
1 

Manuscript Title: 

Effect of adherence measured by MEMS, ritonavir boosting and CYP3A5 genotype on atazanavir 

pharmacokinetics in treatment-naïve HIV-infected patients 

 

Authors:Radojka M. Savic1,2, Aurélie Barrail-Tran3,4, Xavier Duval1, George Nembot1, Xavière 

Panhard1, Diane Descamps5, Céline Verstuyft6, Bernard Vrijens7, Anne-Marie Taburet3, Cécile 

Goujard8, France Mentré1 and the ANRS 134 - COPHAR 3 study group 

 

Affiliations:  

1Univ Paris Diderot, Sorbonne Paris Cité, INSERM, UMR 738, F-75018 Paris, France; 

2Department of Bioengineering and Therapeutic Sciences, University of California San Francisco; 

3APHP, HôpitalBicêtre, Clinical Pharmacy, Paris, France; 4Univ Paris Sud, Faculty of Pharmacy, 

EA4123, F-92290 ChatenayMalabry, France,5Laboratoire de Virologie, AP-HP Hôpital Bichat –

Claude Bernard GH HUPNVS,F-75018 Paris, France; 6APHP, HôpitalBicêtre, Service de 

Génétiquemoléculaire, Pharmacogénétique et Hormonologie, Paris, France; 7AARDEX Group, 

8APHP, HôpitalBicêtre, Internal Medicine, Paris, France 

 

Correspondence Request: 

Rada Savic, Ph.D. 

Present adress:  

Rada Savic, Ph.D., Assistant Professor  

Department of Bioengineering and Therapeutic Sciences 

Schools of Pharmacy and Medicine, University of California San Francisco 

1550 4th Street, Box 2911 

San Francisco, CA 94143-2911 

Tel: (415) 502-0640 

Fax: (415) 514-4361 

Email: rada.savic@ucsf.edu 

Key Words:Atazanavir, Adherence, Pharmacogenetics, Population pharmacokinetics  

mailto:rada.savic@ucsf.edu


2 

Abstract  

Aim:To study population pharmacokinetics and pharmacogenetics of ritonavir boosted 

atazanavir using exactly recorded drug intake time by MEMS. 

Methods:The ANRS134–COPHAR 3 trial was conducted in 35 HIV-infected treatment-naïve 

patients. Atazanavir (300 mg), ritonavir (100 mg), and tenofovir (300 mg) + emtricitabine (200 

mg) were supplied in bottles with a MEMS cap to be taken once daily during 6 months. Six 

concentrations measurements were collected at week 4, then trough levels bimonthly. A model 

integrating atazanavir and ritonavir pharmacokinetics and pharmacogenetics was developed 

using non-linear mixed effects. 

Results:Use of exact dosing history data halved unexplained variability in atazanavir clearance. 

Ritonavir-atazanavir interaction model suggested that optimal boosting effect is achievable by 

lower ritonavir exposures. Patients with at least one copy of the CYP3A5*1 allele exhibited 42% 

increased oral CL.  

Conclusion:We provide evidence that variability in atazanavir pharmacokinetics is defined by 

adherence, CYP3A5 genotype and ritonavir exposure. 
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INTRODUCTION 

Atazanavir (ATV) is a potent HIV-1 protease inhibitor (PI) used as a principal component of 

combined antiretroviral therapy (cART) for first line HIV treatment since 2003(1, 2). Its 

pharmacologic characteristics allow for once daily dosing either as a 300 mg capsule boosted 

with ritonavir (100 mg) or 400 mg capsule administered with food. In addition to the 

convenience of once daily dosing, the advantage of atazanavir over other available PIs lies in its 

favorable safety profile with respect to the dyslipidemia risk (3).  

Despite its favorable pharmacologic properties allowing for once daily dosing, atazanavir 

pharmacokinetics is associated with high variability between- and within-patients, posing a 

challenge for assessing and predicting not only individual exposures but also the target 

concentration–time profile needed for optimal pharmacotherapeutic management (4-6). 

Potential sources of large between- and within- patient variability can be multiple: a) the food 

effects on oral bioavailability and absorption, b) drug-drug interactions, c) variability in ritonavir 

boosting, d) a large array of plausible pharmacogenetics interactions e) adherence variability.  

Additionally, high atazanavir concentrations have been associated with important toxicities, for 

example hyperbilirubinaemia. In patients with HIV virus sensitive to atazanavir, the current 

targets for the therapeutically optimal range of trough concentrations are at a lower boundary 

of 150 ng/mL, the minimum effective concentration (MEC) for successful viral suppression as 

reported in the US Department of Health and Human Services guidelines for antiretroviral 

therapy, and an upper boundary of 850 ng/mL, defined as a concentration threshold for 

bilirubinemia (4, 7).  

The human cytochromes P450 3A4/3A5 (CYP3A5) are implicated in the hepatic metabolism of 

atazanavir (8, 9). CYP3A5 is mainly expressed in the liver and has a strong genetic basis (10). 

Low expression of CYP3A5 is found in homozygous carriers of the CYP3A5*3 allele, whereas 

homozygous and heterozygous carriers of the CYP3A5*1 allele exhibit high expression of 

CYP3A5 (10). The decreased (26%) atazanavir CL in CYP3A5 non-expressors has been recently 

reported in a study with healthy volunteers (11). In addition, there are known polymorphisms 

associated with UGT1A1, and functional deficiencies result in the accumulation of unconjugated 
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bilirubin in the serum although there is variability in the phenotypic expression of patients 

carrying genetic polymorphism. Rotger et al, showed that individuals with the UGT1A1*28 

allele may develop jaundice when exposed to atazanavir or indinavir (12). 

Variable adherence to the prescribed therapy adds an additional general level of complexity in 

maintaining optimal ARV drug treatment.  This topic has been in wide discussion in the last 

decade (13, 14). Both, poor outcome of treatment and selection of resistant viral strains, have 

been linked to suboptimal adherence (15-20). Additionally, variable adherence is most likely 

one of the major contributors to the observed pharmacokinetic variability within and even 

between patients especially for long term treatments (21-24). Different methods have been 

proposed for measuring adherence. However in order to assess and quantify the impact of 

adherence on dynamic systems, such as time courses of the viral load, bilirubin concentrations 

or PI pharmacokinetics, the adherence pattern needs to be known as well.  A precise 

assessment of adherence may be performed with Medication Event Monitoring System 

(MEMS)(21, 25, 26), which records exact times of bottle opening for drug intake in combination 

with informative study design that allows for precise quantification of individual drug exposure 

and variability.  

Undoubtedly, the interplay between individual pharmacokinetics, pharmacogenetics and 

adherence is complex and of critical importance to maintain atazanavir concentrations within 

the optimal therapeutic range, which would in turn minimize the incidence of therapeutic 

failure, development of drug-resistance and development of other toxicities Several previous 

studies developed population pharmacokinetic models for atazanavir (4-6). These studies 

reported high unexplained between subject variability in atazanavir PK parameters and 

suggested that adherence, pharmacogenetics and variability in ritonavir exposure are likely 

responsible for that but none of these studies had adherence measured via MEMS.   Therefore, 

our study focused on elucidating these relationships in a data-driven quantitative manner.  Our 

aims were: (i) to describe the population PK of atazanavir using accurate patient dosing-

histories, (ii)  to investigate how different assumptions involved in maximizing the accuracy of 

dosing-history data may impact the population PK analysis outcomes, (iii) to quantify 

pharmacogenetic effects of different relevant single nucleotide polymorphism (SNPs) on 
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atazanavir pharmacokinetics,  (iv) to establish a joint ritonavir—atazanavir pharmacokinetic 

model to include the boosting mechanism and (v) to estimate realistically variables linked 

toeffectiveness of cART(24, 27), using the established model, such as cumulative time and the 

number of trough samples below MEC during 24 weeks of trial. 
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RESULTS 

Patients and data 

The 35 patients included were 6 females and 29 males with a median age of 36 years (range 24-

66).Median viral load (VL) and CD4 count at inclusion were 23,200 copies/mL (range, 100-

457,000) and 436 cells/mm3 (range, 197-573) respectively. Clinical and safety results of the trial 

were presented elsewhere (28). In brief, only 5 of the 35 patients did not achieve undetectable 

VL(<40 cp/mL) at W24, with a range of 47 to 152 cp/ml, one patient experienced a severe 

hyperbilirubinemia (grade 4) with a high atazanavir trough concentration and discontinued 

ritonavir and one patient experienced a transient cytolytic hepatitis (grade 4) of unknown 

origin. 

In total, 272 atazanavir and 245 ritonavir concentrations from the 35 patients followed during a 

six-month period were available for the analysis.  Raw atazanavir data are shown in Figure 1, 

where a full profile can be observed as well as trough values at different occasions. Inspection 

of the raw data indicated high variability in the absorption phase as well as substantial within-

subject variability in the trough samples. Median observed maximal (Cmax) and trough 

concentrations (Ctrough) of atazanavir at W4 were 4,021 ng/mL (range, 1,903-2,907), and 304 

ng/mL (range, 40-2,366), respectively. 

 

Adherence data  

Statistical analysis of raw adherence data indicated almost perfect adherence to medications in 

the studied population with a majority of the prescribed doses were taken as prescribed: 

median 100% (range 50-100) and median 99.7% (range 51-100)for atazanavir and ritonavir, 

respectively. The percentage of doses taken on time (±3 hours) was somewhat lower: median 

88.2% (range 31.7-100) and median 86.6% (range 30.4-100) for atazanavir and ritonavir, 

respectively. The deviations from MEMS recorded intake was reported only twice. Similar 

adherence behavior was observed for tenofovir and emtricitabinepill.The dose-intensity heat 

maps showing adherence dynamics (incidence and amount of dose intake versus time for each 

patient) are shown in Figure 2.  
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Population PK model for atazanavir 

 A one-compartment model described atazanavir disposition well. The transit compartment 

absorption model substantially improved the observed data fit compared to all investigated 

absorption models. When compared to the second best absorption model (first order with a lag 

time), the transit model decreased -2 log likelihood by 64 points (p<10-14), and also explained an 

additional 11% of residual variability at the cost of two additional parameters.  The comparison 

of model fits with both the transit and the first order absorption model with a lag time are 

shown in Figure 3. The proposed transit compartment model was parameterized in terms of the 

following parameters: number of transit compartments (NN), mean transit time (MTT) which is 

the average time for a molecule to reach the absorption site, and absorption rate constant (ka).  

 

Impact of adherence assumptions on the outcome of the population PK analysis 

With respect to population PK data analysis, the assumption that all patients are at SS gave rise 

to significant quantifiable inter-occasion variability in CL/F (26.5% CV). The second analysis 

(AMEMS) in which  patient actual MEMS dosing-history were used, led to a negligible within-

subject variability estimate indicating that MEMS data explained this variability term entirely. 

However, a biased estimate of the volume of distribution was observed, thereby potentially 

affecting the prediction of individual patient’s drug exposures. Numerical difficulties during the 

estimation procedure were also experienced. In the gold standard analysis, a small proportion 

of the records of time of dose intake (<5%) were found to be discordant compared to the self-

reported dose intake time, therefore excluded from the analysis. That gold standard analysis 

(AGOLD) based on adjusted dosing histories only, led to the negligible within-subject variability in 

CL; parameter estimates were reliable, and the estimation procedure was stable. The 

parameter estimates from the three different analyses are shown in the Table I. 

 

Pharmacogenetics and covariates 

Pharmacogenetic data analysis revealed a statistically significant (p<0.01) effect of the CYP3A5 

polymorphism on the atazanavir CL. Patients with at least one copy of the CYP3A5*1 allele 

(n=12) exhibited 42% increased oral CL compared with patients with both CYP3A5*3 allele. 
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None of other demographic and genetic covariates deemed to be important.The visual 

predictive check for the final model stratified for different CYP3A5 genotypes is shown in Figure 

4. 

 

Joint ritonavir-atazanavir model 

Ritonavir concentration time profiles were best described with the one compartment model. 

Absorption was described well with the transit compartment absorption model. Parameter 

estimates of the final ritonavir PK model are given in the Table 2. Ritonavir exposure (AUC0-24) 

defined as dose divided by individual CL was a sufficient driver to explain the boosting 

mechanism of atazanavir CL. The estimate of unboosted atazanavir CL, e.g. in the absence of 

ritonavir, was rather high (16 L/h).  Ritonavir proved to be an efficient booster exhibiting 

maximal inhibitory effect of 98% with AUC50of 6,230 ng.h/mL, which was on the lower end of 

the observed ritonavir exposure in this study (7th percentile). The schematic view of the 

proposed model is shown in Figure 5. The increase in atazanavir CL for the carriers of the 

CYP3A5*1 allele was 28% after inclusion of ritonavir-boosting mechanism. The parameter 

estimates for the final PKPG model are given in the Table II.  

 

Model Predictions and Simulations   

The number of trough samples and the cumulative time below MEC over 24 weeks were 

computed for each patient (180 trough values for each patient). If the adherence was perfect, 

none of the trough samples would be below MEC (150 ng/mL), except for one individual who 

had an extremely high CL and was a CYP3A5*1 carrier, and whose trough values were all below 

the target level. And therefore similar result holds for the cumulative time below this threshold. 

However, when the true MEMS dosing histories were used, during the 24 weeks, 4patients (12 

%) had more than 10 trough samples below the MEC of 150 ng/mL and 8 patients (24 %) spent 

more than 100 h below MEC. 

 

 

 



9 

DISCUSSION 

Today, there are more HIV patients on the planet who do not have the access to powerful 

protease inhibitors than the ones who do have the access to PIs. For those HIV patients who do 

have the access to effective PI-based HIV treatment, successful management of the HIV therapy 

still presents a great challenge both for the physician and the patient. Complex interplay 

between highly variable drug specific pharmacokinetics, patient adherence, and genetic 

background of the patient poses difficulties in maintaining the optimal therapeutic levels of the 

PIs required in order on one hand, to minimize the risk of therapeutic failure associated with 

the risk of viral resistance, and on the other hand, to prevent drug-related toxicities.  A fully 

integrated pharmacokinetic-pharmacogenetic model with an integrated ritonavir-related 

boosting mechanism and real time adherence data was developed for atazanavir 

pharmacokinetics.  

In this study, atazanavir disposition was best described by a one compartment model, which is 

in line with previous modeling studies (4-6). Kile et al found that two compartment model was 

best fit for atazanavir pharmacokinetics, which was not the case for our data. This is likely due 

to the design: Kile et alcollected very rich data in healthy volunteers (9 samples) while we 

collected6 samples in patients. It is common that with very rich design, more complex models 

can be applied. However, we do not anticipate that this would alter any of our major findings. 

In the absence of ritonavir-related boosting and pharmacogenetic relationships, apparent 

atazanavir CL and V were 6.9 L/h and 81.1 L, respectively, resulting in an elimination half-life of 

8.1 h, which is consistent with previously reported values (8.2-8.9 h) (4-6).  Our work departs 

from previously published atazanavir models in reporting our evaluation of relevant absorption 

models. Our study implemented a semi-mechanistic transit compartment model in order to 

describe highly variable atazanavir absorption. The transit model assumes that the delay in the 

absorption process is a consequence of the drug passing through chain of linked compartments 

(steps), before reaching the absorption site (29). Our analysis illustrates that the transit 

compartment model is an attractive alternative for the modeling of the variable absorption, 

especially for anti-infective agents (30, 31). 



10 

Ritonavir has been developed and used as a pharmacokinetic booster of protease inhibitors 

(32). Ritonavir is a potent inhibitor of CYP3A4, the primary enzyme responsible for the 

metabolism of PIs, therefore decreasing the clearance and increasing half life of PIs and 

providing a basis for increasing the dosing interval to once daily (QD). The most common dose 

used for boosting is a 100 mg capsule per PI dosing. In our integrated model, the ritonavir-

related boosting mechanism of atazanavir CL/F has been introduced. It was best described by 

the inhibitory Emax model, where the baseline atazanavir CL value in the absence of ritonavir 

was estimated (16 L/h, which is similar to previous reports(11)) as well as maximal extent of 

inhibition and ritonavir exposure needed for half maximal effect.  Ritonavir is an established 

and proven potent booster with maximal (98%) inhibition of atazanavir CL, suggesting that a 

majority of the patients have been maximally boosted. Interestingly, a lower value of ritonavir 

exposure (6,230 ng.hr/mL) is estimated to be needed for half maximal ritonavir boosting effect. 

This estimated ritonavir exposure is at the lower end of the observed ritonavir exposures (7th 

percentile), which suggest potential overdosing of ritonavir in most patients, whereby lower 

doses of ritonavir could produce the desired boosting effect in order to maintain once daily 

atazanavir dosing. This result may be of interest considering the fact that 100 mg qd ritonavir 

has been implicated in increased risk of lipid level increase (33, 34). Furthermore, ritonavir may 

also be responsible for gastrointestinal adverse events experienced during treatment with PIs, 

therefore potentially affecting the adherence to PIs and ultimately the success of HIV therapy 

(35).  

Atazanavir is primarily metabolized by CYP3A4/A5 and pharmacogenetic differences are 

expected to be observed with respect to the bioavailability and clearance of the drug. Even 

though our study was rather small (35 patients), we have quantified a significant increase in 

atazanavir CL (28%) in the patients with at least one CYP3A5*1 allele, which is similar to the 

previously reported values (9). Kile et alreported 26% difference in unboosted atazanavir CL/F 

in healthy volunteers with different CYP3A5 genotypes. Our study confirms their findings in 

naïve HIV patients but also provides evidence that this effect is significant in presence of 

ritonavir and is of same magnitude at steady state. 
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Adherence to the prescribed therapy has been repeatedly named as the key factor for 

successful treatment outcome. Importantly, adherence will contribute to the observed 

pharmacokinetic variability. This fact is critical when drug levels must be maintained within a 

desired therapeutic window, or specifically in the case of PIs, above minimal effective 

concentrations. Furthermore, the ultimate goal of all model-based analysis is not only to 

quantify random variability between subjects, but also to explain these differences by plausible 

covariates. Ultimately, if almost of the variability in drug response can be explained, it would 

provide a basis for personalized dosing regimens.  However, even-though a large number of 

demographic and pharmacogenetic covariates are often available for the analysis, only a small 

portion of the observed variability is explained.  We hypothesized that adherence fluctuations 

would explain the majority of the observed variability. Therefore, we performed a sub-analysis 

of our data focusing on assumptions surrounding dosing histories. Our first analysis, which is in 

line with an implicit assumption in most population PK analyses, assumed perfect adherence 

and that all patients were at steady state. Under the steady-state assumption, the random 

variability in CL/F was 74%, corresponding to 47% of between-subject variability and 27% 

within-subject (or between-occasion) variability. Once MEMS adherence data from only 

“reliable-patients” were included, the between-subject variability in CL/F decreased to 40%, 

while the within-subject variability became negligible. This finding suggests that almost half of 

the initially quantified variability was not true variability in clearance, but was attributable to 

the unwarranted assumption of perfect adherence by all patients. This finding also reminds one 

that important covariates (e.g., weight, age, pharmacogenetics, etc), do not explain such a large 

portion of variability.  It is consistent however, with the conclusion of Harter and Peck that 

variability in adherence rivals pharmacokinetics as the leading source of variability in drug 

response (36). 

In our study, we have measured adherence using the MEMS caps, which record the exact time 

of the bottle opening. In most of the cases, the opening of the drug bottle corresponds to the 

drug intake; however some deviations to this assumption may occur. To obtain data closest to 

the truth, we asked subjects to keep a diary where these deviations were recorded. In addition, 

at each clinic visit, we asked them to report the time of drug intake from the previous day. This 



12 

information was very helpful since we could compare the MEMS records with the individual’s 

diary entry, and most of them agreed. A small proportion of the records (<5%) were discordant, 

leading to identifying these patient records as “unreliable”. Even though the proportion of 

unreliable data points was small, it was important to exclude them from the analysis, in order 

to generate a gold standard cohort for comparison, increase model stability and guarantee 

analysis convergence. 

In general, patient adherence in our study was very good. 98% of all atazanavir and ritonavir 

doses and 86% of the pills were taken by patients as prescribed. However, despite this high 

adherence rate, we showed that a few patients had atazanavir plasma levels below the target 

minimal effective concentration during the course of the treatment. Even though the median 

value of the time below MEC was low (<1% of the dosing interval), some of the patients spent 

up to 15% of the dosing interval below MEC. More precisely, there were fivepatients who were, 

over the treatment course, more than a cumulative 7days with unacceptably low levels of 

atazanavir. Two of these patients were non-responders at week 24 (out of the 5 non 

responders). The example of one of these patients is shown in Figure 6 where a full PK profile 

over 6 months is shown as well as the accumulated time below MEC. If the dosing regimen 

intake was perfect, none of the patients would be below MEC at any time during treatment. 

This suggests that even though overall adherence may be high, patients still fall below MEC, 

and are therefore at risk of treatment failure, if the drug intake is not-timely. This finding 

accentuates the importance of estimating adherence not only as an aggregate measure over a 

defined period of time, but also the precise time of each capsule intake. Only when we have 

this data in hand are we able to search and find plausible answers why treatment may have 

failed or resistance developed. Two main limitations of the current study are small sample size 

(35 patients) and the protocol may have induced better adherence (Hawthorne effect).  

In conclusion, a full, integrated pharmacokinetic-pharmacogenetic model for atazanavir with 

incorporated ritonavir-related boosting mechanism and real time adherence was developed for 

atazanavir pharmacokinetics. With the proposed model, we have delineated and quantified 

several important aspects of atazanavir- based HIV treatment. We have i) quantified a 

significant pharmacogenetic effect of CYP3A5 genotype on atazanavir CL, ii) characterized the 
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pronounced ritonavir-related boosting mechanism of atazanavir CL at currently used ritonavir 

doses, and iii) assessed the large effect of adherence on atazanavir PK variability.  The proposed 

model represents a useful basis for the individualized dosing of atazanavir and provides a 

precise tool for assessing the important PK-based variables (e.g. time below MEC) for successful 

HIV-treatment.  

 

METHODS:  

Clinical trial 

The ANRS 134 - COPHAR 3  trial was a multicenter prospective trial conducted in HIV-1-infected 

naïve patients starting a PI-containing cART treatment.  The primary objective of the trial was to 

study pharmacokinetics/pharmacogenetics of atazanavir given with ritonavir using adherence 

measured by MEMS in PI treatment-naïve HIV-infected patient. 

The trial started and was completed in 2008.  It included 35 naïve patients, who were started 

on treatment containing 300 mg of atazanavir boosted with 100 mg ritonavir and a fixed dose 

combination of two nucleoside analogs that are co-formulated: tenofovir (300 mg) and 

emtricitabine (200 mg) and were followed 24 weeks. Reyataz® (atazanavir) and Truvada® 

(tenofovir and emtricitabine) were kindly provided by Bristol-Myers Squibb and Gilead, 

respectively. Viruses have to be sensitive to each component of therapy on a genotypic 

resistance assay performed before entry. No antacids or CYP inducing drugs were allowed 

during the trial. During the PK visit, drug intake was performed with food administration. 

The study was performed according to the Declaration of Helsinki and its amendments. The 

protocol was approved by the Ethics Committee of Ile de France VII (Le Kremlin Bicetre, France) 

and all subjects provided written informed consent. The EUDRA CT number is 2007-003203-12. 

 

Study design and Pharmacokinetic data 

Patients were sampled during four visits at weeks (W) 4, 8, 16 and 24. During each visit, the 

patients were asked to report the exact time when the last dose was taken in the previous day. 

At W4, a trough blood sample was collected first, followed by the dose intake and collection of 
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additional five samples at 1, 2, 3, 4, and 8 hours post-dose. At W8, W16 and W24, only the 

trough samples were collected. Therefore, each individual had 9 PK samples available over a 

period of 6 months. Plasma concentrations were determined in the laboratories of the hospitals 

where the patients were followed by a specific high performance liquid chromatography (HPLC) 

protocol. The participant laboratories were cross-validated before starting the study. The lower 

limit of quantification was 50 ng/mL and 25 ng/mL for atazanavir and ritonavir, respectively. 

 

 Adherence data 

Each patient was supplied with three MEMS capped bottles containing either atazanavir hard-

capsules, ritonavir soft-capsules or tenofovir/emitricabine FDC tablets (Truvada®).  The exact 

time of each opening of the cap was recorded. Therefore a full dosing history for the three 

capsules was available for all the patients. Patients were also requested to note any deviations 

from MEMS recorded drug intake, for example if a patient would leave for a short holiday and 

remove the requisite supply of pills in a single cap opening.  Additionally, at each clinic visit, 

patients were asked to report on a self administered questionnaire the time of the previous 

dose intake, which allowed for comparison with the MEMS recorded time.   

Each patient whose MEMS record agreed with his or hers personal declared record within ±3 

hours was considered to have a reliable MEMS dosing history, indicating that the MEMS 

recorded time was similar to the time of actual drug intake.  If a MEMS record did not agree 

with patient’s personal record, this record was considered less reliable and the dosing history 

preceding the clinical visit was discarded from the analysis as well as collected sample at the 

clinical visit, when gold standard approach analysis was used (more details below). 

 

Pharmacogenetic data 

Six genetic polymorphisms were studied: MRP2 (rs717620), MRP4  (rs1751034), ORM1 (A721G), 

CYP3A5 (rs776746), MDR1 (rs1045642) and UGT1A1*28 (rs8175347).All of the genotyping 

analyses were performed in the same laboratory. The subjects were genotyped by the TaqMan 

allelic discrimination assay or GeneScan analysis. For both methods, genomic DNA was 

extracted from peripheral blood mononuclaear cells using the Puregene Kit (Gentra systems, 
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Minneapolis, USA) according to the manufacturer’s protocol. For each polymorphism, 

departure from Hardy-Weinberg proportions was tested using 2 test with degrees of freedom 

equal to the number of observed genotypes minus 1. 

 

Data analysis 

(i) Development of population model for atazanavir 

All data were analyzed using the non-linear mixed effects approach available in NONMEM VI. 

The First Order Conditional Estimation with interaction (FOCEI) method was employed 

throughout the analysis.  A basic model structure was established using the full PK profile data 

from W4 and assuming steady state conditions. As atazanavir exhibit highly variable absorption, 

special attention was paid to the modeling of this process. Several models were investigated, 

including the zero order absorption models, first order absorption model with lag time, 

sequential zero and first order model, transit absorption model. The individual parameters 

were assumed to be log-normally distributed and proportional error was employed for 

description of residual variability. The model building procedure was guided by the likelihood 

ratio test, diagnostic plots and internal model validation techniques, including visual and 

numerical predictive checks.      

 

 

(ii)  Adherence modeling 

Adherence data were summarized in terms of following statistical quantities: percent (%) of 

days with correct number of doses taken, % of total prescribed doses taken and % of doses 

taken within ± 3 hours of the protocol specified dosing time.  Adherence data were also 

explored using a graph where daily adherence behaviors, such as if dose was taken, taken twice 

or missed, were visualized for each patient and each drug. This plot is often referred to as a 

“dose intensity gap map”. In order to assess the impact of dosing history assumptions on the 

outcome of the population analysis, we performed three separate analyses from the entire 

atazanavir dataset (full PK profile from W4 and three additional trough samples at W8, W16 

and W24). The first analysis, based on the assumption of full adherence to the protocol 
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specified dosing history (Ass), included the assumption that all patients were at steady state and 

that the time of last dose intake as reported by the patient before a PK visit was accurate. The 

second analysis, a MEMS recorded dosing history analysis (AMEMS),assumed that each dosing 

time recorded by MEMS was accurate. The third analysis, which we termed the gold standard 

analysis (AGOLD),used ”reliable” dosing-history data only, which consisted only in concentration 

data from  which MEMS records of time of intake were concordant (within 3 hours) with 

patients last reported time of dose intake before a PK visit. When MEMS data were missing (no 

MEMS for some patients sometimes), the corresponding concentration data were not 

analyzedThe previously established basic structural model was extended to include within-

subject variability (WSW) in CL and was rerun using three different dosing history data as 

described above (Ass, AMEMS and AGOLD). Parameter estimates were compared with particular 

attention to the magnitude of the variability parameters (between-subject, within-subject and 

residual variability).   

 

(iii) Pharmacogenetic and demographic covariate analysis 

Six genetic polymorphisms (MRP2, MRP4, MDR1, CYP3A5, UGT1A1,ORM1) were evaluated as 

possible genetic covariates influencing pharmacokinetic parameters of atazanavir.  Potential 

impact of these genetic markers on atazanavir and ritonavir pharmacokinetics are described in 

Table 1 of supplementary material.  Mutant and heterozygotic alleles were grouped together 

into one category in order to increase the power of the search.  Categorizations in three classes 

were also tested: wild homozygotes versus heterozygotes versus mutant homozygotes.  

Demographic covariates were also available: age, sex and body weight. The covariate search 

was performed using a stepwise covariate model building procedure described elsewhere (37, 

38). The procedure included a forward inclusion step, where parameter-covariate relationships 

are added to the model in a stepwise manner until no further relationship is statistically 

significant (p<0.05). Backwards elimination steps followed, where the identified relationships 

were excluded from the model if they failed to achieve stricter statistical significance (p<0.01), 

in order to account for the multiple testing. 
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(iv) Development of the population models for ritonavir and the joint ritonavir-

atazanavir model 

Full dosing history data were available for ritonavir and the gold standard approach was used. 

Ritonavir concentration time data were modeled using a similar methodology to the one 

described above for atazanavir.  

Once separate ritonavir and atazanavir models were established, the next step involved 

development of the joint ritonavir-atazanavir model, where the boosting mechanism was 

introduced. A range of models was evaluated in which atazanavir CL/F was either: (i) a function 

of ritonavir concentrations, (ii) a delayed response to ritonavir concentrations, or (iii) a function 

of ritonavir steady state exposure.  For the models employing ritonavir concentrations as a 

driver of the boosting mechanism, both simultaneous and sequential approaches were tested. 

Steady state ritonavir exposure was computed as ritonavir dose divided by individual CL value.  

A model for the boosting mechanism utilized a nonlinear inhibitory Emax function, where the 

maximal boosting effect was estimated as well as AUC50, which is the ritonavir exposure needed 

for half maximal effect (Equation 1). CL0 represents unboosted atazanavir CL. 

 

 

Equation 1 

 

(v) Model simulations and predictions 

The final PK-PG model for atazanavir using the dosing history data from the “gold standard 

approach” and the model-estimated individual parameters were used to predict different 

variables linked toeffectiveness cART (24, 27). For each patient we estimated, over the 24 

weeks of the trial,  (i) the number of trough samples below  MEC (150 ng/mL) for wild-type 

viruses (4, 7), and (ii) the cumulative time with concentration below MEC. This information 

were estimated using first a hypothetical perfect dosing regimen, as if drug was taken every 

24h  and second using the actual dosing regimen as recorded by MEMS. 
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CPT Highlights: 

What is the current knowledge on the topic? 

Population pharmacokinetics of CYP3A substrates ritonavir and atazanavir is well understood. 

Adherence to medication is a key factor in large concentration variability leading to poor 

treatment outcome.  

What question this study addressed?  

 The study quantifies the relationship between adherence, CYP3A5 genotype, ritonavir and 

atazanavir pharmacokinetics in HIV-infected treatment-naïve patients. 

What this study adds to our knowledge?  

Adherence is the major contributor to variability in atazanavir pharmacokinetics. Oral clearance 

is increased by 28% in patients with a copy of CYP3A5*1,in  ritonavirpresence. Optimal boosting 

effect is achievable by lower ritonavir exposures. 

 How this might change clinical pharmacology and therapeutics?  

The atazanavir therapeutic dose can be individualized based on CYP3A5 genotype. If good 

adherence is achieved, ritonavir dose can be lowered. Real time adherence allows calculation of 

cumulative drug exposure during a treatment period.  TDM using a single plasma sample can be 

misleading.  

 

Acknowledgments: 

 We thank all the patients who participated in the ANRS 134 -COPHAR 3 trial.  We thank Bristol-

Myers Squibb and Abbott laboratories for providing atazanavir and ritonavir pure samples for 



19 

drug assay, respectively. Radojka Savic was financially supported by a Postdoc grant from the 

Swedish Academy of Pharmaceutical Sciences (Apotekarsocieteten).  

 

Conflict of interest: None 

 

Appendix: ANRS 134 - COPHAR 3 study group 

Scientific Comittee:A. Barrail-Tran, A. Brunet, M-J Commoy, S. Couffin-Cadiergues, D. 

Descamps, X. Duval, C. Goujard, C. Le Guellec, F. Mentré, G. Nembot, A-M. Taburet, B. Vrijens.  

Clinical centers:Dr Ajana, Dr Aissi, Dr Baclet, Pr Besnier, Dr Bollens, Dr Boulanger, Mme 

Brochier, Dr Brunet, Dr Chaix, Dr Ciuchete, Dr Ghosn, Pr Duval, Dr Ferret, Mr Ferret, Mme 

Gaubin, Pr Goujard, Pr Girard, Dr Kouadio,Mme Lupin, Dr Parienti, Mme Parrinello, Dr Poinçon 

de la Blanchardière, Pr May, Mme Marien, Mme Medintzeff, Mme Metivier, Mme Mole,Pr 

Molina, Mme Nau, Dr Ouazene, Dr Pintado, Dr Quertainmont, Mme Ramani, Dr Rami, Dr Sellier, 

Dr Simon, Dr Talbi, Mme Thoirain, Pr Verdon, Pr Trépo, Dr Wassoumbou,  Pr Yazdanpanah. 

Pharmacological centers: Dr Barrail-Tran, Dr Gagneux, Dr Delhotal, Dr Hoizey, Dr Houdret, Dr 

Leguellec, Dr Peytavin, Dr Poirier, Dr Sauvageon, Dr Taburet. 

Virological centers : Pr André, Dr Soulié, Pr Calvez, Dr Morand-Joubert, Dr Harchi, Dr Bocket, Dr 

Mourez, Dr Palmer, Dr Pallier, Dr Deschamps, Dr Mazeron, Mme Bolmann, Mr Storto, Mme 

Thanh Thuy. 

Monitoring:G. Nembot, G. Unal, F. Mentré. 

Statistical Analysis:F. Mentré, X. Panhard, R. Savic, B. Vrijens 

 

 

 

 

 

REFERENCES 



20 

1. Piliero PJ. Atazanavir: a novel HIV-1 protease inhibitor. Expert Opin Investig Drugs. 2002 
Sep;11(9):1295-301. 
2. BMS. Reyataz (Atazanavir Sulfate) Capsules. Summary Product Characteristics, Bristol 
Myers Squibb2005. 
3. Goldsmith DR, Perry CM. Atazanavir. Drugs. 2003;63(16):1679-93; discussion 94-5. 
4. Colombo S, Buclin T, Cavassini M, Decosterd LA, Telenti A, Biollaz J, et al. Population 
pharmacokinetics of atazanavir in patients with human immunodeficiency virus infection. 
Antimicrob Agents Chemother. 2006 Nov;50(11):3801-8. 
5. Dickinson L, Boffito M, Back D, Waters L, Else L, Davies G, et al. Population 
pharmacokinetics of ritonavir-boosted atazanavir in HIV-infected patients and healthy 
volunteers. J Antimicrob Chemother. 2009 Jun;63(6):1233-43. 
6. Solas C, Gagnieu MC, Ravaux I, Drogoul MP, Lafeuillade A, Mokhtari S, et al. Population 
pharmacokinetics of atazanavir in human immunodeficiency virus-infected patients. Ther Drug 
Monit. 2008 Dec;30(6):670-3. 
7. Porte CJLl, Back D, Blaschke T, Boucher CAB, Fletcher CV, Flexner C, et al. Updated 
guideline to perform therapeutic drug monitoring for antiretroviral agents. Reviews in Antiviral 
Therapy. 2006;vol. 2006(3):4-14. 
8. Le Tiec C, Barrail A, Goujard C, Taburet AM. Clinical pharmacokinetics and summary of 
efficacy and tolerability of atazanavir. Clin Pharmacokinet. 2005;44(10):1035-50. 
9. Anderson PL, Aquilante CL, Gardner EM, Predhomme J, McDaneld P, Bushman LR, et al. 
Atazanavir pharmacokinetics in genetically determined CYP3A5 expressors versus non-
expressors. J Antimicrob Chemother. 2009 Nov;64(5):1071-9. 
10. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, et al. Sequence diversity in CYP3A 
promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat 
Genet. 2001;27(4):383-91. 
11. Kile DA, Mawhinney S, Aquilante CL, Rower JE, Castillo-Mancilla JR, Anderson PL. A 
Population Pharmacokinetic-Pharmacogenetic Analysis of Atazanavir. AIDS Res Hum 
Retroviruses. 2012 Apr 20. 
12. Rotger M, Taffe P, Bleiber G, Gunthard HF, Furrer H, Vernazza P, et al. Gilbert syndrome 
and the development of antiretroviral therapy-associated hyperbilirubinemia. J Infect Dis. 2005 
Oct 15;192(8):1381-6. 
13. Blaschke TF. Variable adherence to prescribed dosing regimens for protease inhibitors: 
scope and outcomes. Curr Opin HIV AIDS. 2008 Nov;3(6):603-7. 
14. Osterberg LG, Urquhart J, Blaschke TF. Understanding forgiveness: minding and mining 
the gaps between pharmacokinetics and therapeutics. Clin Pharmacol Ther. 2010 
Oct;88(4):457-9. 
15. Bae JW, Guyer W, Grimm K, Altice FL. Medication persistence in the treatment of HIV 
infection: a review of the literature and implications for future clinical care and research. AIDS. 
2011 Jan 28;25(3):279-90. 
16. Bangsberg DR, Hecht FM, Charlebois ED, Zolopa AR, Holodniy M, Sheiner L, et al. 
Adherence to protease inhibitors, HIV-1 viral load, and development of drug resistance in an 
indigent population. AIDS. 2000 Mar 10;14(4):357-66. 



21 

17. Bangsberg DR, Perry S, Charlebois ED, Clark RA, Roberston M, Zolopa AR, et al. Non-
adherence to highly active antiretroviral therapy predicts progression to AIDS. AIDS. 2001 Jun 
15;15(9):1181-3. 
18. Ekstrand ML, Shet A, Chandy S, Singh G, Shamsundar R, Madhavan V, et al. Suboptimal 
adherence associated with virological failure and resistance mutations to first-line highly active 
antiretroviral therapy (HAART) in Bangalore, India. Int Health. 2011 Mar 1;3(1):27-34. 
19. Lucas GM. Antiretroviral adherence, drug resistance, viral fitness and HIV disease 
progression: a tangled web is woven. J Antimicrob Chemother. 2005 Apr;55(4):413-6. 
20. Roge BT, Barfod TS, Kirk O, Katzenstein TL, Obel N, Nielsen H, et al. Resistance profiles 
and adherence at primary virological failure in three different highly active antiretroviral 
therapy regimens: analysis of failure rates in a randomized study. HIV Med. 2004 Sep;5(5):344-
51. 
21. Vrijens B, Goetghebeur E. The impact of compliance in pharmacokinetic studies. Stat 
Methods Med Res. 1999 Sep;8(3):247-62. 
22. Vrijens B, Goetghebeur E. Electronic monitoring of variation in drug intakes can reduce 
bias and improve precision in pharmacokinetic/pharmacodynamic population studies. Stat 
Med. 2004 Feb 28;23(4):531-44. 
23. Vrijens B, Gross R, Urquhart J. The odds that clinically unrecognized poor or partial 
adherence confuses population pharmacokinetic/pharmacodynamic analyses. Basic Clin 
Pharmacol Toxicol. 2005 Mar;96(3):225-7. 
24. Vrijens B, Tousset E, Rode R, Bertz R, Mayer S, Urquhart J. Successful projection of the 
time course of drug concentration in plasma during a 1-year period from electronically 
compiled dosing-time data used as input to individually parameterized pharmacokinetic 
models. J Clin Pharmacol. 2005 Apr;45(4):461-7. 
25. Blaschke TF, Osterberg L, Vrijens B, Urquhart J. Adherence to medications: insights 
arising from studies on the unreliable link between prescribed and actual drug dosing histories. 
Annu Rev Pharmacol Toxicol. 2012 Feb 10;52:275-301. 
26. Vrijens B, Goetghebeur E. Comparing compliance patterns between randomized 
treatments. Control Clin Trials. 1997 Jun;18(3):187-203. 
27. Vrijens B, Goetghebeur E, de Klerk E, Rode R, Mayer S, Urquhart J. Modelling the 
association between adherence and viral load in HIV-infected patients. Stat Med. 2005 Sep 
15;24(17):2719-31. 
28. Goujard C, Barrail-Tran A, Duval X, Nembot G, Panhard X, Savic RM, et al. Virological 
Response to Atazanavir, Ritonavir and Tenofovir/Emtricitabine: Relation to Individual 
Pharmacokinetic Parameters and Adherence measured by Medication Events Monitoring 
System (MEMS) in Naïve HIV-Infected Patients (ANRS134 trial).  Internation AIDS Society; 
Vienna, Austria2010. 
29. Savic RM, Jonker DM, Kerbusch T, Karlsson MO. Implementation of a transit 
compartment model for describing drug absorption in pharmacokinetic studies. J 
Pharmacokinet Pharmacodyn. 2007;34(5):711-26. 
30. Wilkins JJ, Savic RM, Karlsson MO, Langdon G, McIlleron H, Pillai G, et al. Population 
pharmacokinetics of rifampin in pulmonary tuberculosis patients, including a semimechanistic 
model to describe variable absorption. Antimicrob Agents Chemother. 2008 Jun;52(6):2138-48. 



22 

31. Zvada SP, Van Der Walt JS, Smith PJ, Fourie PB, Roscigno G, Mitchison D, et al. Effects of 
four different meal types on the population pharmacokinetics of single-dose rifapentine in 
healthy male volunteers. Antimicrob Agents Chemother. 2010 Aug;54(8):3390-4. 
32. Hill A, van der Lugt J, Sawyer W, Boffito M. How much ritonavir is needed to boost 
protease inhibitors? Systematic review of 17 dose-ranging pharmacokinetic trials. AIDS. 2009 
Nov 13;23(17):2237-45. 
33. Shafran SD, Mashinter LD, Roberts SE. The effect of low-dose ritonavir monotherapy on 
fasting serum lipid concentrations. HIV Med. 2005 Nov;6(6):421-5. 
34. Collot-Teixeira S, De Lorenzo F, Waters L, Fletcher C, Back D, Mandalia S, et al. Impact of 
different low-dose ritonavir regimens on lipids, CD36, and adipophilin expression. Clin 
Pharmacol Ther. 2009 Apr;85(4):375-8. 
35. Hill A, Balkin A. Risk factors for gastrointestinal adverse events in HIV treated and 
untreated patients. AIDS Rev. 2009 Jan-Mar;11(1):30-8. 
36. Harter JG, Peck CC. Chronobiology. Suggestions for integrating it into drug development. 
Ann N Y Acad Sci. 1991;618:563-71. 
37. Lindbom L. Development, Application and Evaluation of Statistical Tools in 
Pharmacometric Data Analysis Uppsala: Uppsala University; 2006. 
38. Lindbom L, Pihlgren P, Jonsson N. PsN-Toolkit--a collection of computer intensive 
statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods 
Programs Biomed. 2005 Sep;79(3):241-57. 
 

 

 

  



23 

Table 1.Comparison of atazanavir model parameters obtained with three different analyses 
with respect to dosing histories assumptions. Relative standard errors, expressed in 
percentages, are given in parenthesis (except for full MEMS where they were not obtained). 
 

PK Parameters Ass: SS assumption AMEMS: Full MEMS AGOLD: Gold standard 

CL/F (L/h) 7.2  (4.4) 6.8 6.9 (8.1) 

V/F (L) 79.2 (8.9) 102 81.1 (6.8) 

ka (h-1) 2.7 (26.8) 5.6 3.2 (42.1) 

MTT (h) 1.3 (11.2) 1.5 1.35 (11) 

NN 17.3 (46.7) 8 11.5 (26.4) 

BSV (CL/F)* 47.4 (28.7) 44.3 40.2 (32.7) 

WSV (CL/F)* 26.5 (16.9) <1 <1 

BSV (V/F)*  30.0 (43.2) 61.4 30.1 (28.5) 

BSV (ka)* 73.5 (47.2) 120 78.4 (73.2) 

BSV (MTT)* 47.4 (28.7) 40.1 45.2 (31.8) 

RV (week 4)* 18.7 (16.9) 27.7 19.4 (15.5) 

RV (> week 4)* 38.0 (33.1) 47.4 43.4 (10.6) 

*Note: All BSV, WSV and RV are expressed as CV (%). BSV=Between-subject variability, WSV=Within-subject variability, RV=Residual variability, 

MTT=mean transit time, NN=number of transit compartments, ka=absorption rate constant 
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Table 2. Model parameter estimates for the final ritonavir (left column) and joint ritonavir-
atazanavir (right column) PK-PG model using a gold standard analysis. Relative standard errors, 
obtained by nonparametric bootstrap (n=100) and expressed in percentages, are given in 
parenthesis.  

 

  

    Ritonavir             Atazanavir  
CL/F (L/h) 10.3 (9) 16.0** (64) 

CYP3A5*1  - 1.28 (59) 

AUC50 of RTV (ng.h/mL) - 6,230 (91) 

Emax - 0.98 (3) 

V/F (L) 87.9 (11) 81.1 (6) 

ka (h-1) 3.9 (58) 3.3 (146) 

MTT (h) 1.1 (16) 1.36 (14) 

NN 14.4 (95) 11.5 (29) 

 

BSV (CL/F)* 
 

38.5 (33) 

 

                       31 (28) 

BSV (V/F)* 37.3 (50) 31 (33) 

Correlation (CL/F-V/F) 0.74 (45) - 

BSV (ka)* 248 (161) 81 (133) 

BSV (MTT)* 49.3 (77) 44 (39) 

RV week 4 (%)* 40.8 (8) 19.4 (16) 

RV > week 4 (%)* 40.8 (8) 42.3 (10) 

* BSV=Between-subject variability, RV=Residual variability, **(CL/F)0=atazanavir CL in absence of ritonavir, MTT=mean transit time, 

NN=number of transit compartments, ka=absorption rate constant, AUC50 – ritonavir exposure needed for half maximal boosting effect, Emax – 

maximal effect of ritonavir boosting, CYP3A5*1 – factor of increase in atazanavir CL with at least one copy of CYP3A5*1 allele, RV=residual 

variability 
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Figure 1:Observed atazanavir concentration, full profile at week 4 (top) and troughs at various 
occasions (bottom) 
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Figure 2:Adherence patterns in the study population for atazanavir (top) and ritonavir (bottom). 
Green fields indicate correct dose intake, red bars represent days with missed doses, black bars 
indicate overdosing and blue fields are missing data because of absence of MEMS (patients 
CASL had atazanavir MEMS data for 4 weeks only). Each patient is shown as a horizontal bar. 
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Figure 3: Comparison of individual model fits with the transit compartment model and first 
order absorption model with a lag time for three patients. The best, average and worst fits 
were chosen based on the median value of absolute individual weighted residuals. 
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Figure 4: Visual predictive check for the final atazanavir model stratified for different CYP3A5 
genotypes: homozygote *3*3 shown in the left panel and heterozygote *1*3 and homozygote 
*1*1 shown in the right panel. Red solid line indicates observed data median, red dotted lines 
are 95% observed percentiles, grey shaded area is the simulated median with uncertainty and 
dark grey shaded areas are simulated 95% percentiles with uncertainty.  
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Figure 5: Schematic view of: left, effect of CYP3A5 genotype on ritonavir - atazanavir first pass 
effect; right,  final linked ritonavir – atazanavir model. CYP3A5*3*3 are low expressors and 
CYP3A5*1*3, *1*1 are high expressors.  
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Figure 6: PK profile over 6 months derived based on individual parameter estimates and full 
dosing histories (grey line) for one patient with VL > 40 cp/mL at week 24. Cumulative time 
below MEC is shown with a red stair-case line. The target MEC of 150 ng/mL is shown with a 
dark red broken line.   
 

 

 

 


