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ABSTRACT: In this paper we present an approach to analyze the direction of information flow between time series involv-

ing bidirectional relations. The intuitive idea comes from a first study dedicated to the so-called phase slope index, which is a 

measure originally developed to detect unidirectional relations and is based on the complex coherence function. In order to 

detect bidirectional flows, we propose two new causality indices supplying the previous index with two other functions, the 

directed coherence function and the directed transfer function. Moreover, to cope with the inability of the approaches based 

on coherence (ordinary or directed) or on directed transfer function to distinguish between direct and indirect relations, we 

propose another causality index based on the partial directed coherence to identify only direct relations. Experimental results 

show that some challenges have promising solutions through the use of this new indicator dealing with both linear and non-

linear multivariate models. 
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1. Introduction 

In neuroscience, investigating activated cortical networks, in particular detecting direct interactions (directional ana-

tomical links physiologically activated) between different cortical sites, helps in understanding brain functioning. Over the 

last decade, a number of measures have been considered to deal with causal dependency in multiple areas, such as physics, 

economics, chaotic systems and more particularly, effective connectivity in neurophysiology [2, 5, 8, 12, 14-18]. Recently, a 

Phase Slope Index (PSI) was proposed by Nolte [11] to detect information flow in unidirectional propagation graphs. The 

idea behind this measure is that the slope of the cross-spectrum phase between two different source activities depends on the 

time needed for the information flow between those areas and on the corresponding direction. This method, based on the 

linear phase between two signals, estimates the direction by computing the slope of the phase of the ordinary coherence 
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function. Now, when two time series may display direct or indirect relations, PSI based on the ordinary coherence function 

fails to distinguish between these two types of relations. As a matter of fact, when a third channel accounts for the linear re-

lation between two other signals under scrutiny, the amplitude of the coherence function between these two signals is one (as 

it is when there is a direct linear relation between these signals). To deal with this issue, we recently proposed to replace or-

dinary coherence with partial coherence [20]. As a matter of fact, let us consider the following simple scenario where signals 

 1x t ,  2x t  and  3x t  are given by: 
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where  iw t   1,2,3i  are white Gaussian noises and the parameter   is introduced so as to possibly consider indirect 

( 0  ) or direct ( 0.7  ) relations between the two time series  1x t  and  3x t . In this example, if we compute the PSI  

based on the ordinary coherence [11], we find comparable values whatever   (for 0  , 1.35PSI , and for 0.7  , 

1.33PSI ), whereas results are very different when PSI is computed from the partial coherence (for 0  , 0.01PSI  

whereas for 0.7  , 0.95PSI ) which concludes to the success of the second indicator in detecting direct relations. 

However, just like ordinary coherence, since the partial coherence function between two signals only carries a single direc-

tion's information (given by the phase itself and its opposite value), it leads to a symmetric indicator and, consequently, is 

unable to detect bidirectional flows. As a matter of fact, if we consider a second scenario operating on the following three 

signals: 
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In this example, a bidirectional relation exists between the two time series  2x t  and  3x t . Computing the PSI from 

 2x t  to  3x t  using coherence (resp. partial coherence) leads to a value close to 1.7 (resp. 0.7) whereas the PSI from 

 3x t  to  2x t  returns the opposite value, i.e. -1.7 (resp. -0.7), so that it becomes impossible to detect bidirectional flows. 

So, the aim of the present work is to mitigate the two previous issues. On the one hand, we investigate new causality indices 

(CI) to detect and differentiate unidirectional and bidirectional relations between multivariate time series (Fig. 1(a) and 1(b)): 

the first one is a new CI based on the directed coherence (DCOH) function [13] when considering pairwise analysis (i.e. only 

two observations are considered at the same time) and the second one is based on the directed transfer function (DTF) [9, 20] 

when considering multivariate analysis (i.e. joint analysis of more than two signals). On the other hand, to meet potential 

direct and indirect relations in bidirectional situations (Fig. 1(a) and 1(c)), we recommend to introduce partial directed co-

herence (PDC) [3] in a new indicator. Until now, only the amplitudes of these different transfer functions have been consid-
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ered in the literature to estimate the so-called functional connectivity between structures in the frequency domain. Such ap-

proaches obviously failed in differentiating even quite simple scenarios, e.g. when two investigated observations only con-

sisted of different time shifted versions of a third observation. In this paper, the three proposed causality indices are detailed 

theoretically in the next section. Linear and nonlinear time series are considered in a third section to test these indices and 

compare their performance before drawing some conclusions. 

2. Methods and materials 

Phase slope index (PSI) is a method to evaluate unidirectional information flows in pairs of signals [11]. After reviewing 

its concept and pointing out its theoretical limitations, we develop three new causality indices respectively based on DCOH, 

DTF and PDC. 

2.1. Phase slope index 

The PSI basic hypothesis relies on the exploitation of the phase monotony between signals which appears when the fre-

quency components of one signal precede temporally those of another signal [11]. PSI is defined in order to summarize in-

formation on the slope of the phase of the cross-spectrum between two time series  mx t  and  nx t , 1,2,...,t T , where 

T  is the signal length. The theoretical idea of this index is to properly represent relative time delays between spectral com-

ponents of the two signals mx  and nx  only in the frequency bands leading to a significant value of the coherence function. 

To justify the formula introduced by Nolte to define his index, we consider the functional 

 
    2

,m n mn
f

C f df
f


 

  (3) 

where        /mn mn mm nnC f S f S f S f  is the ordinary coherence function between signals mx  and nx , with 

( ) ( ) exp( ( ))mn mnC f C f i f  and where the phase slope 
 


f

f
, when it is constant, corresponds to a pure delay. Clearly, 

the squared magnitude of the coherence,   2
mnC f , provides weighting the phase slope and, consequently, decreases its 

impact when it is low. Hence, this functional is sensitive to both phase slope and coherence magnitude. As explained below 

the following expression 

     Im 
 

d
mn mn ff F C f C f  (4) 

is a numerical approximation of ,m n  which corresponds to the Phase slope index defined in [11] and is noted PSImn . 

 Im   denotes the imaginary part and the asterisk, the conjugate value; dF  is a discrete set of frequencies over which the 

index is computed and which can be chosen by the experimenter according to some knowledge on the signals' characteristics. 

For example, if it is known that the signals are band limited, dF  can be reduced to only some critical frequencies. Similarly, 

when using FFT and without any a priori knowledge on the signals, the maximum set in the normalized half frequency band 
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is given by:  0,1 / ,...,1 / 2  d fF N  where 1 / f N  (in this case the frequential step-size  f  corresponds to the 

frequency resolution 1 / N ). The auto-spectral density functions  mmS f  and  nnS f  are the Fourier transforms of the 

auto-correlation of the signals  mx t  and  nx t  respectively, the cross-spectral density function  mnS f  is the Fourier 

transform of the cross-correlation between signals  mx t  and  nx t  defined by    *   m nE x t x t , where  E  is 

the expectation operator and   is a time displacement. With ( ) ( ) exp( ( ))mn mnC f C f i f , we can write 

 PSI sin ( ) ( ) ( ) ( )      mn f mn mn ff F f f C f C f , which can be approximated, for a sufficiently small  f , by 

     
2 2

PSI ( ) ( ) ( )


   


 

  
i d

mn i f i mn i mnf F f F

f
f f C f C f df

f
 where the second term corresponds to a Rie-

mann sum which is based on the assumption that the frequencies in dF  are regularly spaced with  f  spacing and ap-

proximates the continuous sum (third term) on a continuous range F . The sign of PSI indicates the flow direction and its 

magnitude increases along with the delay and the coherence module. Clearly, this index (i) only works in situations of unidi-

rectional connections, and (ii) cannot discriminate between direct and indirect relations. Following our notations, a positive 

value of PSImn  means that the signal nx  is a delayed version of mx . As it is well known, the linearity of the phase cor-

responds to a pure delay between signals mx  and nx . When one signal contributes to the second with multiple, different 

delays, the phase becomes nonlinear (the slope is no longer a constant). Nevertheless, to deal with a more general situation, 

we extend this idea to other coupling based functions as the phase is monotonic to propose novel causality indices, noted CI 

hereafter. While ordinary coherence focuses on mutual interaction of the structures themselves, directed coherence as well as 

directed transfer function refer more to the concept of Granger causality. This concept stipulates that a time series  ix t  

causes another series  jx t  if the knowledge of  ix t 's past significantly improves the prediction of  jx t . In this sense, 

only past samples are considered in improving prediction. Consequently, unlike ordinary coherence, directed coherence and 

directed transfer function are asymmetric quantities. 

2.2. Causality index using directed coherence 

The concept of directed coherence was first developed by Saito and Harashima [13] to jointly analyze information pro-

duction in two time series, each having its proper white noise source, which can be seen as a local innovation, as well as a 

common source, seen as an external innovation. This can be represented with a bivariate autoregressive (AR) model for the 

production of signals. While coherence measures the degree of linear correlation as a total, the "directed coherences" can be 

seen as "correlations with direction" between the two observed signals expressed in the frequency domain and, interestingly, 

be regarded as two contributing weighted factors in the expression of the global coherence. Given these two observations 

(outputs of the system), these coherences describe the connection between the first (resp. second) noise input and the second 
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(resp. first) output of the system. 

To formulate this problem of direction of correlating influences, Saito and Harashima considered a bivariate autoregres-

sive process of order p  including a common noise source  3w t  as follows: 
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where variables mnb ,  1,2m ,  1,2,3n , are weight factors,   , 1,2,3jw t j  are independent zero mean white 

Gaussian noises of unit variance. In the frequency domain, we have the spectral equivalent model: 
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where  1dX f  and  2dX f  are the infinitesimal random spectral components [4] of the second order stochastic signals 

 1x t  and  2x t ,  jdW f  are those of the input noises   , 1,2,3jw t j . Then, we introduce the matrix  H f  such 

as: 

        
     

   
   

11 1311 13 12 11 12

23 2221 23 22 21 22

0

0

    
     

    

b bH f H f H f A f A f
H f

b bH f H f H f A f A f
. (7) 

The DCOH estimate of the linear feedback from the innovation process  mw t  corresponding to the observation 

 mx t  to the observed signal  nx t , with  1,2 m n , is 

    

  2

1,2,3
 nm

mn

njj

H f
DCOH f

H f

. (8) 

Following the previous idea on PSI, we defined a causality index, named CI-DCOH, as follows: 

     CI -DCOH Im 
 mn mn mn ff F DCOH f DCOH f . (9) 

Contrary to the PSI, this index is asymmetric allowing the detection of bidirectional flows. It is no longer relative to the 

slope of the phase between the observations themselves but to those between the noise sources ( )mw t  and the signals 

 nx t , with  1,2 m n . 

2.3. Causality index using directed transfer function 

Following the concept of directed coherence, the directed transfer function (DTF) was introduced by Kamiński and Bli-

nowska [9] to deal with a number of observations greater than two. In this case, contrary to the previous situation, no hidden 

common noise source is considered, and each observation can be viewed as produced by its own innovation sequence line-

arly combined with delayed versions of all observations. In the same manner as previously, directed transfer function from 

the i -th input to the j -th output of the system can be derived. Let it be indicated that both estimators are normalized with 



 6

respect to the structure that receives the signal. So, in the framework of multivariate observations, we extend the aforemen-

tioned concept of causality index to DTF (instead of DCOH). Let 1 2, , , Qx x x  be Q  zero mean signals whose dis-

crete-time observations are noted 1 2( ),  ( ),...,  ( )Qx t x t x t . Suppose a multivariate AR model of order p  to represent the 

observations. Using the lag operator L      1 m mLx t x t , 1,2,...,m Q , we write 
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where ( )mw t  are white Gaussian noises (innovations), and each regressor    , , 1,2,..., mn k m n Q , evaluates the linear 

interaction of  nx t k  on  mw t . Applying Fourier transform to the transfer functions matrix   in (10), we get the 

corresponding matrix  D f : 
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where the components of the matrix  D f  are  
 

 

2
1

2
1

1 ,

,















   
 




p i fk
mnk

mn p i fk
mnk

k e m n
D f

k e m n
. 

Defining the transfer matrix  H f  as the inverse of the matrix  D f , we obtain 
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The Directed Transfer Function from channel m  to channel n  is defined by: 

    

  2
1

 nm
mn

Q
nmm

H f
DTF f

H f
 (13) 

where  nmH f  is the  ,n m  element of the matrix  H f , corresponding to a normalized contribution of the input se-

quence  mw t  onto the output signal  nx t . In the same way as before, we defined a causality index based on DTF, noted 

CI-DTF, as follows: 

     CI -DTF Im 
 mn mn mn ff F DTF f DTF f . (14) 

2.4. Causality index using partial directed coherence 
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Following the above developments, in [3] Baccalá and Sameshima contrasted partial directed coherence with directed 

coherence to show how partial directed coherence provides direct structural information for multivariate time signals, as par-

tial coherence does compared to ordinary coherence in unidirectional flow models. So, given 2Q  observations, the par-

tial directed coherence function describes the interaction between two of these observations when the influence due to all 

other 2Q  time series is discounted. According to Eq. (11), the PDC from mx  to nx  conditionally to other 2Q  

signals can be written 

    
   † 

 nm
mn

m m

D f
PDC f

d f d f
 (15) 

where  nmD f  is the  ,n m  element of  D f  and  md f  is the thm  column of  D f .  nmD f  represents the 

part of the past of mx  on the present signal nx . The sign †  denotes conjugate transpose. The arguments to define a PDC 

based causality index can be fully justified as we want to develop an average measure (i) to quantify the relative delays be-

tween multiple signals and not only to qualify them as the PDC magnitude did, and (ii) to weight properly different fre-

quency bands according to the strength of the direct coupling. Consequently, we propose to define here a PDC based causal-

ity index measure, noted CI-PDC, by 

     CI -PDC Im 
 mn mn mn ff F PDC f PDC f . (16) 

If the only contribution of the signal mx  into the signal nx  is due to a pure delay, the phase of  nmD f  as well as 

the phase of PDC are linear, so that CI-PDC represents the slope of this phase, weighted by the magnitude of PDC. 

2.5. Effect of deviation from linear model hypothesis 

In some applications the model given in (10) is not the more realistic one and a non linear regression model (17) would be 

more suited 

 

 

 

   

   
   

1 1 1
1

1,..,

1

,.., ,

, ( ) , 1,..,

,.., ,


 
  

   
     

   
   

 


Q

Q

d d

d k
i i

k d
d dQ

Q Q

g x x w t
x t

x t L x t i Q

x t g x x w t

 (17) 

where , 1,.., ,ig i Q  are non linear functions. The efficiency of a linear model (10) to detect non linear incidence from 

channels  1 1,.., m M Q  to channel n  (from d
mx , 1m M , to nx ) then depends a priori on the ability of a decompo-

sition sum        
,1 ,2

,1 ,2 ,
 

   
   

   n n

d d
n m n m n

m M m M
g x t g x w t  to approximate the function    1 ,.., ,

Q

d d
n ng x x w t  where 

 ,1 ,2 ,1 ,21,.., ,  n n n nM M Q M M ; ,1ng  is a linear function and ,2ng  is non linear. Only if the difference between 

ng  and ,1 ,2n ng g  is not too important, we can expect that the indices described above remain relevant. Otherwise, in 

presence of strong non linearities the ,2ng  functions could be estimated by more sophisticated techniques based for exam-
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ple on local linear approximations around reference points [6]. Nevertheless note that in this case the phase slope informa-

tion could be less adapted, since it cannot capture phase relation between two different frequencies. 

3. Experimental results 

The different approaches were tested on models simulating practical situations and, for all of them, spectral estimation 

was based on AR modeling which can improve the estimator and reduce its variance as indicated in [20]. For each model, 

simulations were carried out 500 times on 1024-point signals (corresponding to 4 s duration with a sampling rate equal to 

256 Hz). We calculated N  frequency points regularly spaced, with 512N , and the frequential step-size  f  was equal 

to 0.25 Hz. In our experiments, the AR coefficients and the order of the models were firstly estimated from the generated 

data by minimizing Akaike's information criterion (AIC) [1]. This was performed by using the functions lsqr and aic in 

MATLAB which, supposing Gaussian innovations, maximize a likelihood function through a least squares (LS) procedure 

[10] (chapter 16, section 16.4). Given these estimated parameters, we computed matrices  H f  and  D f  of Eqs. (7), 

(12) and (11) respectively by substitution of theoretical AR coefficients with the estimated ones. This procedure allows for 

obtaining CI-DCOH, CI-DTF and CI-PDC. Results are summarized in Tables 1 to 4, where the first value corresponds to the 

experimental mean of the indicator and the experimental standard deviation (sd) is in brackets. 

3.1. Linear models 

We start by analyzing the behavior of our estimators on signals exhibiting bidirectional propagation flows (model 1). Then, 

we test them on a model (model 2) displaying direct and indirect connections. 

3.1.1. Model 1 

For the first linear stochastic system, three signals were generated by the following equations 

 

       
       
     

1 1 1 1

2 1 3 2

3 2 3

0.95 2 1 0.9025 2

0.5 1 3

0.8 2

     


     
   

x t x t x t w t

x t x t bx t w t

x t x t w t

 (18) 

where   , 1,2,3,jw t j  are independent white Gaussian noises with zero means and unit variances, the parameter b  was 

introduced to consider two patterns of causal interactions with unidirectional ( 0b ; Fig. 1(a)) or bidirectional ( 0.8b ; Fig. 

1(b)) relations between signals 2x  and 3x . Means and standard deviations of PSI, CI-DCOH and CI-DTF were computed 

and shown in Table 1. 

 Results on PSI 

From Table 1, when there are only unidirectional (direct and/or indirect) information flows, i.e. 0b , PSI12, PSI23 and 

PSI13 gave positive values indicating that 2x  is a delayed version of 1x , and 3x  some delayed version of 2x  and 1x . 

When there is a bidirectional information flow between 2x  and 3x  (i.e. 0.8b ), PSI necessarily fails in detecting the 

flows due to its symmetric character (PSI32 is the opposite of PSI23). This result confirms that PSI is only able to point out 
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unidirectional flows. 

 Results on CI-DCOH 

In Table 1, considering the case 0b , when there is no information flow, i.e. from 2x  to 1x , or from 3x  to 1x , or 

from 3x  to 2x , the corresponding CI-DCOH remains close to zero. On the other hand, when unidirectional information 

flows exists, i.e. from 1x  to 2x , or from 1x  to 3x , or from 2x  to 3x , the corresponding CI-DCOH largely increases. 

Considering the case 0.8b , the same conclusions hold. Moreover, in this case of bidirectional flow between 2x  and 3x , 

CI-DCOH is also able to determine this particular propagation, so that it appears as a relevant indicator to detect unidirec-

tional and bidirectional relations. 

 Results on CI-DTF 

For the case 0b , the very low values of CI21-DTF, CI31-DTF and CI32-DTF are clearly justified as well as the great 

values of CI12-DTF, CI13-DTF and CI23-DTF due to only unidirectional flows. For the case 0.8b , all unidirectional and 

bidirectional flows are also properly detected. Therefore, CI-DTF behaves well in all situations and proves efficient in draw-

ing the real propagation graphs. 

In a second step, we compare the performance of CI-DCOH and CI-DTF from Table 1. On the one hand, whatever the 

value of b , the values of CI-DCOH are greater than those given by CI-DTF for the flow from 2x  to 3x . On the other 

hand, in the bidirectional situation (i.e. 0.8b ), the ratio 32 23CI -DTF/CI -DTF  is closer to 3/2 corresponding to the ratio 

of the delays between signals 2x  and 3x . 

3.1.2. Model 2 

For the second linear stochastic system we considered, the signal propagation situation was formalized as 

 

       
       
       

1 1 1 1

2 1 3 2

3 2 1 3

0.95 2 1 0.9025 2

0.5 1 0.8 3

0.8 2 4

     


     
     

x t x t x t w t

x t x t x t w t

x t x t cx t w t

 (19) 

where   , 1,2,3jw t j , are independent white Gaussian noises with zero means and unit variances, and the parameter c  

was chosen to consider two patterns of interactions including indirect ( 0c ; Fig. 1(b)) and direct ( 0.5c ; Fig. 1(c)) rela-

tionships from signal 1x  to signal 3x . In this system, a bidirectional flow was modeled between signals 2x  and 3x . 

Means and standard deviations of CI-DCOH, CI-DTF and CI-PDC are calculated and presented in Table 2. 

 Results on CI-DCOH 

As already shown in Table 1, CI-DCOH allows for pointing out of unidirectional and bidirectional relations (see Table 2, 

either 0c  or 0.5c ). On the other hand, when two different interactions exist from 1x  to 3x , i.e. indirect ( 0c ) and 

direct ( 0.5c , 1x  connects to 3x  via two distinct pathways) interactions, CI13-DCOH reveals comparable values and, so, 

it becomes impossible to distinguish between direct and indirect interactions. 
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 Results on CI-DTF 

As previously, we can conclude from Table 2 that CI-DTF succeeds in pointing out unidirectional and bidirectional rela-

tions but fails in distinguishing direct and indirect relations like CI-DCOH. Nevertheless, even if CI-DTF cannot reveal the 

delays between signals in the bidirectional case, one can at least infer the value of the delays' ratio between 2x  and 3x  (a 

2-time delay from 2x  to 3x  and a 3-time delay from 3x  to 2x ). As a matter of fact, the ratio 32 23CI -DTF/CI -DTF  is 

always around 3/2 regardless if 0c  or 0.5c , whereas the ratio 32 23CI -DCOH/CI -DCOH  varies more (around 0.6 

when 0c  and 1.0 when 0.5c ). 

 Results on CI-PDC 

Like CI-DCOH and CI-DTF, from Table 2 CI-PDC succeeds in detecting unidirectional and bidirectional relations. 

Moreover, when there is only indirect flow from 1x  to 3x  (for 0c ), CI13-PDC remains close to zero; and, when 

there is direct relation from 1x  to 3x  (for 0.5c ), CI13-PDC increases significantly. In this way, CI-PDC clearly con-

trasts with CI-DCOH and CI-DTF, since these two quantities always display a non negligible value when tested from signal 

1 to signal 3, whatever the value of c . Therefore, CI-PDC resolves the existence of direct and indirect connections between 

pairs of signals by distinguishing these kinds of connections. 

Finally, for the bidirectional relation between 2x  and 3x , the ratios 32 23CI -PDC/CI -PDC  are close to 3/2 regardless 

if 0c  or 0.5c  like CI-DTF. Furthermore, the value of CI23-PDC (resp. CI32-PDC) is greater than the value of 

CI23-DTF (resp. CI32-DTF), which appears more justified corresponding to some smoothing of the noise influence. 

3.2. Nonlinear models 

To test the robustness of our estimators to nonlinearity, we first tested a nonlinear model (model 3) where the coupling be-

tween signals is still linear. In a second step, the nonlinearity of the coupling is also taken into account (model 4). 

3.2.1. Model 3 

The first nonlinear stochastic system we investigated was as follows: 

 

          

              

              

2
1

2
2

2
3

12
1 1 1 1

12
2 2 2 1 3 2

12
3 3 3 2 1 3

3.4 1 1 1

3.4 1 1 1 0.5 1 0.8 3

3.4 1 1 1 0.8 2 1

 

 

 

     
         

         

x t

x t

x t

x t x t x t e w t

x t x t x t e x t x t w t

x t x t x t e x t cx t w t

 (20) 

where   , 1,2,3,jw t j  are independent white Gaussian noises with zero means and unit variances, and the parameter c  

was introduced to model direct or indirect interactions as in Eq. (19). Here we have 

   
     

      2 2 2,1 2,2 2
1,2,3 1,3 2

, ,
  

   
    

   
d d d
m m m

m m m
g x w t g x t g x w t , and so we can expect to detect the influences from 

1x  and 3x  to 2x  with linear methods. Similarly, we can expect to detect the influences from 1x  and 2x  to 3x  with lin-
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ear methods according to    
     

      3 3 3,1 3,2 3
1,2,3 1,2 3

, ,
  

   
    

   
d d d
m m m

m m m
g x w t g x t g x w t . Means and standard de-

viations of CI-DCOH, CI-DTF and CI-PDC are given in Table 3. 

 Results on CI-DCOH and CI-DTF 

Means and standard deviations of CI-DCOH and CI-DTF highlighted the ability of these two indices to put forward uni-

directional and bidirectional interactions. As in the second linear model (see section 3.1.2, Eq. (19)), both CI-DCOH and 

CI-DTF could not differentiate between direct and indirect interactions from signal 1x  to signal 3x . 

Comparing CI-DCOH and CI-DTF, if we consider the relations between 2x  and 3x , we first observe that CI-DTF dis-

plays greater values in the nonlinear model than in the linear one (model 2) unlike CI-DCOH. As in the linear case, this re-

sult is explained by the signals' characteristics. Secondly, in this bidirectional case, CI-DTF is still representative of the rela-

tive dependence that exists between 2x  and 3x : the ratio 32 23CI -DTF/CI -DTF  is around 3/2 regardless of the model 

(linear or nonlinear) and the pattern (indirect and direct interactions from 1x  to 3x ). 

 Results on CI-PDC 

Results on CI-PDC reported in Table 3 lead to the same conclusions as those derived in the linear case (see section 

3.1.2). CI-PDC acts as the most suitable and relevant indicator not only in detecting unidirectional and bidirectional relations 

but also in differentiating direct and indirect relations. For the bidirectional relation between 2x  and 3x , the ratios 

32 23CI -PDC/CI -PDC  are also closer to 3/2 regardless of the value of c like CI-DTF. Moreover, CI23-PDC (resp. CI32-PDC) 

is also greater than CI23-DTF (resp. CI32-DTF) which is a worthwhile expected result. 

3.2.2. Model 4 

The second nonlinear stochastic system with nonlinear coupling was generated by the equations 

 

          

              

              

2
1

2
2

2
2

12
1 1 1 1

12 2
2 2 2 1 3 2

12
3 2 2 2 1 3

3.4 1 1 1

3.4 1 1 1 0.8 3 0.8 3

3.4 1 1 1 0.8 2 1
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 

 

     
         

         

x t

x t

x t

x t x t x t e w t

x t x t x t e x t x t w t

x t x t x t e x t cx t w t

 (21) 

where   , 1,2,3,jw t j  are independent white Gaussian noises with zero means and unit variances, and the parameter c  

was introduced to model direct or indirect interactions as in Eq. (19). Here we have 

   
          2 2 2,1 2,2 2

1,2,3 3 1,2
, ,

  

          
d d d
m m m

m m m
g x w t g x t g x w t , and we can expect to detect the influences from 3x  

to 2x  with linear methods. Similarly for the third signal, we can expect to detect the influences from 1x  to 3x  with linear 

methods according to    
           3 3 3,1 3,2 3

1,2,3 1 2
, ,

  

 
  

 
d d d
m m m

m m m
g x w t g x t g x w t  (according to the definition re-

tained in section 2.5, all delayed versions of signal 2x  are included in the nonlinear function 3,2g ). Note that, comparing with 

model 3, we introduced in model 4 a nonlinear coupling to test the influence of linearity versus nonlinearity of coupling. Means 
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and standard deviations of CI-DCOH, CI-DTF and CI-PDC are given in Table 4. Despite a global increase in the standard de-

viation, the mean values of the different indicators are of the same order of magnitude as those shown in Table 3. Considering 

CI-DCOH, when comparing signals two by two, we note that this indicator is affected by the nonlinear coupling to detect cor-

rectly the relations between 1x  and 2x , as well as between 1x  and 3x . On the other hand, the CI-DTF indicator allows 

detecting unidirectional and bidirectional relations despite the introduction of this nonlinear coupling and CI-PDC still performs 

well in differentiating direct and indirect relations. 

4. Discussion and conclusion 

As shown in this study, the information flows among multivariable observations can display different patterns including 

unidirectional and/or bidirectional relations, direct and/or indirect relations. The original ordinary coherence based phase 

slope index only appears suitable to detect unidirectional flows when considering two time series. In this paper, we focus on 

information propagation between multi-site observations. The interest of the techniques we propose can be summarized as 

follows: (i) the introduction of directed coherence (DCOH) and directed transfer function (DTF) allows for dealing with uni-

directional and bidirectional relations; (ii) moreover, the introduction of partial directed coherence (PDC) allows for distin-

guishing direct and indirect relations for unidirectional as well as bidirectional flow. In so far as we know, only amplitudes of 

DCOH, DTF and PDC have already been investigated to deal with the difficult issue of coupling between time series. In this 

contribution, both amplitudes and phases of these functions have been introduced to develop new causality indices that ap-

pear more relevant to flow propagation. Among the different techniques, the partial directed coherence function based ap-

proach has an advantage over the others since it takes into account only the direct contribution of a signal mx  on another 

signal nx  to compute the corresponding phase slope. It behaves well in distinguishing direct and indirect relations either for 

unidirectional or bidirectional flows. Now, if CI-PDC seems to be the best technique to differentiate all patterns in the pro-

posed linear and nonlinear multivariate autoregressive models, real biological patterns may be more complex (EEG, ECG, 

EMG, etc.), which support the proposal of these different indicators. Moreover, according to EEG models found in the lit-

erature [7, 19], we can expect that in many practical cases the nonlinearities are sufficiently smooth, so that the indicators 

remain relevant. In the future, we plan to test them to characterize the underlying network organization of an epileptic sei-

zure, in some difficult situation where time shifts between signals vary strongly in time. Clearly practical use of these indi-

cators will imply the introduction of decision thresholds to reject the null hypothesis (no connectivity). Classically, as it is 

difficult to obtain theoretical distribution under independence, it will be necessary to obtain it empirically, for example using 

surrogate data. In such a situation, as in many other applications involving more than two or three channels, the computa-

tional cost of linear AR identification and phase analysis is highly reduced compared to the case of non linear analysis, 

which can then be only considered to solve ambiguous cases. Finally, despite the basic idea behind the indices developed in 

this work, which can be viewed as detecting linear phase slopes associated with pure delay, this phase linearity does not need 
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to be verified to expect interesting results: only a monotonic phase variation with a significant mean slope is required. It is 

important to note that generally, when using DCOH and DTF, the phase linearity is not verified, due to the intrinsic defini-

tion of such quantities. In the same manner, the PDC based index corresponds to linear phase only when there is a unique 

contribution (in terms of delay) of a first signal to a second. In a future work, we can also search for other choices of func-

tions q  and mnC  in (3), depending on the index property we want to emphasize. To conclude, it could be also interesting 

to extend phase analysis based on linear regression models to a higher order phase analysis based on polynomial regression 

models. 
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Fig. 1. Three patterns of causal interactions. (a) Connection from signal x1 to signal x3 is indirect and mediated by signal x2, and 

only unidirectional pathways exist. (b) Bidirectional flow exists between signals x2 and x3. (c) Both direct and indirect connec-

tions exist from signal x1 to signal x3, and bidirectional flow exists between signals x2 and x3. 
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Table 1. Results on PSI, CI-DCOH and CI-DTF in Model 1 (Eq. (18)) 

 b = 0  b = 0.8 

xi→xj i = 1 i = 2 i = 3  xi→xj i = 1 i = 2 i = 3 

j = 1 - -0.9545 (0.0770) -1.9548 (0.1348)  j = 1 - -1.2295 (0.100) -2.4176 (0.1614) 

j = 2 0.9545 (0.0770) - -3.2289 (0.1241)  j = 2 1.2295 (0.1002) - -0.5720 (0.2248) P
SI

 

j = 3 1.9548 (0.1348) 3.2289 (0.1241) -  j = 3 2.4176 (0.1614) 0.5720 (0.2248) - 

xi→xj i = 1 i = 2 i = 3  xi→xj i = 1 i = 2 i = 3 

j = 1 - 0.0103 (0.0019) 0.0117 (0.0023)  j = 1 - 0.0730 (0.0467) 0.0730 (0.0470) 

j = 2 2.6657 (0.0804) - 0.0840 (0.0509)  j = 2 3.0061 (0.1345) - 2.5701 (0.2094) 

C
I-

D
C

O
H

 

j = 3 3.6859 (0.1664) 3.8505 (0.1377) -  j = 3 4.1662 (0.1837) 4.0941 (0.1889) - 

xi→xj i = 1 i = 2 i = 3  xi→xj i = 1 i = 2 i = 3 

j = 1 - 0.0137 (0.0102) 0.0039 (0.0045)  j = 1 - 0.0308 (0.0235) 0.0352 (0.0262) 

j = 2 2.7328 (0.0574) - 0.0072 (0.0062)  j = 2 3.0772 (0.1031) - 2.5662 (0.0933) C
I-

D
T

F
 

j = 3 3.7738 (0.0932) 1.9548 (0.1056) -  j = 3 4.2694 (0.1339) 1.7650 (0.0724) - 
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Table 2. Results on CI-DCOH, CI-DTF and CI-PDC in Model 2 (Eq. (19)) 

 c = 0  c = 0.5 

xi→xj i = 1 i = 2 i = 3 xi→xj i = 1 i = 2 i = 3 

j = 1 - 0.0730 (0.0467) 0.0730 (0.0470) j = 1 - 0.1054 (0.0653) 0.0745 (0.0482) 

j = 2 3.0061 (0.1345) - 2.5701 (0.2094) j = 2 4.1472 (0.2722) - 3.1384 (0.2443) 

C
I-

D
C

O
H

 

j = 3 4.1662 (0.1837) 4.0941 (0.1889) - j = 3 4.4464 (0.2473) 3.1791 (0.2606) - 

xi→xj i = 1 i = 2 i = 3 xi→xj i = 1 i = 2 i = 3 

j = 1 - 0.0308 (0.0235) 0.0352 (0.0262) j = 1 - 0.0456 (0.0321) 0.0498 (0.0336) 

j = 2 3.0772 (0.1031) - 2.5662 (0.0933) j = 2 4.2191 (0.1785) - 2.7103 (0.0910) C
I-

D
T

F
 

j = 3 4.2694 (0.1339) 1.7650 (0.0724) - j = 3 4.5558 (0.2030) 1.8231 (0.0758) - 

xi→xj i = 1 i = 2 i = 3 xi→xj i = 1 i = 2 i = 3 

j = 1 - 0.0065 (0.0063) 0.0043 (0.0036) j = 1 - 0.0128 (0.0099) 0.0125 (0.0104) 

j = 2 0.9556 (0.0418) - 3.6591 (0.0875) j = 2 0.6210 (0.0459) - 3.6596 (0.0932) C
I-

P
D

C
 

j = 3 0.0094 (0.0092) 2.4443 (0.0622) - j = 3 2.4009 (0.0945) 2.4447 (0.0643) - 
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Table 3. Results on CI-DCOH, CI-DTF and CI-PDC in Model 3 (Eq. (20)) 

 c = 0  c = 0.5 

xi→xj i = 1 i = 2 i = 3 xi→xj i = 1 i = 2 i = 3 

j = 1 - 0.0889 (0.0545) 0.0871 (0.0555) j = 1 - 0.0835 (0.0483) 0.0847 (0.0567) 

j = 2 0.4756 (0.0839) - 3.0785 (0.1747) j = 2 1.3061 (0.1756) - 2.9617 (0.1725) 

C
I-

D
C

O
H

 

j = 3 0.9374 (0.1680) 2.7532 (0.1268) - j = 3 1.0996 (0.1523) 1.9809 (0.1096) - 

xi→xj i = 1 i = 2 i = 3 xi→xj i = 1 i = 2 i = 3 

j = 1 - 0.0474 (0.0299) 0.0532 (0.0318) j = 1 - 0.0467 (0.0286) 0.0525 (0.0301) 

j = 2 0.4451 (0.0743) - 3.1826 (0.1152) j = 2 1.2484 (0.1288) - 3.0040 (0.1023) C
I-

D
T

F
 

j = 3 0.8736 (0.1497) 2.2300 (0.0759) - j = 3 1.0376 (0.1256) 1.9990 (0.0712) - 

xi→xj i = 1 i = 2 i = 3 xi→xj i = 1 i = 2 i = 3 

j = 1 - 0.0076 (0.0068) 0.0055 (0.0052) j = 1 - 0.0076 (0.0067) 0.0052 (0.0045) 

j = 2 0.6384 (0.0627) - 3.6723 (0.0869) j = 2 0.5312 (0.0528) - 3.6731 (0.0856) C
I-

P
D

C
 

j = 3 0.0165 (0.0086) 2.4538 (0.0749) - j = 3 0.5335 (0.0534) 2.4518 (0.0623) - 
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Table 4. Results on CI-DCOH, CI-DTF and CI-PDC in Model 4 (Eq. (21)) 

 c = 0  c = 0.5 

xi→xj i = 1 i = 2 i = 3 xi→xj i = 1 i = 2 i = 3 

j = 1 - 0.3382 (0.2086) 0.2418 (0.1701) j = 1 - 0.3424 (0.2086) 0.2487 (0.1576) 

j = 2 0.2924 (0.2016) - 1.7463 (0.2654) j = 2 0.8793 (0.2315) - 2.1051 (0.2704) 

C
I-

D
C

O
H

 

j = 3 0.2189 (0.1598) 3.9366 (0.2559) - j = 3 0.4936 (0.1758) 3.6794 (0.2643) - 

xi→xj i = 1 i = 2 i = 3 xi→xj i = 1 i = 2 i = 3 

j = 1 - 0.0562 (0.0325) 0.1132 (0.0698) j = 1 - 0.0561 (0.0289) 0.1138 (0.0712) 

j = 2 0.2478 (0.1623) - 4.0020 (0.3657) j = 2 1.3283 (0.3085) - 3.6388 (0.3526) C
I-

D
T

F
 

j = 3 0.2432 (0.1546) 2.5270 (0.1745) - j = 3 0.6305 (0.1852) 2.2392 (0.1756) - 

xi→xj i = 1 i = 2 i = 3 xi→xj i = 1 i = 2 i = 3 

j = 1 - 0.0524 (0.0401) 0.0509 (0.0397) j = 1 - 0.0521 (0.0402) 0.0512 (0.0396) 

j = 2 0.3235 (0.2164) - 4.1335 (0.3325) j = 2 0.3083 (0.2078) - 4.1008 (0.3126) C
I-

P
D

C
 

j = 3 0.0824 (0.0569) 2.5605 (0.0687) - j = 3 0.6793 (0.0852) 2.4555 (0.0745) - 

 

 


