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Abstract 

 

Comparison of multiple protein structures has a broad range of applications in the 

analysis of protein structure, function and evolution. Multiple structure alignment tools 

(MSTAs) are necessary to obtain a simultaneous comparison of a family of related folds. In 

this study, we have developed a method for multiple structure comparison largely based on 

sequence alignment techniques. A widely used Structural Alphabet named Protein Blocks 

(PBs) was used to transform the information on 3D protein backbone conformation as a 1D 

sequence string.  

A progressive alignment strategy similar to CLUSTALW was adopted for multiple PB 

sequence alignment (mulPBA). Highly similar stretches identified by the pairwise alignments 

are given higher weights during the alignment. The residue equivalences from PB based 

alignments are used to obtain a three dimensional fit of the structures followed by an iterative 

refinement of the structural superposition. 

Systematic comparisons using benchmark datasets of MSTAs underlines that the 

alignment quality is better than MULTIPROT, MUSTANG and the alignments in 

HOMSTRAD, in more than 85% of the cases. Comparison with other rigid-body and flexible 

MSTAs also indicate that mulPBA alignments are superior to most of the rigid-body MSTAs 

and highly comparable to the flexible alignment methods. 
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1. Introduction 

 

The three dimensional structure of a protein provides tremendous insights on its 

function [1]. It has been an essential requirement to compare protein structures for the 

interpretation of functional, dynamic and evolutionary properties. To study the relative 

structural variations among a group of structures, a simultaneous comparison is required for 

which multiple structural alignments (MSTA) are relevant. Multiple structure comparisons are 

also essential components of many modeling and threading procedures [2-4]. 

Superposition of 3D protein structures can be solely obtained by global translational 

and rotational searches, however it is not trivial. To achieve this goal, one set of methods uses 

the representation of structures as contact patterns or distance matrices. These matrices are 

then compared to obtain the 3D equivalences from which an alignment can be generated [5-

7]. Another commonly used strategy is to identify an initial conformational equivalence and 

then carry out refinements to generate an alignment. Earlier methods used simple sequence 

alignment algorithms to obtain the initial structural equivalence [8], arbitrary equivalences 

were also used as starting points [9]. Nonetheless, these alignments tend to be faulty when the 

sequence similarity is low. Thus the newer approaches are mostly structure based and they 

derive the initial equivalences by detecting similarities in the local structural regions. The 

description of 3D structures as a series of secondary structures (helix/strand/coil) provides one 

such means for comparison. [10-12]. 

Another set of powerful methods not relying on the secondary structure representation, 

are based on comparison of local backbone fragments. The length of these fragments is either 

predefined [13-16] or constrained by a measure for structural similarity between fragments 

[17, 18]. The most common and efficient technique for sequence order dependant 

comparisons, is dynamic programming [9, 13, 15, 17, 19]. Few other approaches are not 

dependant on the order of protein fragments, the structural similarity and the relative 
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orientation of these fragments being the major constraint for comparison. They are mainly 

based on algorithms like geometric hashing [10, 18, 20, 21], Monte Carlo Optimization [5], 

graph-matching [11] etc. These methods detect relationships based on sequence permutations 

and recombinations. However consistent results are not often obtained in the detection of new 

relationships and for the assignment of equivalent structural regions.  

The inherent flexibility of protein 3D structures supports its biological function by 

accommodating conformational variations. Hence the structural alignment techniques that 

cannot detect these flexible movements tend to misinterpret the extent of similarity. Methods 

capable of performing flexible structure comparison are also developed [15, 19]. They work 

by identifying fragment similarities followed by the detection of twists and hinge movements. 

However the discrimination of true hinge movements from acquired structural changes is 

sometimes difficult and subtle movements can be left unrecognized. 

The fragment based approaches mentioned above do not require a priori knowledge of 

the conformation of the fragments. A more recent group of methods attempt to classify local 

protein structures into a limited set of local backbone conformations before carrying out 

comparisons. These methods are based on libraries of local backbone structures that represent 

the frequently occurring regular backbone conformations. With the premise that the secondary 

structure description in terms of α-helix and β-strands covers only about 50% of all local 

conformations, several studies attempted to characterize most or all of the backbone structure 

[22, 23]. A library of local backbone conformations that can be used to abstract a complete 

protein backbone is called as a Structural Alphabet (SA). Abstraction of structures in terms of 

SA helps to encode 3D information into a 1D sequence. Hence the comparison of 3D 

structures can be performed using an alignment of sequence of SAs. Classical amino acid 

sequence alignment strategies can be adopted for this. A few methods have been developed 

for comparing protein structures based on structural alphabets (e.g., [24-29]). When compared 
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to the methods based on similarity of 3D structural measures, these approaches are 

significantly faster. 

Unlike pairwise comparisons involving large database searches which require both 

speed and efficiency, MSTAs rather focus on accuracy. Multiple structural alignments are 

sensitive to the number of structures compared and their relative similarity. Most of the 

MSTAs use the residue equivalences from the pairwise alignments to obtain a fit of the 

structures. One simple approach is a center-star method where one structure is used as the 

reference and others are aligned to the reference based on the pairwise alignments [2]. To 

avoid the loss of information on the relative structural similarities depending on the choice of 

reference, an average or consensus template is used as reference [16, 30]. Majority of MSTA 

methods use a progressive alignment strategy to derive a multiple alignment [7, 8, 15]. A 

guide tree generated based on a relative similarity measure determines the order in which 

structures are added to the alignment. To reduce the bias dependant on this order of fit, 

iterative refinements are carried out [14, 16, 17, 31]. Consistency of residue equivalences 

among the pairwise alignments is also learned to refine the multiple alignment [12, 32]. 

Another set of methods compute a simultaneous comparison of all structures without using a 

hierarchical procedure or a reference structure [10, 18, 20]. The latter group works by using 

techniques like geometric hashing [33] to identify the set of structural regions common for all 

structures. This helps to overcome the inherent limitation of progressive fit of structures 

where the optimal alignment could not be derived from multiple pairwise comparisons. 

A widely used SA, named Protein Blocks (PBs) [22, 34-37], was used to develop an 

efficient method for comparing two protein structures [38]. The structures were translated into 

PB sequences followed by the alignment of the PB sequences. Classical Needleman-Wunsch 

dynamic programming [39] was used and a dedicated PB substitution matrix was generated 

for scoring the alignment [40]. Significant improvement in the alignment quality could be 
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achieved with the use of an anchor-based dynamic programming algorithm. It first identifies 

all high scoring and structurally favorable local alignments (anchors) and then aligns the 

segments between them to obtain a global alignment. This improved PB based structure 

alignment approach (iPBA) outperformed other established methods when tested on 

benchmark datasets [41, 42]. 

In this study we extend the iPBA approach to the comparison of multiple structures. A 

progressive strategy similar to that used in CLUSTALW [43] was adopted. PB sequence 

alignment determines the residue equivalences for the 3D structural fit and the fitted 

structures are optimized by structure based iterative refinements. To assess the performance of 

our approach, the alignments were compared to that generated with other popular methods. 

 

2. Methods 

 

2.1. Protein Blocks  

Protein Blocks (PBs) correspond to a set of 16 local prototypes, labeled from a to p, of 

5 residues length described based on the ,  dihedral angles. They were obtained by an 

unsupervised classifier similar to Kohonen Maps [44] and hidden Markov models [45]. This 

structural alphabet allows a reasonable approximation of local protein 3D structures [34] with 

a root mean square deviation (rmsd) recently evaluated to be 0.42 Å [46]. PBs [46] have been 

assigned using in-house Python software as in the previous studies [41, 42]. 

 

2.2. mulPBA Methodology 

Figure 1 gives an outline of the steps involved in mulPBA alignment approach. 

 

2.2.1. Pairwise alignments: The protein structures to be aligned are first translated 

into PB sequences. The pairwise alignments are obtained using iPBA which performs an 
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anchor based alignment by finding structurally conserved regions, identified as local 

alignments [41, 42]. A combination of local [47] and global [39] dynamic programming 

algorithms is used for the alignment. A set of local alignments (anchors) associated with these 

two sequences is derived using a modified version of SIM algorithm [42, 47]. The remaining 

segments between anchors (linkers) are then aligned with relaxed gap penalties, using 

Needleman-Wunsch algorithm. The PB substitution matrix was generated using substitution 

frequencies obtained from alignments of domain pairs in PALI [48] with no more than 40% 

sequence identity [41, 42]. 

 

2.2.2. Structure relatedness: A progressive multiple sequence alignment strategy 

similar to CLUSTALW [43] was used. The PB identities calculated from pairwise alignments 

were translated into a distance matrix (see Figure 1b). The matrix was then used to generate a 

guide tree (Figure 1c) [49]. The tree root was identified by mid-point rooting method [43]. 

Each sequence was assigned a weight depending on the distance from the root. It reduces the 

bias due to variation in the extent of similarity between the sequences. 

 

2.2.3. Progressive alignment: The tree was used to guide the assembly of sequences 

based on the degree of similarity, to form the multiple alignment. The alignment of two 

sequences (or groups of sequences) is carried out using dynamic programming. The average 

of pairwise PB substitution scores (from the substitution matrix) was used to calculate the 

score for aligning an element (alignment column) of a sequence group against an element 

(alignment column) of another. These scores S were weighted using sequence weights 

obtained from the guide tree. While aligning two profiles P1 and P2 of sizes k and l, the score 

for substituting a column i of P1 with column j of P2 is given by: 
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seq_weightp and seq_weightq indicates the sequence weights assigned based on the 

guide tree, to the sequence corresponding to p and q respectively. 

 

From each pairwise alignment used for obtaining the guide tree, the positions 

corresponding to the alignments in the structurally similar regions (anchors), were stored. 

These positions were then assigned a weight, namely anchor_weight, which is calculated as: 

anchor_weight = 250*(1+cov) 

where cov indicates the percentage coverage of the anchor with respect to the 

alignment length. The value 250 was optimized from an assessment of alignments generated 

(see below). 

 

2.3. Benchmark datasets of structural alignments.  

(i) HOMSTRAD database of structural alignments is commonly used as a benchmark 

for MSTAs [50]. The structures grouped as a family are aligned using Comparer [51, 52], 

Mnyfit [53] or Stamp [8] and the results are curated manually. 330 protein families with more 

than 2 members were used for parameter optimization and assessment of mulPBA. 

(ii) The recent version of PALI dataset V 2.8a [48, 54] consists of 1,922 domain 

families comprising of 231,022 alignment pairs. Structural alignments in this version are 

generated using MUSTANG [17]. A subset of 200 domain families was chosen randomly 

from the dataset for optimizing parameters and assessment. 

 

2.4. Multiple alignment scores: Different kinds of scores mainly derived from earlier 

works were employed, as it is not simple to design an optimal score and a universally 

accepted measure is not available. These alignment quality measures are computed on the 3D 
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fit of the structures (by PROFIT) based on the PB sequence alignment. 

 

(i) Quantifying the quality of alignment core: The preliminary criteria for considering 

an alignment column as part of the core is that it should have less than 30% of elements as 

gaps. In addition, two different definitions were employed for the alignment core: 

(a) The maximum distance between any two residues at an aligned position should 

be less than a given cut-off. The number of alignment columns where the residues are 

within this cut-off distance, are counted. A weighted average of the number of columns 

associated with the distance cut-offs of 3.0Å, 4.0Å, 5.0Å and 6.0Å was calculated in a 

similar way as that of GDT score [55, 56]. This measure is termed as Ndist. A fixed 

distance cut-off of 4Å was used to assess MAMMOTH-MULT [31]. 

(b) The rmsd of an aligned position (column) should be less than 3.0Å. The 

number of columns with less than 30% gaps and rmsd within 3.0Å, thus constitutes the 

core. This score is termed as Nrms. A similar score was used to assess the performance of 

MULTIPROT [18] 

 

(ii) Quantifying the global alignment quality: For each combination of pairwise 

alignment extracted from the multiple alignment, the number of aligned residue pairs that are 

within a distance of 3.5Å was counted. An average was then calculated for all the pairwise 

alignments, this score was named as N3.5. A similar score was used to quantify the quality of 

SALIGN [57] alignments. 

 

2.5. 3D structural alignment. PROFIT (version 3.1) [58] performs least squares fit of 

protein structures based on the residue equivalences in a given sequence alignment. The 

multiple PB sequence alignment is translated to amino acid sequence alignment which is 

given as input for PROFIT. The structure that has the least overall rmsd with the other 
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structures is chosen as the reference and the most similar structures are fitted in a progressive 

manner. At each step, the reference template is updated with the averaged coordinates of the 

superposed structures followed by the superposition of a new structure from the list. PROFIT 

can also perform a refinement of the fit based on an iterative update of the aligned residues 

within a given distance (5.0Å). 

 

2.6. Structure Based Sequence Alignment. The 3D superposition obtained using 

PROFIT [58] was translated to a multiple sequence alignment using dynamic programming 

scored based on inter Cα distances. A low additional weight is also added based on the 

substitution score for residue type substitution. The amino acid substitution matrix is 

generated from alignments in PALI [48] database in a manner similar to that used for 

obtaining PB substitution matrix. 

 

3. Results 

This study is aimed at developing a method for comparison of multiple protein 

structures based on the 1D representation of backbone conformation. The backbone 

conformation of the protein chains are first abstracted in terms of PBs. Pairwise comparisons 

were carried out using the iPBA approach, which uses anchor-based dynamic programming 

for alignment. A progressive alignment strategy comparable to CLUSTALW [43] was then 

adopted for generating multiple PB sequence alignments. Three different scores namely Nrms, 

Ndist and N3.5 were used to evaluate the quality of both the alignment core and the global 

superposition. A crucial parameter is the choice of the gap opening and extension penalties 

required for the progressive alignment. The performance with different penalty values were 

analysed on a dataset of 100 families from the PALI database [48] (Supplementary data 1). 

The Ndist score was used to select the best alignment. The best alignments were spread across 
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different gap penalty values and no single set of penalties clearly outperforms others. At a gap 

opening penalty of -800 and extension penalty of -400, maximum number of alignments had 

high scores. With this set of penalties, about 80% of the alignments had scores close to 

(difference less than 3) the maximum Ndist score for the alignment. The structurally conserved 

regions are obtained as anchors in the pairwise alignments. In the course of the progressive 

alignment, the anchor regions were weighed to improve the accuracy. With the above set of 

penalties and an anchor weight of 250, best performance could be observed (Supplementary 

data 1). 

The performance of our approach (mulPBA) was extensively assessed against the 

alignments in HOMSTRAD [50], the reference dataset used to assess the performance of 

different alignment methods [18, 31]. The results of this comparison clearly show that the 

alignments are improved significantly with mulPBA approach. Out of the 332 alignments 

compared, 80.1 % had a higher Nrms score, 86.4% had a higher Ndist score and 87.7% were 

better in terms of the N3.5 (Figure 2A). On an average, about 84.7% gain in alignment quality 

was obtained across the different measures. On the same dataset of 332 alignments, the 

alignment quality was compared with that obtained with MULTIPROT [18]. STACCATO 

[59] was used to generate sequence alignments corresponding to the structure superposition 

obtained with MULTIPROT. STACCATO considers amino acid substitution weights while 

generating sequence alignments based on superposed structures and it is often used to obtain 

the equivalences from MULTIPROT alignments [31]. With respect to MULTIPROT, the 

average gain based on the different scores was about 86.6% (Nrms: 82.4, Ndist: 87.3, N3.5: 90.1) 

(Figure 2B). However in most cases, the extent of improvement is not as high as that observed 

in comparison with HOMSTRAD. The increase in quality with respect to HOMSTRAD and 

MULTIPROT is largely noticed as improvement in matching residue equivalences and better 

backbone fit (Supplementary data 2). 
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The recent version of PALI [48] holds multiple alignments of domain families 

classified based on SCOP [5] definitions. These alignments are generated using MUSTANG 

[17], a highly popular MSTA. A subset of 200 family alignments from PALI database was 

used to compare the quality of alignments with that of MUSTANG. An average gain of about 

86.7% (Nrms: 78.5, Ndist: 89.8 and N3.5: 91.9) could be achieved. For comparing the alignment 

quality on proteins with more than one domain, multi-domain proteins in PALI with more 

than 2 members sharing less than 40% sequence identity were chosen. Out of 12 families 

obtained, mulPBA was better than MUSTANG in 9 cases in terms of all the three scores 

while 8 cases were better when compared to MULTIPROT. 

The alignment quality was also compared with other common MSTAs [10, 15, 57] 

implemented as web-servers (Table 1). The test is performed on a more limited dataset 

comprising of 12 protein families which were either studied in previous works [8, 10, 15, 17] 

or chosen from the SABmark dataset [60]. The alignment quality is quantified in terms of 

Nrms, Ndist and N3.5. The servers used for comparison involve both rigid-body alignment tools 

and flexible MSTAs. As highlighted in Table 1, for 8 out of the 12 families mulPBA gives the 

best quality alignments when compared to the rigid-body alignment methods SALIGN [57], 

MAMMOTH [31] and MASS [10]. Both SALIGN and MASS had the top scores for the 

alignment of two families. The quality scores of SALIGN alignments for these families 

(Serine protease and Mettalo-hydrolase) were however close to mulPBA alignment scores. 

Comparison with flexible alignments also gave convincing results. Among the set of 

MSTAs used for comparison, POSA [15] and MATT [19] are flexible aligners. They detect 

hinge regions involving flexible movements and introduce bends at these points to maximize 

the extent of superposition. As expected, for cases with flexible movements in the structures, 

these methods produce alignments with higher number of structural equivalence and they are 

supposed to give always better results than rigid-body approaches. Hence a direct comparison 
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between flexible and rigid-body aligners cannot be deciphered easily. Overall, POSA [15] 

generates the best quality alignments, but in 5 cases on 12 (Cupins, Globins, Serine Protease, 

Rossmann and Gamma Crystallin), mulPBA was more efficient, which was quite striking. It 

was also noted that POSA introduced false bends and twists in 2 alignments (Cupins and β 

Superhelix families, See Discussions), where only the average pairwise alignment score (N3.5) 

was better. Also, mulPBA was always better than MATT in the majority of alignments. 

 

4. Discussion 

The PB based structure approximation enable a ‘sequence like’ approach for structure 

comparison. Combination of local and global dynamic programming algorithms (anchor 

based) led to the development of an efficient structure comparison tool superior to many other 

popular methods. Substitutions corresponding to the anchor regions are given higher weights 

in the process of progressive alignment. A similar strategy is also applied in DBCLUSTAL 

[61] which is a major improvement over CLUSTALW [43]. Addition of anchor weights as a 

soft constraint results in a significant increase in the alignment quality (Supplementary data 

1). 

As seen above, the quality of alignments generated by mulPBA is much better than 

many other established MSTAs. Figure 3 also shows the comparison of quality of alignments 

of 5 structures from the Cupin family. Cupin fold is known for its functional diversity marked 

with variations in the active site residues [62]. The alignments generated by mulPBA (Figure 

3A) and MAMMOTH had the best quality scores (Table 1). The histidine residues that 

interact with metal ion, which is characteristic of many cupins, occur at equivalent positions 

in the mulPBA alignment. SALIGN [57] fails in superposing one of the cupin structures in the 

correct orientation (Figure 3B) while MASS [10] misaligns two structures (Figure 3C). The 

alignment generated by MATT [19] is similar to that obtained with mulPBA. However, the 
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quality of the fit is lower (Figure 3D) and no flexible movements were considered. The POSA 

superposition has the highest N3.5 score (which gives the average number of equivalences 

from the underlying pairwise alignments) and several hinge regions that mediate flexible 

movements were detected (Figure 3E). However, the alignment generated by fitting the 

detected flexible regions, is marked with distortions in the largely stable beta sheet core of the 

crystal structures and also with the superposition of non equivalent structural regions 

(Supplementary data 3). Hence the alignment is quite unrealistic. Also, one of the cupin 

structures (shown in blue in the figure) is not fitted in the correct orientation (Figure 3E), the 

equivalent beta strands were not identified.  

Representation of backbone conformation in terms of Protein Blocks enables the use 

of sequence alignment approaches for structure comparisons. In cases where the structures 

involve large flexible movements, Protein Block alignments were found to detect structural 

equivalences involving rigid body movements. These are cases where the sequence alignment 

holds more relevant information that a structure based fit. However, the 3D structure 

superposition generated by mulPBA is derived by carrying out structure based refinements on 

the PB based alignment. The result is a rigid-body fit of the structures and hence mulPBA 

could fall behind the flexible alignment methods like POSA [15] (Table 1).  

One such case is the alignment of tRNA synthetase structures (Table 1 & Figure 4A) 

which involves flexible movements between two domains. In a trial involving the comparison 

of four tRNA synthetase structures, the performance of mulPBA is behind POSA and MASS. 

One of the four structures involves a conformational shift in relative orientation of the 

domains (Figure 4A). The equivalent residues were correctly matched in the PB sequence 

alignment (Figure 4B). Nevertheless, the residues cannot be matched simultaneously in 3D 

which results in an alignment where both domains of this structure (with flexible movements) 

are not fitted well with respect to the other structures (Figure 4C). Hence the final quality 
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scores are also lower. MASS is successful in matching one of the two domains (Figure 5A). 

Though MATT [19] is a flexible alignment method, an optimal superposition was not 

obtained (Figure 5B) while POSA introduces a twist at the flexible loop to generate a good fit 

of both domains (Figure 5C).  

In the example above, the inherent flexibility of the structures resulted in a poor 3D fit. 

However in the more usual scenario, the larger region of equivalence is fitted upon refinement 

of the structural fit. When compared to PALI and HOMSTRAD datasets, only 2% of the 

alignments generated with mulPBA had large and significant decline in the alignment quality. 

In a few of these cases, the structures involve long and multiple helices. Hence the PB 

sequences are characterized by long stretches of low complexity (series of PB ‘m’) and this 

can result in wrong residue equivalences in the alignment. Though this problem is largely 

taken care of with the addition of amino acid substitution weights [42], a few cases of bad 

equivalences are still encountered at very low sequence identities. Comparison of proteins in 

the Ferritin family is a one such case where the Ndist score is quite low (Table 1), even though 

the global fit is similar to the alignment generated by MATT. Rarely, wrong anchors are also 

chosen in a pairwise alignment, which can result in a poor multiple alignment. In the future, 

we will be assessing more strict constraints for the choice of anchor regions for alignment. 

 

5. Conclusions  

The approximation of backbone conformation of protein chain as a PB sequence, 

enable a sequence-like mode of structure comparison. The progressive mode of alignment 

coupled with anchor weights and iterative refinements of structural fit result in high quality 

alignment. The performance of mulPBA is also better than many other popular MSTAs. The 

sequence-like mode of alignment further adds interest in comparing flexible regions in the 
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structure. The efficiency of mulPBA also reflects the high relevance in backbone 

approximation using PBs. 
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Figure legends 

 

 

 

 

Figure 1. The alignment approach behind mulPBA. (A) An optimal set of anchors are 

identified using SIM algorithm [47]. The intervening segments are aligned using Needleman-

Wunsch algorithm [39] (B) The PB sequence identities calculated from pairwise alignments, 

are used to generate a distance matrix (C) A guide tree is obtained from  the distance matrix 

using the Neighbour Joining algorithm [49] (D) The guide tree determines the progressive 

manner of alignment of PB sequences (E) The residue equivalences from the multiple PB 

sequence alignment is translated into a 3D fit using ProFit [53]. 
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Figure 2. Comparison of mulPBA alignments with HOMSTRAD, MULTIPROT and 

MUSTANG. The alignment quality is quantified in terms of Nrms, Ndist and N3.5 (see Methods). 

The difference in these scores with respect to the three alignment methods and the 

corresponding percentage of alignments are plotted. The alignments with better scores 

(positive difference) are highlighted in red while the negative cases are in green. The total 

percentage of positive and negative cases is also indicated. Panels A, B and C give the results 

of comparison with HOMSTRAD, MULTIPROT and MUSTANG respectively. 
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Figure 3. Alignment of proteins with cupin fold. Alignment of 5 structures with cupin 

fold (PDB ID+chain: 1DZRa (green), 1O5Ua (blue), 1QXRa (red), 1V70a (pink) and 1VJ2a 

(orange)) using mulPBA (A), SALIGN (B), MASS (C), MATT (D) and POSA (E). The 

quality scores in terms of Nrms, Ndist and N3.5 are also given. In (B) and (C) involving mis-

alignments, the structures fitted in the optimal orientation are presented as partially 

transparent. In the panel (E) corresponding to Posa alignment, the structural regions altered 

based on detected flexibilities are indicated with a thick backbone. Figures are rendered in 

PyMol [63] 
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Figure 4. Alignment of tRNA synthetases. Four tRNA synthetase structures (PDB 

ID+chain: 1ADJa (green), 1ATIa (blue), 1HC7a (red) and 1QF6a (yellow)) are compared (A) 

One of the structures showing the two domains (highlighted in pink and light blue), joined by 

a flexible loop. (B) Alignment of PB sequences corresponding to the four structures. The 

regions of alignment corresponding to the two domains are highlighted. The 3D fit of the four 

tRNA synthetase structures using mulPBA (C). The quality scores in terms of Nrms, Ndist and 

N3.5 are also given. Figures are rendered in PyMol [63] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 23 

 
 

 

Figure 5. Alignment of tRNA synthetases. Four tRNA synthetase structures (PDB 

ID+chain: 1ADJa (green), 1ATIa (blue), 1HC7a (red) and 1QF6a (yellow)) are compared 

using MASS (A), MATT (B) and POSA (C). The quality scores in terms of Nrms, Ndist and 

N3.5 are also given. Figures are rendered in PyMol [63]. 
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Table 1. Comparison of mulPBA with different MSTAs. The protein families used for 

comparison are given, the average length is indicated within parentheses. The protein chains 

used for alignment are also listed using PDB ID followed by chain identifier. The alignment 

quality is indicated in terms of Nrms, Ndist and N3.5, listed in order. The top score among the 

methods is highlighted in red. The second best scores are in green. The best scores among the 

first four methods (mulPBA, SALIGN, MAMMOTH and MASS) which are rigid-body 

MSTAs, are highlighted in bold. ‘NA’ indicates that the method fails in generating an 

alignment. 

 


