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PII: S0165-0270(12)00449-9
DOI: doi:10.1016/j.jneumeth.2012.11.002
Reference: NSM 6500

To appear in: Journal of Neuroscience Methods

Received date: 28-8-2012
Revised date: 31-10-2012
Accepted date: 2-11-2012

Please cite this article as: Lalys F, Haegelen C, Mehri M, Drapier S, Vérin M, Jannin
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Abstract 

 
For patients suffering from Parkinson's disease with severe movement disorders, functional surgery may be 

required when medical therapy isn’t effective. In Deep Brain Stimulation (DBS), electrodes are implanted 

within the brain to stimulate deep structures such as SubThalamic Nucleus (STN). The quality of patient 5 

surgical outcome is generally related to the accuracy of nucleus targeting during surgery. In this paper, we 

focused on identifying optimum sites for STN DBS by studying symptomatic motor improvement along 

with neuropsychological side effects. We described successive steps for constructing digital atlases 

gathering patient’s location of electrode contacts automatically segmented from postoperative images, and 

clinical scores. Three motor and five neuropsychological scores were included in the study. Correlations 10 

with active contact locations were carried out using an adapted hierarchical ascendant classification. Such 

analysis enabled the extraction of representative clusters to determine the optimum site for therapeutic STN 

DBS. For each clinical score, we built an anatomo-clinical atlas representing its improvement or 

deterioration in relation with the anatomical location of electrodes and from a population of implanted 

patients. To our knowledge, we reported for the first time a discrepancy between a very good motor 15 

improvement by targeting the postero-superior region of the STN and an inevitable deterioration of the 

categorical and phonemic fluency in the same region. Such atlases and associated analysis may help better 

understanding of functional mapping in deep structures and may help pre-operative decision-making 

process and especially targeting. 

Keywords  20 
 

Deep brain stimulation, Parkinson disease, anatomo-clinical atlas, medical imaging 

 

 

1. Introduction 25 

 
1.1 Background 

 
Parkinson's Disease (PD) is recognized as one of the most common neurological disorders, affecting 1% of 

people over the age of 60 years. It is the second most prevalent neurodegenerative disorder. One of the 30 

characters of PD is the apoptosis of the dopamine-rich neurons of the substantia nigra. Major symptoms are 

indeed characterized by abnormalities of motor functions, several of which predominate, but all do not 

*Manuscript (With Page Numbers)
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necessarily occur in all individuals. While these PD-related symptoms can be treated with medical therapy, 

when it remains ineffective for some patients, a Deep Brain Stimulation (DBS) surgery (Benabid et al., 

2000; Krack et al., 2003) might be necessary according to strict patient inclusion criteria. This iterative 35 

procedure, initially approved by the Federal Drug Agency in U.S. in 1997 for essential tremor disorders, 

and in 2002 for PD, has gained much interest over the past decade and is now widely used by a large 

number of neurosurgical departments. The DBS anatomical target is based on the relief of symptoms and 

results of previous implantations only. The three major targets chosen by neurosurgeons according to the 

patients’ symptoms are the Caudal part of the Ventro-Lateral thalamic nucleus (VLc), the medial Global 40 

Pallidus (GPm) and the Sub-Thalamic Nucleus (STN). Among these three deep brain structures, the STN 

became the most common target of high-frequency DBS in patients with severe motor disabled symptoms 

and no cognitive impairment (Benabid et al., 2000; Lang and Lozano, 1998; Hamani et al., 2003; Bardinet 

et al., 2009; Volkmann et al., 2009). 

 45 
1.2 Surgical procedure 

 

During routine DBS surgery, two stages are mainly involved: pre-operative planning and the surgery itself. 

Pre-operative planning is the process of loading pre-operative patient’s medical images (such as Computed 

Tomography and/or Magnetic Resonance Images), registering them together and proposing a 2D and/or 3D 50 

visualisation interface to define the target localisation in the Anterior and Posterior Commissures (AC-PC) 

plan. Mainly due to contrast and spatial resolutions limitations, the usual DBS targets are not easily visible 

on the MR images available to the surgeon, even though MRI offers better contrast than other medical 

imaging techniques (Dormont et al., 2010). Neurosurgeons directly localize the optimal target position on 

the T2 MR image and choose the trajectory of the electrode on patient’s anatomical information. During 55 

this step, the additional help of an atlas may be necessary. In practice, experts manually localize AC-PC 

coordinates, midsagittal points and entry on the MR images of the patient. Finally, coordinates are 

automatically put in AC-PC space, then computed in a stereotactic coordinates system. 

   The surgical procedure is then performed under local anaesthesia. The trajectory estimated during 

planning is implemented with stereotactic frame based or frameless systems and used as an initial position 60 

that has to be refined. A few causes of discrepancy between chosen target and the final implant might 

appear, such as brain shift (Khan et al., 2008; Pallavaram et al., 2009), or patient's anatomical variability. 
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An X-ray control is thus performed intra-operatively to confirm the initial placement and evaluate potential 

biases. Electrophysiological explorations are also performed to help neurosurgeons refine the placement of 

active electrode contacts. Similarly, neurologists may test the clinical effects with different settings for each 65 

contact to reach optimum placement. Changing frequency, voltage, stimulated contact and electrode 

trajectory, they reach optimum placement. Lastly, the surgeon anchors the electrode to the skull.  

 

 

Even though STN DBS has demonstrated its efficiency for motor symptom improvement, questions remain 70 

concerning contact location providing the greatest motor improvement while producing the minimal 

neuropsychological and psychiatric side effects. Indeed, despite satisfactory motor improvements, several 

studies have reported adverse-events after DBS surgery affecting cognitive functions, emotion or behaviour 

(Parsons et al., 2006; Temel et al., 2006; Biseul et al., 2005; Dujardin et al., 2004; Houeto et al., 2002). In 

particular, Brücke et al. (2007), Kühn et al. (2005), Greenhouse et al. (2011), LHommée et al. (2012) or 75 

Mallet et al. (2007) elucidated the role of STN in emotional processing, showing that STN DBS leads to 

behavioral complications. Similarly, Burrows et al. (2011) were interested in complications of STN DBS 

around the zona incerta, and York et al. (2009) looked at neuropsychological complications according to 

electrode location and trajectory. All these results suggest that the STN forms part of a broadly distributed 

neural network encompassing the associative and limbic circuits. Similarly, Witt et al. (2008) studied 80 

neuropsychiatric consequences of STN DBS. Based on this hypothesis, new works have then emerged. For 

instance, Karachi et al. (2005), or more recently Lambert et al. (2012) supported the hypothesis that the 

nucleus was separated in three regions: the limbic, associative and motor regions. Similarly, Lenglet et al. 

(2012) studied the basal ganglia and thalamic connections using high-resolution MR images. As outlined 

above, one of the major challenges in DBS is the identification of the target, which requires additional 85 

information and knowledge for indirect identification of such small structures during the pre-operative stage 

with the support of digital atlases. 

 

1.3 Atlases 

 90 
Brain atlases and atlas-based segmentation techniques have been developed to facilitate the accurate 

targeting of deep brain structures in patients with movement disorders (Schaltenbrand nad Wahren, 1977; 

Talairach and Tournoux, 1988, Chakravarty, 2006; Yelnik, 2006; Bardinet, 2009; Lalys, 2010). Some 
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digitized atlases aim at providing information with optimum spatial and intensity resolution, to allow better 

identification of structures, which is impossible with usual medical imaging techniques only. Histological 95 

atlases were thus created (Yelnik et al., 2007; Chakravarty et al., 2006) along with high-resolution MR 

based atlases (Aubert-Broche et al., 2006; Lalys et al., 2011). Both types of atlas have been successfully 

introduced in the targeting stage of standard DBS procedures. 

The concept of probabilistic functional atlases, built from a population of previous surgical cases, was 

initially introduced by Nowinski et al. (2003, 2005, 2007). After a step of normalization within a common 100 

space, effective contacts are linked to preoperative electrophysiological recordings and clinical scores  

acquired during the stages of the procedure. Statistical techniques are used to study anatomical or functional 

variability between patients. Response to stimulation, electro-physiological recordings and clinical scores 

related to motor or cognitive evolution are all potential data that can be integrated into such atlases. This 

fusion of clinical and anatomical information allows an understanding of functional organization within 105 

deep-brain structures that helps in the identification of the optimal therapy zone for further patients. Finnis 

et al. (2003) and Guo et al. (2006) proposed probabilistic functional atlases by integrating intra-operative 

recordings. D'Haese et al. (2005, 2006) and Pallavaram et al. (2008, 2009) proposed a system to 

automatically predict the optimum target position according to atlases built from retrospective studies. 

More recently, D'Haese et al. (2010) proposed a fully integrated computer-assisted system called 110 

CRAnialVault. The system addresses the issue of data administration between the different stages of the 

therapy. It permits the centralization of various types of data acquired during the procedure and provides 

data visualisation through data processing tools. A preliminary validation process in a clinical context, from 

planning to programming, is described and shows that the system provides genuine assistance to the 

surgical team.  115 

Evaluation of DBS electrode implantation involves significant neurological and psychological follow-up 

estimated by clinical tests. Resulting clinical scores allow post-operative evaluation of the decrease in 

motor disorders and possible clinical side effects. Quantitative analysis of these data relative to the actual 

stimulated anatomical area would provide a better understanding of the DBS phenomenon, optimisation of 

targeting and consequently better patient outcome. 120 

As far as we know, no atlases have yet been proposed for representing the relationships between the 
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STN anatomy and a broad panel of pre- and post-operative clinical scores. While most of these atlases use a 

single motor score for modelling the global outcome of the patient (e.g. Guo et al., 2006), we proposed in 

this paper to extend this research by adding pre- and post-operative motor, cognitive and 

neuropsychological scores of patients with Parkinson’s disease and inclusion criteria for subthalamic 125 

stimulation. We thus introduce the concept of anatomo-clinical atlases and describe the methods for their 

computation. A high-resolution mono-subject template, already validated in the context of DBS (Lalys et 

al., 2011), along with a multi-subject template (Haegelen et al., 2012), were tested as common spaces. 

Three motor and five neuro-psychological scores were then used to create anatomo-clinical atlases. The 

correlation was carried out using a dedicated non-supervised classification system and enabled the 130 

extraction of representative clusters to determine the optimum site for therapeutic STN DBS. 

 

 

2. Materials and Methods 

 135 
The purpose of this study was to correlate and represent the anatomical position of electrode contacts with 

clinical outcomes in STN DBS. Firstly, a method for automatic extraction of electrode contacts for each 

patient was developed. Secondly, an accurate patient images-to-template registration step was studied. 

Thirdly, the integration of clinical scores from a clinical database was used to extract representative 

anatomo-clinical clusters, through non-supervised classification.  140 

 

2.1 Data 

 
The study population consisted of 30 patients (14 women and 16 men, mean age: 60 +/- 5 years) with 

idiopathic PD who had bilateral STN DBS according to selected inclusion (Langston et al. 1992; Lang and 145 

Lozano, 1998; Krack et al., 1998). In particular, one of the inclusion criteria is the improvement of 50% in 

UPDRS III score during the pre-operative levodopa challenge test. All patients had one pre-operative 3-T 

T1-weighted MR (Size: 256 x 256 x 182, resolution: 1 mm x 1 mm x 1 mm, Philips Medical Systems) and 

two CT scans (Size: 203 x 203 x 155, resolution: 0.44 mm x 0.44 mm x 0.6 mm, in post-operative 

acquisition and 0.5 mm x 0.5 mm x 0.6 mm in pre-operative acquisition, GE Healthcare VCT 64). Pre-150 

operative scans were acquired after attachment to the patient's head of a stereotactic Leksell frame, under 

local anaesthesia. All images were de-noised using the Non-local means algorithm (Coupe et al., 2008) and 
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a bias correction algorithm based on intensity values (Mangin, 2000) was also applied to MR images. This 

study was part of a larger clinical study approved by the local ethical review board. 

To assess the global patient outcome, we first chose three motor scores: the UPDRS III (Unified 155 

Parkinson’s Disease Rating Scale, part III) score (Fahn and Elton, 1987), the Schwab & England (Schwab 

and England, 1968) scale, and the Hoehn & Yahr (Hoehn and Yahr, 1967) scale. For each score, patients 

were tested without medication (Dopa OFF) immediately prior to surgery (DBS OFF) and three months 

after it under stimulation (DBS ON), also without medication. We then selected five neuropsychological 

scores: 160 

- The categorical and the phonemic verbal fluency tests (Troyer et al., 1998) that determine the ease 

with which patients can produce words. 

- The Stroop test (Stroop, 1935) that computes the mental vitality and flexibility 

- The Trail Making Test (Reitan, 1958) that determines visual attention and task switching. 

- The Wisconsin Card Sorting Test (Psychological assessment resources, 2003) that estimates the 165 

ability to display flexibility in the face of changing schedules of reinforcement.  

- The MATTIS score (Mattis, 1988) that tests global cognitive efficiency.  

 
2.2 Contact localization 

 170 
For each electrode, the spatial coordinates of the contacts were automatically computed from post-operative 

CT images by modelling the electrode's axis. We developed a new segmentation technique based on the 

hypo-signal artefacts (white artefacts) created on CT scans and corresponding to the electrodes. Every CT 

scan was first simply linearly registered to a reference patient CT. On this reference image, a mask was 

defined including the two electrodes and entirely excluding the skull. An intensity threshold was applied in 175 

order to extract every hypo-signal voxel of both electrodes per patient. Along with a connected component 

approach for retrieving noise, for each slice, the barycentre of extracted voxels was computed to model the 

electrodes' axis. By keeping 10 mm from the tip of the electrode, we then performed regression in order to 

model the area where contacts can finally be obtained by applying geometry constraints of electrode 3389 

from Medtronic NeuroModulation, USA (Fig. 1.). This automatic procedure was performed for post-180 

operative CT of each patient and gave us all contact locations. It was validated in Mehri et al. (2012) and 

gave us an error of 0.96 +/- 0.33mm using a linear regression for the modelling of the electrode’s axis. 
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 185 

 

Fig. 1. Upper left: Post-operative CT scan of one patient with PD and bilateral STN-DBS. Upper right: 

Segmentation of the patient’s skull, the 2 electrodes and the 8 electrode contacts. Below: Electrode's axis, 

the 4 extracted contacts and the 4 ground truth contacts for the left side. 

 190 
2.3 Patient to template registration workflow 

 
Patient contacts were warped into a MR template as a common anatomical space for allowing retrospective 

population statistical analysis. We compared the impact of mono-subject vs. multi-subject MR high-

resolution templates on the patient/template non-linear registration accuracy. In opposition to pure 195 

histological templates, MR templates are correctly representing the in vivo anatomy of the brain. We also 

compared two non-linear registration methods. 

The mono-subject template was created from 15 3T MR acquisitions of a healthy 45 year-old male, 

which were processed and averaged. This high-resolution 3T MRI template (namely the Jannin15), was 
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constructed and assessed by Lalys et al. (2011). The multi-spectral multi-subject, unbiased non-linear 200 

average, PD template was made from 57 T1w images of patients with PD (namely the Avg57), thus 

providing a high-resolution / high signal-to-noise ratio template (Haegelen, 2012). This template allows the 

specific developmentally important age-ranges and atrophy of PD patients to be taken into account. 

The registration workflow was composed of a linear CT to MR patient images registration, a global 

affine MR-to-template registration, a local affine MR-to-template registration with a mask on deep 205 

structures, and a final non-linear registration. Using this procedure the contact positions could be precisely 

warped into a reference space. We compared the accuracy of two non-linear registration algorithms: the 

demons approach (www.itk.org) that was used in our previous studies, and the Advanced Normalization 

ToolS (ANTS) non-linear deformation algorithm used in Symmetric Normalization (SyN) mode that has 

been shown to be highly effective in the context of MR brain imaging registration (Klein et al., 2009). 210 

 For both validation studies, we followed a landmark-based validation approach. Ten anatomical 

structures were identified within deep-brain structures (Fig. 2.) and manually identified in the images by an 

expert. Placement of these landmarks on the one hand on the template, and on the other hand on 15 

wrapped MR images, allowed us to compute a global registration error. Considering that the intra-subject 

registration between the CT scan and the MR image was accurate, we only validated the MR-to-template 215 

registration. We first compared both templates by keeping the classical linear registration process along 

with the non-linear Demons algorithm. We then compared, using the best template found, both non-linear 

registrations (i.e. Demons Vs ANTS-SyN) using a student t-test. 

 

http://www.itk.org/
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 220 

 

Fig. 2. Anatomical landmarks used for the validation study 

1 - Anterior Commissure 

2 - Interthalamic adhesion on the middle of the axial slice 

3 - Posterior Commissure 225 

4 - Infundibular recesse 

5 - Middle of the mamillar bodies 

6,7 - Left and right internal carotid division into anterior and middle cerebral arteries 

8 - Center of the anterior portion of the optic chiasma 

9,10 - Centers of the left and right red nuclei 230 

 

 

2.4 Anatomo-clinical atlases 

 
For all scores and for representing the degree of improvement or worsening of the patient, the difference 235 

between DBS ON and DBS OFF values was computed. In order to represent all improvement or worsening 

of patients on a similar scale, all clinical scores were statistically normalized. On each score, we subtracted 

the mean and divided by the variance of the dedicated score. After normalization, the data closely followed 

a normal distribution (with mean=0 and standard deviation=1) and were more easily usable for data 

variation comparisons. 240 
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For each score, an atlas was computed as the list of active contact coordinates from all patients 

associated with the corresponding difference value. The active contacts were those at three months post-

surgery. 3D visualization consisted in displaying the list of points represented with a colour code related to 

the patient clinical scores. Each clinical score can therefore create one anatomo-clinical atlas. Due to 

random errors or missing values in reporting scores, the initial clinical score dataset of 30 patients dropped 245 

to 23 for the motor analysis, but remained at 30 for the neuropsychological analysis.  

 

2.5 Non-supervised classification 

 
After atlas construction, we performed a segmentation step using non-supervised techniques. Hierarchical 250 

Ascendant Classification (HAC) was used on clinical scores merged with coordinates to search 

homogeneous groups of patients and extract general clinical trends. Feature vectors were composed of four 

features: the value of the x-axis, y-axis, z-axis and the score difference value. HAC operates by 

successively merging pairs of existing clusters, where the next pair of clusters to be merged is chosen as the 

pair with the smallest distance. This linkage between clusters a  and b  was performed using the Ward 255 

criterion along with the weighted Euclidean distance:  

ba

M

=k

bkakk

ba
n+n

xxw

nn=b)(a,d

 
12

 

where 
a

n

=i

ai

a

a x
n

=x
1

1
 is the centroid of cluster a (resp. b), an  (resp. bn ) is the number of objects in cluster 

a (resp. b), and kw are the weights, specified by 
12

1
1 =w=w=w 32  and 

4

3
4 =w . The dendrogram was 

cut in order to obtain two or three clusters for each clinical score. Validation of the non-supervised 260 

classification was performed with an ANOVA test.  

 

 

 

 265 
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3. Results 

 
 270 
The registration error was computed for the different combinations of non-linear registrations and 

templates. First, results of Table. 1. show that the new multi-subject template was significantly better than 

the mono-subject one (p-value =  0.025). 

 

 Mean registration error (mm) Std deviation (mm) Test student 

Jannin15 template + Demons 

non-linear registration 

1,23 0,12  

p-value = 0,025 

Avg57 template + Demons 

non-linear registration 

1,15 0,09 

 275 

Table. 1. Landmark-based validation for the comparison of the Jannin15 vs. Avg57 templates on patient to 

atlas non-linear registration using Demon’s method. 

 

Table. 2. then shows that the new non-linear registration method (ANTS-SyN) gave best results 

compared to the Demons algorithm (p-value = 0.05). For the rest of the study, the two new parameters were 280 

then conserved, providing a global registration error of 0.98 +/- 0.17mm. Patient's contacts were also 

warped in the Talairach space for clinical verification. The origin of the electrode contact coordinates was 

the midpoint between the AC and the PC points. Three months after surgery, the mean position of the active 

electrode's contacts for the left electrodes was X=+14.33 mm for the lateral direction, Y=-1.79 mm for 

antero-posterior direction, Z=-1.01 mm for the dorso-caudal direction, and X=-14.65 mm, Y=-1.88 mm, 285 

Z=-0.77 mm for the right electrodes. The stimulation parameters used were frequency at 130 Hz, pulse 

duration for 60 microseconds for all the patients and a mean voltage of 2,14 ± 0,34 V. 

 

 Mean registration error 

(mm) 

Std deviation (mm) Test student 

Avg57 template + Demons 

non-linear registration 

1,15 0,09  

p-value = 0,05 

Avg57 template + ANTS-SyN 

non-linear registration 

0,98 0,17 

 

Table. 2. Landmark-based validation for the comparison of the Demons vs. ANTS-SyN non-linear 290 

registration methods. 
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For all following figures, we represent the results in the Talairach space as well as in Avg57 template 

to improve clinical representation and interpretation. For each clinical score, clustering was performed for 

both hemispheres independently. For each clinical score, we noticed that the group of patients (clusters) that 

were extracted for both hemispheres were identical. The x-axis represents the left-right direction, the y-axis 295 

represents the antero-posterior direction, and the z-axis represents the caudo-cranial direction. The scale of 

figures is shown in mm. Fig. 3. shows a greater improvement of UPDRS III for cluster Blue compared to 

clusters Red and Green (
610=p ). Majority of the contacts of the cluster Blue were in the postero-

superior region of the STN. Hoehn & Yahr and Schwab & England scores showed similar results, but with 

a fuzzy definition of clusters (
25.10=p ). 300 

Fig. 4. shows a deterioration of the categorical fluency in the posterior region (cluster Red), and an 

improvement in the antero region (cluster Blue) (
410=p ). For the phonemic fluency we found a general 

deterioration for all patients, without apparent separation of clusters. STROOP score analysis (Fig. 5.) 

indicated score improvement in the postero-superior region (cluster Red), and deterioration in the antero-

inferior region (
510=p ) (cluster Blue). For the three other neuropsychological scores (Trail Making Test, 305 

Wisconsin Card Sorting Test, MATTIS score), no significant clusters were found (
210.5 p ). Table. 3. 

summarizes results of the analysis using the different clinical scores.  
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 310 

Fig. 3. UPDRS III analysis, with the cluster display in Talairach coordinates (above), and the cluster 

display in the template space for the left hemisphere with the STN (below).  
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 315 

Fig. 4. Categorical fluency analysis, with the cluster display in Talairach coordinates (above), and the 

cluster display in the template space for the right hemisphere with the STN (below). 
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 320 
Fig. 5. STROOP analysis, with the cluster display in Talairach coordinates (above), and the cluster display 

in the template space for the right hemisphere with the STN (below). 
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Clinical scores Cluster Number of patients 

Mean clinical score 

(Post-pre-op) 

Clinical 

signification 

Major STN zone of 

stimulation 

UPDRS III 

Cluster Blue 3 -51.5 Very good improvement Postero-superior region 

Cluster Green 11 -23.6 Good improvement 
Superior and Posterior 

regions 

Cluster Red 15 -5.4 Stabilisation 
Anterior and inferior 

regions 

Categorical 

fluency 

Cluster Blue 11 -9 Improvement Antero region 

Cluster Red 18 3.2 Deterioration Posterior region 

 

STROOP 

Cluster Blue 13 -5 Deterioration Antero-inferior region 

 Cluster Red 15 2.6 Improvement Postero-superior region 

 

Others 

 

No significant clusters found 

 325 
Table. 3. Summarization of clusters found for each clinical score, i.e. the number of patients per cluster, the 

dedicated mean clinical score, the clinical signification of the mean clinical score and the major STN zone 

of stimulation of the patients belonging to this cluster.  

 

4. Discussion 330 

 
This article reports about the construction of anatomo-clinical atlases in patients with STN stimulation and 

severe disabled Parkinson’s disease. To our knowledge, we reported for the first time a discrepancy 

between a very good motor improvement by targeting the postero-superior region of the STN and an 

inevitable deterioration of the categorical and phonemic fluency in the same region. These results were 335 

provided by the use of tools already validated but never used together to provide the association of clinical 

scores with electrode contacts within a normalized space in the context of STN DBS.  

 
4.1 Contact localization and representation 

 340 
Many publications advocate the use of post-operative MRI to determine the electrode's contact coordinates 

(Saint-Cyr et al., 2002; Pollo et al., 2007) despite the possible adverse effects related to MRI acquisition 

with implanted DBS electrodes (Medtronic, 2006). The use of MRI has recently been validated by Lee et al. 
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(2010) with a study showing that there were no significant discrepancies between the centres of electrodes 

estimated by CT and MRI. In this project, the spatial coordinates of the 4 contacts per electrode were 345 

automatically computed from post-operative CT images. The automatic contact localization algorithm gave 

us satisfactory results with an average error of 0.96 +/- 0.33mm (Mehri et al., 2012). This error, even quite 

low, has to be taken into account in the final cluster analysis. Considering the relative small size of the STN 

and its sub-regions, this bias will still have to be minimized using more robust automatic segmentation 

algorithms.  350 

 Comparison of electrode positions of STN DBS estimated in the immediate post-operative CT with 

those estimated 6 months after surgery showed that they may contain some discrepancies (Kim et al., 2010). 

Results also indicated that it is often due to the extensive pneumocephalus. Ideally, this bias could be 

reduced by comparing clinical scores evaluated 6 months after the surgery with a post-operative CT 

acquired within the same period. 355 

    We modelled the signal by a point corresponding to the centre of the artefact. For further developments, 

it will be crucial to integrate the influence of stimulation on the surrounding biological tissues. Some 

studies on the modelling of tissues and electrical influence of electrodes in the context of DBS have 

recently been published (Buston et al., 2011). Complete DBS modelling would integrate all of these data to 

provide the highest possible precision. 360 

 

4.2 Template and registration workflow 

We compared the impact of mono-subject vs. multi-subject MR high-resolution templates on the 

patient/atlas non-linear registration accuracy. Both templates allowed the production of reference images 

with a high degree of anatomical detail, both for deep-brain structures and for the cerebral cortex. The 365 

accuracy of the patient images-to-template registration is an important step, which may considerably impact 

the quality of the findings.  In DBS, major sources of errors are due to the identification of basal ganglia 

from patient-specific images. Therefore, during the procedure, we added a local registration involving 

targeted structure (STN), intended to improve basal ganglia registration. Results of the template-to-patient 

registration comparison have shown that the new multi-subject template increases the accuracy of a patient-370 

to-template basal ganglia registration. This is explained by the fact that the single subject template did not 
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take into account brain atrophy of the patient population. The impact of this new template was significant 

and it has improved not only registration quality (0.98mm) but also retrospective visualization.  During the 

registration workflow, intra-subject rigid registration appears to be very effective, especially when native 

acquisitions are subject to a step of reliable pre-processing as we performed in our registration procedure. 375 

On the contrary, the patient-to-template registration procedure, including linear and non-linear registrations 

steps, was subject to small errors that can explained this registration error of 0.98mm. Similarly to the 

localization of the electrode contacts, this bias has to be taken into account when analysing the final cluster 

results.   

    Many active contacts are located outside the STN within atlases. This can be partially explained by the 380 

error induced during the warping step, though other explanations could be put forward. First, the electrical 

stimulation zone is in fact larger than the simple contact position, recovering a region wide enough to 

accept a targeting uncertainty.  It is known, in any case, that the field of stimulation can have a spread of up 

to 2 mm within the brain (Buston et al., 2011). Secondly, deep-brain tissues and nerves are deeply 

interconnected and nerves at the periphery of structures have an influence on the structure itself. 385 

   The coordinates of the stimulated contacts were more lateral than those previously reported (Krack et al., 

2003; Dujardin et al., 2004; Houeto et al., 2002). One explanation could be that the targeting in our study 

was based on 3T MRI and not on ventriculography as in other centres. The visualisation of the STN on T2 

pre-operative MRI allowed direct targeting instead of probabilistic targeting based on the Talairach atlas. 

The neurosurgeons attempted to place the electrode in the postero-superior part of the STN as they knew 390 

that it is involved in motor component of the STN (Rodriguez-Oro et al., 2001; Theodosopoulos et al., 

2003). 

 

4.3 Clinical scores 

 395 
Each clinical score was used to extract representative clusters. Compared to clustering on clinical scores 

only, adding coordinates allows a better definition of clusters and a better understanding of DBS efficiency 

according to contact locations. Motor and neuropsychological scores were analysed to assess the patient 

outcome (Benabid et al., 2000; Brontë-Stewart et al., 2010). Other teams have also focused on the analysis 

of clinical scores in the context of STN DBS (Guehl et al., 2007; Lamotte et al., 2002). 400 

     In our procedure, the main issue was the inability to separate the response to DBS stimulation of the 
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right and left contacts. Each test was performed with both activated contacts. Separate evaluations would 

involve many hours without medication and stimulation in order to lose previous therapeutic and 

stimulation effects. In the pre-operative targeting procedure, surgeons first localized the optimum target 

position of one side, and the target position of the other side was automatically computed from the 405 

definition of the mid-sagittal line. These targets were used as an initial position that had to be refined per-

operatively. 

     Other variables that could have been taken into account are the different contact parameters, i.e. the 

frequency, pulse duration and voltage. From the 30 patients in our study, these parameters did not differ 

among patients, so we did not include the stimulation parameters in the study. Moreover, the standard 410 

deviation of the stimulation voltage was low and not sufficiently discriminant to be included. 

   Because of their low granularity, values of the Schwab & England and Hoehn & Yahr scales turned out to 

be less representative than UPDRS III. Moreover, our method was more useful for quantitative continuous 

data than for quantitative discontinuous data. For this reason, even though the results of motor scores 

studies were almost identical, the visualization of the atlas containing the UPDRS III provides more 415 

information. Using these clinical data, the postero-superior region has been found to be the most effective 

region for motor improvement. This follows conclusions of previously published work on the topic (Guehl 

et al., 2007; Lamotte et al., 2002), and can be explained by the fact that this part of the STN (usually named 

the dorso-lateral part) is involved in sensory and motor functions (Maks et al., 2009). Indeed, as shown in 

the introduction, a subdivision of the STN into a ventromedial associative and a medial limbic (psychology, 420 

mood) territories is described in the literature. Recent studies (Karachi et al., 2005; Lambert et al., 2012),  

stated that the motor region was situated in the posterior portion of the nucleus. Our results related to motor 

improvements therefore support this hypothesis. Moreover, this subdivision can explain that the antero-

inferior (corresponding to the limbic territory) region has shown significant neuropsychological side effects 

such as the deterioration of the Stroop score. In Lambert et al., (2012), the limbic zone was found to be in 425 

the anterior portion of the STN. Results on the Stroop score are also quite satisfactory as it can be explained 

by recent discoveries on STN territories. Lastly, our study highlighted at our knowledge for the first time, 

that the categorical fluency was improved in the anterior region of the STN, whereas the categorical fluency 

was worse in its postero-superior region. Moreover, the phonemic fluency was worse after STN stimulation 
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whatever the region of the STN stimulated. This last result was not surprising as the deterioration of 430 

phonemic verbal fluency is one of the most observed side effects in STN DBS, though the phenomenon is 

not really understood (Temel et al., 2006; Saint-Cyr et al., 2000). The deterioration of the phonemic fluency 

seems to be impossible to avoid after STN stimulation and the categorical fluency only improved in the 

anterior region that is not the best region in terms of motor improvement. We can imagine multiple sub-

regions within the STN where the stimulation may involve these side effects, but the extraction of finer 435 

spatial clusters would require a larger study population. Our results could also demonstrate that the STN is 

not so well subdivided into three different functional territories but the motor, associative and limbic 

territories are more probably mixed due to diffused interneuron’s connection. 

    Lastly, concerning all other neuropsychological scores (Trail Making Test, Wisconsin Card Sorting Test, 

MATTIS score), no clusters were clearly defined, resulting in small statistical differences. With our current 440 

data, no statistical clusters could be extracted from these scores yet, either because of the number of patients 

associated with the different bias of the analysis, or because no significant effects were observed amongst 

patients for these specific clinical scores. 

 

5. Conclusion 445 

 
In this paper, we focused on identifying optimum sites for STN DBS by studying symptomatic motor 

improvement along with neuropsychological side effects. The underlying mechanisms of action of DBS 

surgery have not yet been identified. The concept of anatomo-clinical atlases, introduced in this paper, 

allows the integration, within a single coordinate system, of a digitized brain MRI template, previous target 450 

coordinates of implantations, and various clinical scores. Each clinical score produced one anatomo-clinical 

atlas, associating the degree of improvement or worsening of the patient with its active contacts. 

Additionally, non-supervised classification was performed on scores and coordinates to extract clusters for 

determining optimum electrode contact coordinates. We showed how to extract knowledge gained from 

population data based on the correlation between anatomical location of contacts and clinical data. To our 455 

knowledge, we reported for the first time a discrepancy between a very good motor improvement by 

targeting the postero-superior region of the STN and an inevitable deterioration of the categorical and 

phonemic fluency in the same region. The proposed anatomo-clinical atlases were created to provide the 
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surgeons with additional assistance for better understanding of DBS-related phenomena. It could find its 

application in pre-operative planning (Dawant et al., 2007; Stancanello et al., 2008) as well as for post-460 

operative assessment (Lalys et al., 2009). As targeting is mainly based on the surgeon's knowledge and 

experience, it could serve as an additional source of information obtained from retrospective studies for 

reducing time and predicting motor outcome and possible post-operative adverse-effects. The underlying 

challenge would be to reduce the intra-operative time required for electrode contact adjustment by 

microelectrode recordings. The actual local anaesthesia would be replaced by a general anaesthesia, which 465 

would completely alter the surgical routine by reducing surgical staff workload, improving patient care and 

increasing medical safety. Alternatively, such atlases also provide an understanding of previous 

interventions that didn’t give satisfactory results. In such cases, active contacts of a new patient can be 

warped into the common space, displayed for post-operative assessment, and inserted into a new analysis 

for updating the atlases. This work yields many flourishing studies in the field, including further clinical 470 

data such as quality of life or cognitive criteria. 
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