
the Markov property.

Any Markov process can be defined by (see Van Kampen
[19], chapter IV):

1. An initial condition:

P [s(0) = S] ; ∀S ∈ � (2)

2. Conditional probabilities (of a single condition):

P
[
s(t) = S|s(t′) = S′] ; ∀S, S′ ∈ � ; ∀t′, t ∈ I; t′ < t

(3)

Concerning time, two cases can be considered:

• If time is discrete: t ∈ I = {t0, t1, · · · }, it can be shown
that all possible conditional probabilities are function
of transition probabilities [20]:
P

[
s(ti) = S|s(ti−1) = S′]. In that case, a Markov

process is often named a Markov chain.
• If time is continuous: t ∈ I =[ a, b], it can be shown

that all possible conditional probabilities are function
of transition rates [19]: ρ(S′→S)(t) ∈[ 0, ∞].

Notice that a discrete time Markov process can be
derived from continuous time Markov process, and is
called a Jump Process with the following transition proba-
bilities:

PS→S′ ≡ ρS→S′∑
S′′∈� ρS→S′′

If the transition probabilities or transition rates are time
independent, the Markov process is called a time inde-
pendent Markov process. In BKMC, only this case will be
considered. For a time independent Markov process, the
transition graph can be defined as follows: a transition
graph is a graph in �, with an edge between S and S′ if and
only if ρS→S′ > 0 (or P

[
s(ti) = S|s(ti−1) = S′] > 0 if time

is discrete).

Asynchronous Boolean dynamics as a discrete time Markov
process
Asynchronous Boolean dynamics [2] is widely used in
Boolean modeling. It can be easily interpreted as a discrete
time Markov process [21,22] as shown below.

In the case of asynchronous Boolean dynamics, the sys-
tem is given by n nodes (or agents), with a set of directed
arrows linking these nodes and defining a network. For
each node i, a Boolean logic Bi(S) is specified and depends
only on the nodes j for which there exists an arrow from
node j to i (e.g. B1 = S3 AND NOTS4, where S3 and S4 are
the Boolean values of nodes 3 and 4 respectively, and B1 is
the Boolean logic of node 1). The notion of asynchronous
transition (AT) can be defined as a pair of network states
(S, S′) ∈ �, written (S → S′) such that

S′
j = Bj(S) for a given j

S′
i = Si for i �= j (4)

To define a Markov process, the transition probabili-
ties P

[
s(ti) = S|s(ti−1) = S′] can be defined: given two

network states S and S′, let γ (S) be the number of asyn-
chronous transitions from S to all possible states S′. Then

P
[
s(ti) = S′|s(ti−1) = S

] = 1/γ (S) if (S → S′) is an AT
P

[
s(ti) = S′|s(ti−1) = S

] = 0 if (S → S′) is not an AT
(5)

In this formalism, the asynchronous Boolean dynam-
ics completely defines a discrete time Markov pro-
cess when the initial condition is specified. Notice that
here the transition probabilities are time independent,
i.e. P

[
s(ti) = S|s(ti−1) = S′] = P

[
s(ti+1) = S|s(ti) = S′].

Therefore, the approaches, mentioned in section “Con-
tinuous time in Boolean modeling: past and present”, that
introduce time implicitly by adding probabilities to each
transition of the transition graph, can be seen as a gener-
alization of the definition of γ (S).

Continuous time Markov process as a generalization of
asynchronous Boolean dynamics
To transform the discrete time Markov process described
above in a continuous time Markov process, tran-
sition probabilities should be replaced by transition
rates ρ(S→S′). In that case, conditional probabilities are
computed by solving a master equation (equation 2 in
Additional file 1, “Basic information on Markov process”,
section 1.1). We present below the corresponding numer-
ical algorithm, the Kinetic Monte-Carlo algorithm [23].

Because we want a generalization of the asynchronous
Boolean dynamics, transition rates ρ(S→S′) are non-zero
only if S and S′ differ by only one node. In that case,
each Boolean logic Bi(S) is replaced by two functions
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Rup/down
i (S) ∈[ 0, ∞[. The transition rates are defined as

follows: if i is the node that differs from S and S′, then

ρ(S→S′) =Rup
i (S) if Si = 0

ρ(S→S′) =Rdown
i (S) if Si = 1 (6)

where Rup
i corresponds to the activation rate of node i,

and Rdown
i corresponds to the inactivation rate of node i.

Therefore, the continuous Markov process is completely
defined by all these Rup/down and an initial condition.

Asymptotic behavior of continuous time Markov process
In the case of continuous time Markov process, instan-
taneous probabilities always converge to a stationary dis-
tribution (see Additional file 1, “Basic information on
Markov process”, corollary 2, section 1.2). A station-
ary distribution of a given Markov process corresponds
to the set of instantaneous probabilities of a stationary
Markov process which has the same transition probabil-
ities (or transition rates) as the given discrete (or contin-
uous) time Markov process. A stationary Markov process
has the following property: for every joint probability
P

[
s(t1) = S(1), s(t2) = S(2), . . .

]
and ∀τ :

P
[
s(t1) = S(1), s(t2) = S(1), . . .

]

= P
[
s(t1 + τ) = S(1), s(t2 + τ) = S(1), . . .

]
(7)

Notice that instantaneous probabilities P [s(t) = S] of a
stationary stochastic process are time independent.

The asymptotic behavior of a continuous time Markov
process can be detailed by using the concept of indecom-
posable stationary distributions: indecomposable station-
ary distributions are stationary distributions that cannot
be expressed as a linear combination of different sta-
tionary distributions. A linear combination of stationary
distributions is also a stationary distribution, since instan-
taneous probabilities are solutions of a master equation
which is linear (see Additional file 1, “Basic information
on Markov process”, equation 2, section 1.1). Therefore, a
complete description of the asymptotic behavior is given
by the linear combination of indecomposable stationary
distributions to which the Markov process converges.

Oscillations and cycles
In order to describe a periodic behavior, the notion of
cycle and oscillation for a continuous time Markov pro-
cess is defined precisely.

A cycle is a loop in the transition graph. This is a topo-
logical characterization in the transition graph that does
not depend on the exact value of the transition rates. It
can be shown that a cycle with no outgoing edges corre-
sponds to an indecomposable stationary distribution (see
Additional file 1, “Basic information on Markov process”,
corollary 1, section 1.2).

The question is then to link the notion of cycle to
that of periodic behavior of instantaneous probabilities.
The set of instantaneous probabilities cannot be perfectly
periodic. They can display a damped oscillating behavior,
or none at all (see Additional file 1, “Basic information
on Markov process”, section 1.3). A damped oscillatory
Markov process can be formally defined as a continuous
time process that has at least one instantaneous probabil-
ity with an infinite number of extrema.

According to theorems described in Additional file 1
(“Basic information on Markov process”, theorems 6-8 and
Corollary 3, section 1.3), a necessary condition for hav-
ing damped oscillations is that the transition matrix has at
least one non-real eigenvalue (see Additional file 1, “Basic
information on Markov process”, equation 4, section 1.1).
In that case, there always exists an initial condition that
produces damped oscillations. For the transition matrix
to have a non-real eigenvalue, a Markov process needs to
have a cycle. However, the reverse is not true: a Markov
process with a cycle does not necessarily imply the exis-
tence of a non-real eigenvalue in the transition matrix. In
the toy model of a single cycle, presented in the “Exam-
ples” section, non-real eigenvalues may or may not exist,
according to different values of transition rates.

BKMC: Kinetic Monte-Carlo (Gillespie algorithm) applied to
continuous time asynchronous Boolean Dynamics
It has been previously stated that a continuous time
Markov process is completely defined by its initial con-
dition and its transition rates. For computing any con-
ditional probability (and any joint probability), a set of
linear differential equations has to be solved (the mas-
ter equation). Theoretically, the master equation can be
solved exactly by computing the exponential of the tran-
sition matrix (see Additional file 1, “Basic information
on Markov process”, equation 5, section 1.1). However,
because the size of this transition matrix is 2n × 2n, the
computation soon becomes impossible if n is large. To
remedy this problem, it is possible to use a simulation
algorithm that samples the probability space by comput-
ing time trajectories in the transition graph.

The Kinetic Monte-Carlo [23] (or Gillespie algorithm
[24]) is a simple algorithm for exploring the probability
space of a Markov process defined by a set of transition
rates. In fact, it can be understood as a formal definition
of a continuous time Markov process. This algorithm pro-
duces a set of realizations or stochastic trajectories of the
Markov process, given a set of uniform random numbers
in [ 0, 1]. By definition, a trajectory Ŝ(t) is a function from a
time window [ 0, tmax] to �. The set of stochastic trajecto-
ries represents the given Markov process in the sense that
these trajectories can be used to compute probabilities.
A finite set of these trajectories is produced, then, from
this finite set, probabilities are estimated (as described in
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“Methods” section). The algorithm is based on an iterative
step: from a state S at time t0 (given two uniform random
numbers), it produces a transition time δt and a new state
S’, with the following interpretation: the trajectory Ŝ(t) is
such that Ŝ(t) = S for t ∈[ t0, t0 + δt] and Ŝ(t0 + δt) = S′.
Iteration of this step is done until a specified maximum
time is reached. The initial state of each trajectory is based
on the (probabilistic) initial condition that also needs to
be specified.

The exact iterative procedure is the following. Given S
and two uniform random numbers u, u′ ∈[ 0, 1]:

1. Compute the total rate of possible transitions for
leaving state S:
ρtot ≡ ∑

S′ ρ(S→S′).
2. Compute the time of the transition:

δt ≡ − log(u)/ρtot
3. Order the possible new states S′(j), j = 1 . . . and their

respective transition rates ρ(j) = ρ
(S→S′(j)).

4. Compute the new state S′(k) such that∑k−1
j=0 ρj < (u′ρtot) ≤ ∑k

j=0 ρj (by convention,
ρ(0) = 0).

This algorithm will be referred to as Boolean Kinetic
Monte-Carlo or BKMC.

Practical use of BKMC, through MaBoSS tool
Biological data are translated into an influence network
with logical rules associated to each node of the net-
work. The value of one node depends on the value of
the input nodes. For BKMC, another layer of informa-
tion is provided when compared to the standard defini-
tion of Boolean models: transition rates are provided for
all nodes, specifying the rates at which the node turns
on and off. This refinement conserves the simplicity of
Boolean description but allows to reproduce more accu-
rately the observed biological dynamics. The parameters
do not need to be exact as it is the case for nonlinear ordi-
nary differential equation models, but they can be used
to illustrate the relative speed of reactions. We developed
a software tool, MaBoSS, that applies BKMC algorithm.
MaBoSS stands for Markov Boolean Stochastic Simulator.

How to build a mathematical model using MaBoSS
Once MaBoSS is installed (see webpage for instructions,
https://maboss.curie.fr), the protocol to follow to simulate
a model can be described in four steps:

1. Create the model using MaBoSS language in a file
(myfile.bnd, for instance): (a) write the logic for each
node, and (b) assign values to each transition rate.

2. Create the configuration file (myfile.cfg, for instance)
to define the simulation parameters.

3. Run MaBoSS (the order of the arguments does not
matter):

MaBoSS -c myfile.cfg -o myfile out
myfile.bnd

(we assume that MaBoSS is accessible through you
PATH).
MaBoSS creates three output files:

• myfile out proptraj.csv
This file contains the network state probabilities
on a time window, the entropy, the transition
entropy and the Hamming distance distribution
(see “Methods”)

• myfile out statdist.csv
This file contains the stationary distribution
characterization (see “Methods”)

• myfile out run.txt
This file contains a summary of MaBoSS
simulation run.

4. Import output csv files in Excel or R and generate
your graphs.

Transition rates in MaBoSS
MaBoSS defines transition rates ρ(S→S′) by the functions
Rup/down

j (S) (see equations 6). The functions can be writ-
ten using all Boolean operators (AND, OR, NOT, XOR),
arithmetic operators (+,-,*,/), comparison operators and
the conditional operator (?:). Examples of the use of the
language are given below to illustrate three different cases:
(1) different speeds for different inputs, (2) buffering effect
and (3) the translation of discrete variables (with three
values: 0, 1 and 2) into a Boolean model.

1. Modeling different speeds for different inputs.
Suppose that C is activated by A or B, but that B can
activate C faster than A, and that C is inactivated
when A and B are absent. In this case, we write:

node C {
rate up = B ? $kb : (A ? $ka : 0.0);
rate down = !(A & B ) ? 1.0 : 0.0;

}
When C is off (equal to 0), it is activated by B at a
speed $kb. If B is absent, then C is activated by A at a
speed $ka. If both are absent, C is not activated. Note
that if both A and B are present, because of the way
the logic is written in this particular case, C is
activated at the highest speed, the speed $kb. When
C is on (equal to 1), it is inactivated at a rate equal to
1 in the absence of both A and B.
To implement the synergistic effect of A and B, i.e.

https://maboss.curie.fr
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when both A and B are on, C is activated at a rate
$kab, then we can write:

node C {
rate up = (A & !B ? $ka : 0.0)+(B

& !A ? $kb : 0.0) + (A & B ? $kab :
0.0);

rate down = !(A & B ) ? 1.0 :
0.0;
}

2. Modeling buffering effect.
Suppose that B is activated by A, but that B can
remain active a long time after A has shut down. For
that, it is enough to define different speeds of
activation and inactivation:

node B {
rate up = A ? 2.0 : 0.0;
rate down = A ? 0.0 : 0.001;

}
B is activated by A at a rate equal to 2. When A is
turned off, B is inactivated more slowly at a rate equal
to 0.001.

3. Modeling different levels for a given node.
Suppose that B is activated by A, but if the activity of
A is maintained, B can reach a second level. For this,
we define a second node B h (for “B high”) with the
following rules:

node B {
rate up = A ? 1.0 : 0.0;
rate down = (A | B h) ? 0.0 : 1.0;

}
node B h {

rate up = (A & B) ? 1.0 : 0.0;
rate down = (A) ? 0.0 : 1.0;

}
In this example, B is separated in two variables: B
which corresponds to the first level of B and B h
which corresponds to the higher level of B. B is
activated by A at a rate equal to 1. If A disappears
before B has reached its second level B h then B is
turned off at a rate equal to 1. If A is maintained and
B is active, then B h is activated at a rate equal to 1.
When A is turned off, B h is inactivated at a rate
equal to 1.

Simulation parameters in MaBoSS
To simulate a model in MaBoSS, a set of parameters needs
to be adjusted (see “Parameter list” in the reference card
available in the webpage). MaBoSS assigns default values,
however, they need to be tuned for each model to achieve

optimal performances: the best balance between the con-
vergence of estimates and the computation time needs to
be found. Therefore, several simulations should be run
with different sets of parameters for best tuning.

• Internal nodes: node.is internal
As explained in “Methods” (in “Initial conditions and
outputs”), internal nodes correspond to species that
are not measured explicitly. Practically, the higher the
number of internal nodes, the better the convergence
of the BKMC algorithm.

• Time window for probabilities: timetick
This parameter is used to compute estimates of
network state probabilities (see “Network state
probabilities on a time window” in “Methods”). A
time window can be set as the minimum time needed
for nodes to change their states. This parameter also
controls the convergence of probability estimates.
The larger the time window, the better the
convergence of probability estimates.

• Maximum time: max time
MaBoSS produces trajectories for a predefined
amount of time, set by the parameter max time. If the
time of the biological process is known, then the
maximum time parameter can be explicitly set. If the
time of the biological process is not known, then
there exists a more empirical way to set the
maximum time. It is advised to choose a maximum
time parameter that is slightly bigger than the inverse
of the smallest transition rate.
Note that the computing time in MaBoSS is
proportional to this maximum time. Moreover, the
choice of the maximum time impacts the stationary
distribution estimates: a longer maximum time
increases the quality of these estimates.

• Number of trajectories: sample count
This parameter directly controls the quality of BKMC
estimation algorithm. Practically, the convergence of
the estimates increases as the number of trajectories
is increased.

• Number of trajectories (statdist traj count) and
similarity threshold (statsdist cluster threshold ) for
stationary distribution estimates
The statdist traj count parameter corresponds to a
subset of trajectories used only for stationary
distribution estimates. To avoid explosion of
computing time, this parameter needs to be lower
than the number of trajectories (rather than equal to).
The statsdist cluster threshold parameter
corresponds to the threshold for constructing the
clusters of stationary distribution estimates. Ideally, it
should be set to a high value (close to 1). However, if
the threshold is too high then the clustering
algorithm might not be efficient.
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Comparison with biological data
Each node of the network should account for different
levels of activity of the corresponding species (mRNA,
protein, protein complex, etc.). It is possible to have more
than two levels for one node, as shown in the example
“Modeling different levels for a given node”.

It is possible to extract the transition rates from exper-
imental data, using the following property: the rate of a
given transition is the inverse of the mean time for this
transition to happen. It should be noticed than BKMC
is an algorithm based on a linear equation (Additional
file 1, “Basic information on Markov process”, equation 2,
section 1.1); therefore, small variations of transition rates
will not affect the qualitative behavior of the model.

BKMC algorithm provides estimates of the network
state probabilities over time. These probabilities can be
interpreted in terms of a cell population. The asymptotic
behavior of a model, represented by a linear combination
of indecomposable stationary distributions, can be inter-
preted as a combination of cell sub-populations. Indeed,
a sub-population can be defined by network states with
non-zero probability in the indecomposable stationary
distribution. Therefore, a cell in a sub-population can only
evolved in this sub-population (Additional file 1, “Basic
information on Markov process”, corollary 1, section 1.2
and from the definition of strongly connected component
with no outgoing edges).

Comparison of MaBoSS with other existing tools for
qualitative modeling
MaBoSS contributes to the effort of tool development for
qualitative modeling of biological networks. We propose
to compare MaBoSS to some existing tools. However, it is
difficult to compare the performance of these tools since
each of them achieves different purposes and provides
different outputs. As an alternative, we recapitulate, in
Figure 1, the characteristics and implications for each soft-
ware. Some tools may be more appropriate than others
according to the type of input, network size and expected
output. Figure 1 is intended to help the users decide which
software to use in a practical situation. We consider the
following tools: GINsim [8], CellNetAnalyzer [25], Bool-
Net [26], GNA [27], and SQUAD [28]. This list is not
exhaustive but informs on where MaBoSS stands.

As an illustration, the third example of the “Exam-
ples” section below, the mammalian cell cycle, was imple-
mented in three of the tools presented in Figure 1:
MaBoSS, GINsim, BoolNet (see Additional file 2 “Model
of the mammalian cell cycle with GINsim, BoolNet and
MaBoSS.” for details of the results).

Examples
We have applied BKMC algorithm to three models of dif-
ferent sizes. The first one is a toy model illustrating the

dynamics of a single cycle; the second one is a published
Boolean model of p53-Mdm2 response to DNA damage
and illustrates a multi-level case; and the third one is a
published Boolean model of mammalian cell cycle regu-
lation. Note that MaBoSS has been used for these three
examples, but Markov process can be computed directly
for the two first ones, without our BKMC algorithm
because these models are small enough (by computing
exponential of transition matrix, see Additional file 1,
“Basic information on Markov process”, section 1.1), as
proposed in [16]. BKMC is best suited for larger networks,
when the network state space is too large to be com-
puted with standard existing tools (>∼ 210). The first two
examples were chosen for their simplicity, and because
they illustrate how global characterizations (entropy and
transition entropy, see “Entropies” in “Methods”) can be
used. The third example shows the use of BKMC/MaBoSS
for a more consequent and complex model for which the
analysis is not obvious.

For the purpose of this article, we built the transition
graphs for the first two examples (with GINsim [8]) in
order to help the reasoning. However, it is important
to note that BKMC algorithm does not construct the
transition graph explicitly.

All input files and results are given in the web-
page of MaBoSS (https://maboss.curie.fr) with additional
examples.

Toy model of a single cycle
We consider three species, A, B and C, where A is acti-
vated by C and inhibited by B, B is activated by A and C is
activated by A or B (Figure 2a).

The model is defined within the language of MaBoSS by
a set of logical rules associated to each node (Figure 2b)
and simulation parameters set for optimal performances
(Figure 2c). The associated transition graph, generated by
GINsim, is shown in Figure 3.

The only stationary distribution is the fixed point
[ABC]=[000]. We study two cases: when the rate of the
transition from state [001] to state [000] (corresponding
to the inactivation of C) is fast and when this rate is slow.
We will refer to this transition rate as the escape rate. For
both cases, we plot the time trajectories of the probabili-
ties of the fixed point [ABC]=[000] and of the probabilities
of A active [ABC]=[1∗∗] where ∗ can be either 1 or 0, along
with the trajectories of the entropy and the transition
entropy.

In the first case, when the escape rate is fast, we
set the parameter for the transition to a high value
(rate up = 10). In Figure 4, we notice that the probability
that [ABC] is equal to [000] converges to 1. We can con-
clude that [ABC]=[000] is a fixed point. In addition, the
entropy and the transition entropy converge to 0. With
BKMC, these properties confirm that [ABC]=[000] is a

https://maboss.curie.fr
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Figure 1 Comparison of tools for discrete modeling, biological implication. Comparison table of the following tools: MaBoSS, GINsim,
CellNetAnalyzer, BoolNet, GNA, SQUAD. Technical aspects are provided, along with the inputs/outputs relations between a model and data. The last
row illustrates graphically the typical outputs that can be obtained from each tool.

a b c
Figure 2 Toy model. Toy model of a single cycle. (a) Influence network. (b) Logical rules and transition rates of the model. (c) Simulation parameters.
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Figure 3 Transition graph of the toy model. Transition graph for
the toy model (generated by GINsim). The node states should be read
as [ABC] = [∗∗∗]. [ABC]=[100] corresponds to a state in which only A is
active. The nodes in green belong to a cycle, the node in red is the
fixed point and the other nodes are in blue.

fixed point. The peak in the trajectory of the entropy
(between times 0 and 0.6) corresponds to a set of states
that are transiently activated before reaching the fixed
point.

In the second case, when the escape rate is slow,
we set the parameter for the transition to a low value
(rate down = 10−5). As illustrated in Figure 5, the tran-
sition entropy is and remains close to zero but the
entropy does not converge to zero, which is the signa-
ture of a cyclic stationary distribution (see “Entropies” in
“Methods”). This corresponds to the cycle [111] → [011]
→ [001] → [101] in the transition graph (Figure 3). How-
ever, as seen in the transition graph, one state in the cycle
has an outgoing edge that leads to the fixed point (through
the transition [001] → [000] in Figure 3). If the trajectories
are plotted on a larger time scale (Figure 6), the entropy
eventually converges to 0 and the trajectory of the fixed
point converges to 1, which corresponds to the case of fast
escape rate. Since the value of the transition entropy of
Figure 5 is not exactly zero, but 10−4, it can be anticipated
that the cyclic behavior is not stable. We can conclude on
stable cyclic behaviors only when the transition entropy is
exactly 0.

By considering the spectrum of the transition matrix
(see Additional file 1, “Basic information on Markov pro-
cess”, section 1.1 and proof of theorem 4), it can be proven
that the model with a slow escape rate is a damped oscil-
latory process whereas the model with a large escape rate
is not. As mentioned previously, a cycle in the transition
graph may or may not lead to an oscillatory behavior.
Moreover, if the transition entropy seems to converge to
a small value on a small time scale, and the entropy does
not, this behavior illustrates the case of a transient cycle in
the transition graph.

Figure 4 MaBoSS outputs of the toy model with fast escape rate. BKMC algorithm is applied to the toy model, with a fast escape rate. Trajectory
of the network state probabilities [ABC]=[000] and [ABC]=[1∗∗] (where ∗ can be either 0 or 1), the entropy (H) and the transition entropy (TH) are
plotted. Because the probability of [ABC]=[000] converges to 1, [ABC]=[000] is a fixed point. The asymptotic behavior of both the entropy and the
transition entropy is also the signature of a fixed point.
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Figure 5 MaBoSS outputs of the toy model with slow escape rate. BKMC algorithm is applied to the toy model, with a slow escape rate.
Trajectory of the network state probabilities [ABC]=[000] and [ABC]=[1**], the entropy (H) and the transition entropy (TH) are plotted. The
asymptotic behavior of both the entropy and the transition entropy seems to be the signature of a cycle.

p53-Mdm2 signaling
We consider a model of p53 response to DNA dam-
age [18]. p53 interacts with Mdm2, which appears in
two forms, cytoplasmic and nuclear. On one hand, p53
upregulates the level of cytoplasmic Mdm2 (Mdm2c),
which is then transported into the nucleus, and inhibits
the export of nuclear Mdm2 (Mdm2n). On the other
hand, nuclear Mdm2 (Mdm2n) facilitates the degrada-
tion of p53 through ubiquitination. In the model, stress
regulates the level of DNA damage (Dam), which in
turn participates in the degradation process of Mdm2
in the nucleus. p53 inhibits DNA damage signal by pro-
moting DNA repair. Here, stress is not shown explicitly
(Figure 7a).

The model is written in MaBoSS, with two levels of p53
(Figure 7b), as it is done in Abou-Jaoudé et al. [18] with the
appropriate simulation parameters (Figure 7c). The asso-
ciated transition graph, also generated by GINsim, is given
in Figure 8. It shows the existence of two cycles and of a
fixed point [p53 Mdm2C Mdm2N Dam] = [0010] where
nuclear Mdm2 is on and the rest is off.

In order to represent the activity of p53, the trajectories
of the probabilities of all network states with p53 equal to 1
and with p53 equal to 2 are plotted (Figure 9, upper panel),
with the initial condition: [p53 Mdm2C Mdm2N Dam] =
[0∗11] and for the situation when p53 is set to its highest
value (2 equivalent to p53 h) and thus can promote Mdm2
cytoplasmic activity.

Figure 6 MaBoSS outputs of toy model with slow escape rate, large time scale. BKMC algorithm is applied to the toy model, with a slow
escape rate, plotted on a larger time scale. Trajectory of probabilities ([ABC]=[000] and [ABC]=[1**]), the entropy (H) and the transition entropy (TH)
are plotted. On a large time scale, the asymptotic behavior of both the entropy and the transition entropy is similar to the case of the fast escape
rate (Figure 3).
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a b c
Figure 7 Model of p53 response to DNA damage. Model of p53 response to DNA damage. (a) Influence network. (b) Logical rules and transition
rates of the model. (c) Simulation parameters.

Figure 8 Transition graph of the model of p53 response to DNA damage. Transition graph of the p53 model (generated by GINsim). The node
states should be read as [p53 Mdm2C Mdm2N Dam] = [∗∗∗∗] (where ∗ can be either 0 or 1). For instance, [p53 Mdm2C Mdm2N Dam]=[1000]
corresponds to a state in which only p53 (at its level 1) is active. The nodes in green and the nodes in light blue belong to two cycles, the node in
red is the fixed point and the other nodes are in dark blue.
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Figure 9 MaBoSS outputs of the model of p53 response to DNA
damage. Trajectories of the network state probabilities of [p53
Mdm2C Mdm2N Dam] = [1∗∗∗] and of [p53 Mdm2C Mdm2N Dam] =
[2∗∗∗], the entropy (H) and the transition entropy (TH) are plotted.

The qualitative results obtained with MaBoSS are sim-
ilar to those of Abou-Jaoudé and colleagues. However, at
the level of cell population, some discrepancies appear: in
Figure 9, no damped oscillations can be seen as opposed to
Figure 8 of their article. The reason is that, in their compu-
tations, the noise imposed on time is defined by a square
distribution on a limited time frame, whereas in BKMC,
Markovian hypotheses imply that the noise distribution
is more spread out from 0 to infinity. The consequence
is that synchronization is lost very fast. Damped oscilla-
tions could be observed with BKMC with a particular set
of parameters: fast activation of p53 and slow degradation
of p53 (results not shown).

With MaBoSS, we clearly interpret the system as a
population and not as a single cell. In addition, we can
simulate different contexts, presented in the initial arti-
cle as different models, within one single model that
uses different simulation parameters to account for these
contexts.

Note that the existence of transient cycles, as shown in
the toy model, can be deduced from the trajectory of the
entropy that is significantly higher than the trajectory of
the transition entropy (which is non-zero, therefore the
transient cycles are not stable) (Figure 9, lower panel).

Mammalian cell cycle
For the last example, we propose a model of the mam-
malian cell cycle initially published as on ODE model by
Novák and Tyson [29] and translated into a Boolean model
by Fauré and colleagues [6]. The latter model encompasses
10 nodes, which describe the mechanisms controlling the
activity of the different CDK/cyclin complexes, the main
actors of cell cycle regulation and the dynamics of entry
into the cell cycle in presence of growth factors.

We implement the logical rules of the published model
in MaBoSS and define two parameter values for the
transition rates: a slow one (set to 1) and a fast one
(set to 10). The choice between slow and fast rates for
each transition is based on the choice made in the pub-
lished Boolean model: different priority classes were used
in mixed discrete a/synchronous simulation and corre-
sponded to the differences in speed of cellular processes
such as transcription, degradation and protein modifica-
tion. We could, of course, refine the analysis by setting
different rates for each transition. The network, the logi-
cal rules and the simulation parameters can be found on
the webpage.

As mentioned before, MaBoSS can provide two types of
outputs: the probabilities of different network states over
time (along with the entropy and transition entropy) and
the indecomposable stationary distributions.

We consider two biological cases, in the presence of
growth factors where the cell enters its division cycle and
in the absence of growth factors where the cell is stuck
in a G1-like state (state preceding replication of DNA).
In the model, the activity of CyclinD (CycD), a G1-cyclin,
illustrates the presence of growth factors. In our simula-
tions, we set an initial condition corresponding to a G1
state with two CDK/cyclin inhibitors, p27 and cdh1, on,
and with CyclinD on in order to account for the external
growth signal. We plot the trajectories of the probabili-
ties of all the cyclins A, B and E (Figure 10, upper panel).
The cyclins’ activities exhibit an oscillatory behavior. Each
oscillation can be interpreted as a cell division cycle. How-
ever, these oscillations are damped. This can be explained
by the fact that these probabilities should be interpreted
at the cell population level and after few cycles, the cells
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Figure 10 MaBoSS outputs of the model of the mammalian cell
cycle: trajectories of probabilities. BKMC algorithm is applied to the
mammalian cell cycle model, with an initial condition corresponding
to a G1 state in the presence of growth factors (CyclinD is on).
Trajectories of the cyclins probabilities, the entropy (H), transition
entropy (TH) are plotted. The asymptotic behavior corresponds to the
first indecomposable stationary distribution identified in Figure 10.
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become desynchronized. Moreover the trajectories of the
entropy and the transition entropy exhibit the signature of
cyclic attractors (Figure 10, lower panel).

The indecomposable stationary distributions are iden-
tified by the clustering algorithm of MaBoSS and illus-
trated in Figure 11. The two clusters in Figure 11a show
the two types of solutions for random initial conditions:
one multi-cyclic solution when CyclinD is on, and which
corresponds to the distribution of network states of the
asymptotic solution of Figure 11b, and one fixed point cor-
responding to a G1 arrest when CyclinD is off (Figure 11c).

These two indecomposable stationary distributions cor-
respond to the two attractors identified by discrete time
modeling in Fauré et al. In the discrete time algorithm,
the asymptotic behavior is described in terms of attractors
(sub-parts of the transition graph); in our algorithm, the
asymptotic behavior is described in terms of network state
probability distributions.

Conclusions
We have presented a new algorithm, Boolean Kinetic
Monte-Carlo or BKMC, applicable to dynamical simula-
tion of signaling networks based on continuous time in the
Boolean framework. BKMC algorithm is a natural gener-
alization of the asynchronous Boolean dynamics [2], with

time trajectories that can be interpreted in terms of bio-
logical time. The variables of the Boolean model represent
biological species and the parameters represent rates of
activation or inactivation of these species that, ideally,
could be deduced from experimental data.

We applied this algorithm to three different models: a
toy model that illustrates a simple cyclic behavior, a pub-
lished model of p53 response to DNA damage, and a
published model of mammalian cell cycle dynamics.

This algorithm is provided within a freely available
software, MaBoSS, that can run BKMC algorithm on
networks up to 64 nodes in the present version. The
construction of a model uses a specific language that
introduces logical rules and transition rates of node acti-
vation/inactivation in a flexible manner. The software
provides global and semi-global outputs of the model
dynamics that can be interpreted as signatures of the
dynamical behaviors. These interpretations become par-
ticularly useful when the network state space is too large to
be handled. The convergence of BKMC algorithm can be
controlled by tuning some simulation parameters: max-
imum time of the simulation, number of trajectories,
length of a time window on which the average of probabil-
ities is performed, and the threshold for the definition of
stationary distribution clusters.

Prob[Cluster #1]

Prob[Cluster #2]

Prob[CycD--cdh1--CycA | Cluster #1]

Prob[CycD--Cdc20--UbcH10--cdh1 | Cluster #1]

Prob[CycD--E2F--CycE--cdh1 | Cluster #1]

Prob[CycD--cdh1 | Cluster #1]

Prob[CycD--Cdc20--UbcH10--cdh1--CycB | Cluster #1]

Prob[CycD--UbcH10--cdh1 | Cluster #1]

Prob[CycD--UbcH10--CycA | Cluster #1]

Prob[CycD--UbcH10--CycA--CycB | Cluster #1]

Prob[CycD--E2F--cdh1 | Cluster #1]

Prob[CycD--CycA | Cluster #1]

Prob[Rb--cdh1--p27 | Cluster #2]

a b c
Figure 11 MaBoSS outputs of the model of the mammalian cell cycle: stationary distributions. BKMC algorithm is applied to the mammalian
cell cycle model, with random initial conditions. Results of the clustering algorithm that associates a cluster to each indecomposable stationary
distribution. (a) Probability of reaching each identified cluster; these probabilities are estimated by the proportion of trajectories that belong to each
cluster. (b) First estimated cluster that can be interpreted as a desynchronized population of cells that are dividing. (c) Second estimated cluster,
corresponding to a fixed point, that can be interpreted as a G1 cell cycle arrest with no growth factors.
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The next step is to apply BKMC algorithm with MaBoSS
on other existing large signaling networks, e.g. EGFR path-
way [30], the apoptosis pathway [31], etc. The translation
of existing Boolean models in MaBoSS is straightfor-
ward but requires the addition of transition rates. In
these future works, we expect to illustrate the advantage
of BKMC on other simulation algorithms. Moreover, in
future developments of MaBoSS, we plan to introduce
methods for sensitivity analyses, refine approximation
methods used in BKMC, and generalize Markov property.

We also expect to implement MaBoSS in broadly used
software environments for Boolean modeling, like GIN-
sim [8] or CellNetAnalyzer [25].

Methods
BKMC generates stochastic trajectories. In this section,
we describe how we use and interpret these trajectories.

Network state probabilities on a time window
To relate continuous time probabilities to real processes,
an observable time window �t is defined. A discrete time
(τ ∈ N) stochastic process s(τ ) (that is not necessary
Markovian) can be extracted from the continuous time
Markov process:

P [s(τ ) = S] ≡ 1
�t

∫ (τ+1)�t

τ�t
dt P [s(t) = S] (8)

BKMC is used for estimating P [s(τ ) = S] as follows:

1. Estimate for one trajectory. For each trajectory j,
compute the time for which the system is in state S,
in the window [ τ�t, (τ + 1)�t]. Divide this time by
�t. Obtain an estimate of P [s(τ ) = S] for trajectory
j, i.e. P̂j [s(τ ) = S].

2. Estimate for a set of trajectories. Compute the
average over j of all P̂j [s(τ ) = S] to obtain
P̂ [s(τ ) = S]. Compute the error of this average
(
√

Var(P̂ [s(τ ) = S])/# trajectories).

Entropies
Once P [s(τ ) = S] is computed, the entropy H(τ ) can be
estimated:

H(τ ) = −
∑

S
log2 (P [s(τ ) = S]) P [s(τ ) = S] (9)

The entropy measures the disorder of the system. Maxi-
mum entropy means that all states have the same proba-
bility; a zero entropy means that one of the states has a
probability of one. The estimation of the entropy can be
seen as a global characterization of a full probability distri-
bution by a single real number. The choice of log2 allows
the interpretation of H(τ ) in an easier manner: 2H(τ ) is an
estimate of the number of states that have a non-negligible
probability in the time window [ τ�t, (τ + 1)�t]. A more

computer-like interpretation of H(τ ) is the number of bits
that are necessary for describing states of non-negligible
probability.

The Transition Entropy TH is a finer measure that char-
acterizes the system at the level of a single trajectory. It
can be computed in the following way: for each state S,
there exists a set of possible transitions S → S′. For each
of these transitions, a probability is associated:

PS→S′ ≡ ρS→S′∑
S′′ ρS→S′′

. (10)

By convention, PS→S′ = 0 if there is no transition from
S to any other state.

Therefore, the transition entropy TH can be associated
to each state S:

TH(S) = −
∑

S′
log2(PS→S′)PS→S′ (11)

Similarly, TH(S) = 0 if there is no transition from S to
any other state. The transition entropy on a time window
TH(τ ) is defined as:

TH(τ ) =
∑

S
P [s(τ ) = S] TH(S)

This transition entropy is estimated in the following
way:

1. Estimate for one trajectory. For each trajectory j,
compute the set � of visited states S in the time
window [ τ�t, (τ + 1)�t] and their respective
duration μS. The estimated transition entropy is:

ˆTH(τ )j =
∑
S∈�

TH(S)
μS
�t

(12)

2. Estimate for a set of trajectories. Compute the
average over j of all ˆTH(τ )j to obtain ˆTH(τ ).
Compute the error of this average

(
√

Var( ˆTH(τ ))/# trajectories).

This transition entropy is a way to measure how deter-
ministic the dynamics is. If the transition entropy is always
zero, the system can only make a transition to a given
state.

If probability distributions on a time window tend to
constant values (or tend to a stationary distribution), the
entropy and the transition entropy can help characterize
this stationary distribution such that:

• A fixed point has zero entropy and zero transition
entropy,

• A cyclic stationary distribution has non-zero entropy
and zero transition entropy.

Entropy and transition entropy can be considered as
“global characterizations” of the model: for a given time
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window, they always consist of two real numbers, what-
ever the size of the network is.

Hamming distance distribution
The Hamming Distance between two states S and S′ is the
number of nodes that have different node states between
S and S′:

HD(S, S′) ≡
∑

i
(1 − δSi,S′

i
) (13)

where δ is the Kronecker delta (δSi,S′
i
= 1 if Si = S′

i, δSi,S′
i
=

0 if Si �= S′
i). Given a reference state Sref, the Hamming

distance distribution (over time) is given by:

P(HD, t) =
∑

S
P [s(t) = S] δHD,HD(S,Sref) (14)

The estimation of the Hamming distance distribution
on a time window P(HD, τ) is similar to that of stochastic
probabilities on a time window.

The Hamming distance distribution is a useful charac-
terization when the set of instantaneous probabilities is
compared to a reference state (Sref). In that case, the Ham-
ming distance distribution describes how far this set is to
this reference state. The Hamming distance distribution
can be considered as a “semi-global” characterization of
time evolution: for a given time window, the size of this
characterization is the number of nodes (to be compared
with probabilities on a time window whose size is 2#nodes).

Input, internal, output and reference nodes
Input Nodes are defined as the nodes for which the ini-
tial condition is fixed. Therefore, each trajectory of BKMC
starts with fixed values of input nodes and random values
of other nodes.

Internal nodes are nodes that are not considered for
computing probability distributions, entropies and tran-
sition entropies. Output nodes are nodes that are not
internal. Technically, probabilities are summed up over
network states that differ only by the state of internal
nodes. These internal nodes are only used for gener-
ating time trajectories with BKMC algorithm. Usually,
nodes are chosen to be internal when the corresponding
species is not measured experimentally. Mathematically, it
is equivalent to transform the original Markov process to a
new stochastic process (that is not necessary Markovian)
defined on a new network state space. This new state space
is defined by the states of the output nodes. This raises
the question of the transition entropy TH : formally, this
notion has only a sense within Markovian processes, i.e.
when there are no internal nodes. Here, we generalize the
notion of transition entropy even in the case of internal
nodes. Suppose that the system is in state S:

• If the only possible transitions from state S to any
other state consist of flipping an internal node, the
transition entropy is zero.

• If there is, at least, one transition from state S to
another state that flips an output node, then only the
output nodes will be considered for computing
probabilities in equation 10. In particular,

∑
S′ ρS→S′

is computed only on output node flipping events.

Reference nodes are nodes for which a reference node
state is specified and for which the Hamming distance is
computed. In this framework, a reference state is com-
posed of reference nodes for which the node state is
known and non-reference nodes for which the node state
is unknown. Note that non-reference nodes may differ
from internal nodes.

Stationary distribution characterization
It can be shown (see Additional file 1, “Basic informa-
tion on Markov process”, corollary 2, section 1.2) that
instantaneous probabilities of a continuous time Markov
process converge to a stationary distribution. Fixed points
and cycles are two special cases of stationary distribu-
tions. They can be identified by the asymptotic behavior
of entropy and transition entropy (this works only if no
nodes are internal):

• If both the transition entropy and the entropy
converge to zero, then the process converges to a
fixed point.

• if the transition entropy converges to zero and the
entropy does not, then the process converges to a
cycle.

More generally, the complete description of the Markov
process asymptotic behavior can be expressed as a linear
combination of the indecomposable stationary distribu-
tions.

A set of finite trajectories, produced by BKMC, can
be used to estimate the set of indecomposable station-
ary distributions. Consider a trajectory Ŝ(t), t ∈[ 0, T] , i =
1, · · · , n. Let IS(t) ≡ δS,Ŝ(t). The estimation of the asso-
ciated indecomposable stationary probability distribution
(s0) is done by averaging over the whole trajectory:

P̂ [s0 = S] = 1
T

∫ T

0
dtIS(t) (15)

Therefore, a set of indecomposable stationary distribu-
tion estimates can be obtained by a set of trajectories.
These indecomposable stationary distribution estimates
should be clustered in groups, where each group con-
sists of estimates for the same indecomposable stationary
distribution. For that, we use the fact that two indecom-
posable stationary distributions are identical if they have
the same support, i.e. the same set of network states with
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non-zero probabilities (shown in Additional file 1, “Basic
information on Markov process”, theorem 2, section 1.2).
Therefore, it is possible to quantify how similar two inde-
composable stationary distribution estimates are. A sim-
ilarity coefficient D(s(i)0 , s(j)0 ) ∈[ 0, 1], given two stationary
distribution estimates s(i)0 and s(j)0 , is defined:

D(s(i)0 , s(j)0 ) ≡
⎛
⎜⎝ ∑

S∈support(s(i)0 ,s(j)0 )

P̂
[
s(i)0 = S

]
⎞
⎟⎠

×
⎛
⎜⎝ ∑

S′∈support(s(i)0 ,s(j)0 )

P̂
[
s(j)0 = S′]

⎞
⎟⎠ (16)

where

support(s(i)0 , s(j)0 ) ≡
{

S such that P̂
[
s(i)0 = S

]

×P̂
[
s(j)0 = S

]
> 0

}
(17)

Clusters can be constructed when a similarity thresh-
old α is provided. A cluster of stationary distributions is
defined as follows:

C = {
s0| ∃s′0 ∈ C s. t. D(s0, s′0) ≥ α

}
(18)

For each cluster C, a distribution estimate sC , associ-
ated to an indecomposable stationary distribution, can be
defined:

P [sC = S] = 1
|C|

∑
s∈C

P [s = S] (19)

Errors on this estimate can be computed by:

Err (P [sC = S]) = √
Var(P [s = S] , s ∈ C)/|C| (20)

Notice that this clustering procedure has no sense if
the process is not Markovian; therefore, no nodes are
considered as internal.

Additional files

Additional file 1: Supplementary material. Basic information on Markov
process, abbreviations, definitions and algorithms.

Additional file 2: Model of the mammalian cell cycle with GINsim,
BoolNet and MaBoSS. The cell cycle presented in the “Examples” section
has been modeled using three tools: GINsim, BoolNet, and MaBoSS. The
results for each tool are presented: (1) GINsim provides steady state
solutions and transition graphs for two different initial conditions: when
CycD=0 and CycD=1. For the synchronous strategy, the transition graph
can be visualized whereas for the asynchronous strategy, it is not easy to
read or use; BoolNet constructs two graphical representations of the
trajectories based on synchronous update strategy, for the case of CycD=0
(steady state) and CycD=1 (cycle); (3) MaBoSS estimates indecomposable
stationary distributions for the case of CycD=0 (one fixed point, not shown)
and CycD=1 (distribution of probabilities of different network states), and
time-dependent activities of the cyclins showing damped oscillations. All
results are coherent but are presented differently with a different focus for
each tool.
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