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Surface Electrocardiogram Reconstruction from

Intracardiac Electrograms Using a Dynamic Time

Delay Artificial Neural Network
Fabienne Porée, Amar Kachenoura, Guy Carrault, Renzo Dal Molin, Philippe Mabo and Alfredo I. Hernández

Abstract—The study proposes a method to facilitate the remote
follow-up of patients suffering from cardiac pathologies and
treated with an implantable device, by synthesizing a 12-lead sur-
face ECG from the intracardiac electrograms (EGM) recorded by
the device. Two methods (direct and indirect), based on dynamic
Time Delay artificial Neural Networks (TDNN) are proposed and
compared with classical linear approaches. The direct method
aims to estimate 12 different transfer functions between the EGM
and each surface ECG signal. The indirect method is based on a
preliminary orthogonalization phase of the available EGM and
ECG signals, and the application of the TDNN between these
orthogonalized signals, using only three transfer functions. These
methods are evaluated on a dataset issued from 15 patients.
Correlation coefficients calculated between the synthesized and
the real ECG show that the proposed TDNN methods represent
an efficient way to synthesize 12-lead ECG, from two or four
EGM and perform better than the linear ones. We also evaluate
the results as a function of the EGM configuration. Results are
also supported by the comparison of extracted features and a
qualitative analysis performed by a cardiologist.

Index Terms—Implantable device, ECG reconstruction, Intrac-
ardiac electrogram, Time delay neural networks.

I. INTRODUCTION

T
HE number of patients treated with Implantable Cardiac

Devices (ICD) has strongly increased over the past 10

years. According to the American Heart Association [1],

an estimated 111 000 defibrillator and 358 000 pacemaker

implant procedures were performed for patients in the United

States in 2007. These patients require regular in-hospital

visits to follow-up the patient’s response to the therapy, to

monitor whether the ICD is working optimally and, eventually,

to modify the pacing parameters. More recently, wireless

remote monitoring of ICD has become a priority for all major

ICD constructors, in order to perform this follow-up more

frequently, avoiding hospital visits and reducing costs. In both

cases, the surface electrocardiogram (ECG) is necessary, since

it is the main signal used by the cardiologist for the analysis of

the cardiac electrical activity. However, the cardiac electrical

activity acquired from the ICD, called electrograms (EGM),

are collected by electrodes placed on the endocardium and/or
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the epicardium and show different morphologies than those

of the surface ECG. The synthesis, or reconstruction, of the

surface ECG from a set of EGM is thus of first importance in

this context.

This challenging problem has been dealt by a number of

studies [2]–[9]. From a methodological point of view, they

can be categorized according to the method used to estimate

the Transfer Function (TF) between EGM and ECG: i) linear

filtering methods based upon Recursive Least Squares (RLS)

estimation or by processing the data in blocks [2]–[4], [9], ii)

single, fixed-dipole modeling algorithms [8], [9], and iii) non

linear filtering methods [2], [5], [6].

Concerning the linear approach, several works have been

proposed in the literature. In [2], each surface QRS com-

plex was synthesized using a direct single-input single-output

scheme. We showed in this work that the direct ECG synthesis

depends strongly on the chosen EGM and that a multivariate

approach would be of benefit. In this sense, we proposed in

[3], [4] an indirect method to estimate the linear TF between

three-dimensional (3D) representations of cardiac activity [10],

namely the signal EGM3D, obtained from the orthogonaliza-

tion of EGM signals and the signal ECG3D derived through

the orthogonalization of ECG signals.

In the same line of the above-mentioned methods, Menden-

hall et al presented recently the use of a multivariate linear

TF [8], [9]. Although the performance of these linear meth-

ods is satisfactory, especially for patients with surface ECG

containing only one beat morphology, some improvements

are still needed. In fact, in a real application, noise, artifacts

and the natural evolution of the pathology may influence the

relationship, over time, between the EGM and the ECG. Thus

stochastic and non linear phenomena crop up, and time series

dynamics cannot be robustly described using classical linear

filtering.

Two fixed-dipole modeling algorithms were proposed in [8],

[9]. They require both a QRS detection stage (as in [2]), and

the simultaneous measurement of the surface cardiac electrical

activity, using the standard 12-lead ECG and the modified-

Frank VCG systems. In addition, it is shown in [9] that the

synthesis of the surface ECG from EGM by using these two

algorithms gave poor results.

Different multivariate non linear approaches have been

proposed by our group [5], [6]. These methods require si-

multaneously recorded intracardiac and surface ECG signals

of each patient to train a Time Delay artificial Neural Network

(TDNN) [11] and are patient specific. This strategy has shown,
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during our preliminary evaluations, to provide an improved

performance compared to RLS, particularly when the patient

presents multiple QRS morphologies [5].

This paper can be viewed as a natural extension of our

previous works in this field, with significant improvements

concerning: i) the optimization of the TDNN structure and

parameters, ii) the analysis of the sensitivity of the recon-

struction performance to the chosen EGM configuration, and

iii) the quantitative and qualitative performance evaluation of

the methods through a more comprehensive methodology.

Section II presents in details the two proposed non-linear

reconstruction schemes (direct and indirect methods). The

database used for the experimentation is described in sec-

tion III. Section IV is devoted to the results, in terms of

optimization of the parameters, selection of the EGM leads

and comparison of the synthesis methods. We also discuss

the case of real industrial implementation. Finally, section V

summarizes the main concerns and conclusions of this study.

II. METHODS

As described in the introduction, the ECG synthesis may

be performed by a direct or an indirect strategy described in

this section. This paragraph also presents the proposed non

linear estimation method of the transfer function and the linear

approach that will be used for performance comparison.

A. Direct method

Let s(k) = [s(1, k), . . ., s(M,k)]T and x(k) = [x(1, k),
. . ., x(N, k)]T , for k = 1, . . ., L, denote, respectively, an EGM

and an ECG dataset, where M is the number of EGM leads

available from the implant, N corresponds to the number of

ECG leads and L is the size of the observation vectors. Surface

ECG signal synthesis can thus be modeled as follows:

x(k) = F(s(k)) + b(k), k = 1, . . ., L . (1)

In other words, the ECG is supposed to be the output of

an unspecified non linear function F driven by the EGM,

corrupted by an additive noise b(k)=[b(1, k), . . ., b(N, k)]T.

The estimation of F can be performed by a classical two-

step procedure, including a training step and a synthesis step

as depicted in Figure 1.

1) Training step: The objective of this step is to identify

the transfer function F , specific to each patient, by using a

couple of learning datasets s1(k) (M EGM leads) and x1(k)
(N ECG leads), of length L1. N different Multi-In Single-

Out (MISO) systems (or transfer functions), F1,F2, ...,FN ,

between the M-rows input vector s1(k) and each row of the

output vector x1(k), namely x1(i, k), are identified. Typically,

the training step can be performed during the implantation, or

whenever s1(k) and x1(k) can be simultaneously acquired.

2) Synthesis step: It is devoted to the follow-up of the

patient during a remote monitoring session, or during the

regular in-hospital visits. In the latter case, a new EGM dataset

s2(k), of length L2, is continuously measured and acquired

by the device and used to synthesize a surface ECG x̂2(i, k),
by using the estimates F̂i, for i = 1, . . ., N , such that:

x̂2(i, k) = F̂i(s2(k)), k = 1, ..., L2 . (2)
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Fig. 1. Methodology for the training and the synthesis steps in the case of
the direct method.

B. Indirect method

The principle of the indirect method is depicted in Fig-

ure 2. The main difference relies on the computation of

3D representations of the surface (ECG3D) and intracardiac

(EGM3D) electrical activities of the heart, from the available

ECG and EGM signals, through linear transformations WECG

and WEGM , respectively. Transfer function F ′ will thus

be estimated between EGM3D and ECG3D, which will be

respectively denoted vs1
(k) and vx1

(k). This indirect method

implies the application of a specific pre-processing approach

for the training and synthesis steps.

1) Three-Dimensional representation of the cardiac elec-

trical activity: Contrary to the standard 12-lead ECG, the

analysis based on beat loops has been found to i) better

compensate the changes in the electrical axis caused by various

extracardiac factors [10], such as respiration, body position,

electrode positioning, and so forth, ii) give a compact repre-

sentation of the cardiac electrical activity, minimizing storage

needs, and iii) provide a solution to the time synchronization

problem which arises in cardiac data.

In [5], we evaluated four different approaches to perform

the calculation of the EGM3D and the ECG3D: Principal

Component Analysis (PCA) [12], Robust Principal Component

Analysis (RobPCA) [13], Independent Component Analysis

based on Second Order statistics (ICASO) [14] and Indepen-

dent Component Analysis based on Fourth Order statistics

(ICAFO) [15]. We showed that the results can be considered

equivalent and that a classical PCA is a satisfactory solution.

PCA has thus been retained in this work.

2) Training step: vs1
(k) and vx1

(k) can be computed

directly from the first datasets of ECG and EGM, s1(k) and

x1(k), by using the following equations:

vs1
(k) = WEGM s1(k), k = 1, ..., L1 (3)

vx1
(k) = WECG x1(k), k = 1, ..., L1 (4)
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Fig. 2. Methodology for the training and the synthesis steps in the case of
the indirect method.

where WEGM and WECG are (3×M) and (3×N) matrices,

vs1
(k) and vx1

(k) are (3×L1), in the general case.

Then, the problem can now be modeled as follows:

vx1
(k) = F ′(vs1

(k)) + b(k), (5)

where the output vx1
(k) is considered as an unspecified non

linear function F ′ of the inputs vs1
(k) plus an additive white

noise b(k).
Contrary to the direct case, only three different MISO

systems, F ′

1
,F ′

2
and F ′

3
, between the 3-rows input vector

vs1
(k) and each row of the output vector vx1

(k), namely

vx1
(i, k), have to be estimated during the training step.

3) Synthesis step: It is composed of three phases:

• WEGM is applied to EGM s2(k), which provides the

(3 × L2) EGM3D matrix vs2
(k).

• The (3 × L2) ECG3D matrix v̂x2
(k) is computed by

using F̂ ′

1
, F̂ ′

2
and F̂ ′

3
, learnt during the training step.

• The N -lead ECG x̂2(k) is obtained by multiplying the

pseudo-inverse of the linear transform WECG with the

estimated ECG3D v̂x2
(k).

4) Particular case: In the general case where M ≥ 3,

PCA is applied to reduce and to orthogonalize the EGM data

and we take into account the three largest eigenvalues of the

covariance matrix. In the particular case where M = 2, the

PCA is not used to reduce the number of components, but just

to orthogonalize the EGM data and the two eigenvalues of the

covariance matrix are taken into account, so that WEGM is

(2×M) and vs1
(k) and vs2

(k) are (2 × L1) and (2 × L2)

respectively.

C. Non linear estimation method

In both cases (direct and indirect methods), the transfer

function is modeled as a nonlinear function, based on a Time

Delay artificial Neural Network (TDNN). It is well-known

that feed-forward Artificial Neural Networks (ANN) with an

input layer, a single hidden layer, and an output layer may be

used as universal function approximators, under very general

conditions for the activation functions [11], [16]. TDNN are

a particular implementation of feed-forward ANN, in which

delayed versions of the input signals are presented at the input

layer of the network. TDNN have thus an extended capability

for time series processing, with respect to feed-forward ANNs,

since they include a representation of the d past samples of

each input signal. In this work, each TDNN is defined with

an input layer of NI = N × d samples, a hidden layer of

NH neurons with a sigmoid activation function and one linear

output neuron. The implementation is based on the approach

proposed by D. MacKay [17], to improve the generalization

of the procedure and to avoid overfitting.

D. Linear approach

The performance provided by the two TDNN-based ap-

proaches will be compared with a classical linear approach.

Indeed, the transfer function between an input y(k) and an

output z(k) is commonly supposed to be a linear Wiener filter

h, such that:

z(k) = (h ∗ y)(k) (6)

where ∗ is the convolution operation and h(k) =
[h(0), . . ., h(Lh))] is the impulse response of a linear time

invariant filter of length Lh. Least square estimation of h leads

to the classical relation:

ĥ = R−1

zz Rzy (7)

where Rzz is the autocorrelation matrix of the output, Rzy

is the intercorrelation matrix between the output and the input

and ĥ is the estimate of h. Several implementations, block or

recursive, can be applied to find the optimal estimator of h.

In the recursive way, Least Mean Square (LMS), Normalized

Least Mean Square (NLMS) or Recursive Least Square (RLS)

algorithms have been proposed. Best results were obtained

with the RLS approach, moreover known to exhibit fast

convergence and the exact implementation of the block form.

In the direct case, the filter represents the transfer function

between EGM and ECG signals (as in [9]). During the training

step, N MISO filters have to be computed, between the input

EGM vector s1(k) (y(k) = s1(k)) and each row of the output

ECG vector x1(k) (z(k) = x1(i, k) for i = 1, . . ., N ). In

the indirect case, the filter represents the transfer function

between EGM3D and ECG3D signals [4]. During the training

step, three MISO filters have to be computed, between the

input EGM3D vector vs1
(k) (y(k) = vs1

(k)) and each row

of the output ECG3D vector vx1
(k) (z(k) = vx1

(i, k) for

i = 1, . . ., 3).
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III. PRESENTATION OF THE DATABASE

A dataset issued from 15 patients (P1 to P15) is used to

evaluate the performance of the above-mentioned ECG recon-

struction methods. The ECG and EGM were simultaneously

recorded with a GE Cardiolab station during the implant of an

ICD with an initial sampling rate equal to 1000 Hz and then

subsampled at 128 Hz and low-pass filtered at 45 Hz. Each

record of the database is composed of:

• 12 standard surface ECG channels, namely leads I, II, III,

aVR, aVL, aVF, V1 to V6;

• Four EGM channels: BipA acquired using a bipolar

measure between the tip and proximal electrodes of the

atrial lead; BipV , a bipolar measurement between the tip

and proximal electrodes of the ventricular pacing lead;

ProxA between the proximal electrode of the atrial lead

and the pacemaker can and ProxV between the proximal

electrode of the ventricular lead and the pacemaker can.

Three EGM configurations will be considered:

• ’Bip’: using the two bipolar channels BipA and BipV

(M = 2);

• ’Prox’: using the two proximal ProxA and ProxV (M =
2);

• ’Bip+Prox’: using the four EGM (M = 4).

Each patient file has been segmented into two blocks: the

first one, of length L1, containing nt heartbeats of concurrent

ECG and EGM signals, is used during the training step, and

a different second block, of length L2, with ns beats, is

devoted to the synthesis step and performance evaluation. The

15 patient records have been classified into three categories,

according to their beat morphologies (Fig. 3):

• Type I: the surface ECG contains only one beat morphol-

ogy (P1 to P10);

• Type II: the surface ECG contains one prevailing beat

morphology, with presence of ventricular ectopic beats

(P11 to P13). Ectopic beats are only included in the

testing set;

• Type III: at least three different beat morphologies com-

pose the ECG (P14 and P15). Each of them are present

both in the training and testing sets.

I 

II 

III 

1 1 

2 2 

3 3 

Fig. 3. Example of signals (one derivation of ECG) of Type I, Type II and
Type III.

IV. RESULTS

The behavior of the non linear estimation methods depends

on the values of the TDNN parameters, that are optimized on

the training dataset in the first part of this section. In a second

part, we present the results obtained on the synthesis dataset

as a function of the EGM leads and the type of patients. We

evaluate the two TDNN-based methods (direct and indirect)

and compare the results with an RLS filter (direct and indirect).

This leads to four different methods, denoted by:

• D_TDNN: Direct method and estimation of the transfer

function by TDNN

• I_TDNN: Indirect method and estimation of the transfer

function by TDNN

• D_RLS: Direct method and estimation of the transfer

function by a RLS filter

• I_RLS: Indirect method and estimation of the transfer

function by a RLS filter.

The last part of this section presents the practical importance

of the proposed methodology, in the real configuration of an

implantable device. We study the effect of the reconstruction

process on parameters extracted from the ECG and in a

diagnosis purpose, since the ECG is also used in practice for

the control of the device and for arrhythmia detection.

A. Optimization of the parameters of the network

Performance of the two TDNN-based methods (direct and

indirect) are highly dependent on the adjustment of the NN

parameters: the delay d, the number of neurons NH and the

length L1 of the training set. The delay d has been optimized

in a previous work to 50 ms (d = 4 samples) [18]. For the

two others parameters, a bootstrap analysis is performed on the

database. Mean Square Errors (MSE) between the 12 leads of

the real ECG and the synthesized ECG have been computed

as the function of the number of neurons NH ∈ {4, 6, ..., 50}
and the number of beats in the training set nt ∈ {2, 3, ..., 10}.

Due to length duration of the training data set, ten beats were

the maximal possible value.

Figure 4 shows that the MSE decreases when the number

of neurons NH increases, with a ’plateau’ phase above 20

neurons. Regarding the influence of the number of beats

nt, Figure 5 shows that MSE decreases when this number

is increasing. From these previous experiments and for the

following, the number of neurons NH and the number nt of

beats in the training set are tuned to 20 and 10 respectively.

B. Performance analysis of the synthesized ECG

The quality of the synthesized ECG obtained from the four

methods has been evaluated by calculating the correlation

coefficient between the synthesized ECG and the real ECG,

for all the available patients, and for all EGM configurations.

Results have been grouped by the type of recording, as

depicted in Fig. 3 and are presented on Fig. 6.

1) Analysis of the results as a function of the recording type:

The highest performance is obtained for Type I (sinus rhythm),

whatever the reconstruction method and the EGM configura-

tion. Then still high correlation coefficients are obtained with

patients of Type III, containing polymorphic beat sequences,

which means that all the heartbeats are well estimated.

Regarding recordings of Type II, correlation coefficient

values are lower. This is mainly due to the ectopic beat, not
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Fig. 4. Evolution of mean square errors (in mV
2) between the real ECG and the synthesized ECG: Influence of the number of neurons.
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Fig. 6. Correlation coefficients calculated after synthesis of 12 ECG for the three types of patients, with the three configurations of EGM, using the four
different methods.
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included in the training set, which is not correctly reproduced.

It is important to notice that this is a particularly difficult case.

This result shows that unfortunately none of the evaluated

methods is able to estimate the true transfer function when

using a limited number of beat morphologies in the training

set. However, the TDNN approaches provide a slightly higher

performance (see section IV.B.3).

2) Selection of the EGM configuration: The best perfor-

mances are obtained with the configuration ’Bip+Prox’ what-

ever the method. We can also observe that configuration ’Bip’

provides the lowest performances. Finally, results obtained

with ’Prox’ are very interesting since they show that this

configuration, using only two electrodes, allows to obtain

almost the same results that the configuration ’Bip+Prox’,

using four electrodes.

3) Comparison of the synthesis methods: Considering the

whole database, the best correlation coefficients are obtained

with the D_TDNN method, in the configuration ’Bip+Prox’,

leading to 0.99 for Type I, 0.84 for Type II and 0.95 for

Type III. Furthermore, TDNN-based approaches provide glob-

ally the best correlation coefficients compared to the RLS-

based approaches, but the gain in performance is limited

for configurations ’Prox’ and ’Bip+Prox’. However, in the

configuration ’Bip’, the difference between TDNN and RLS is

more important (this case will be detailed in the next section).

In addition, D_TDNN provides, in most of the cases,

slightly higher performances than I_TDNN. However,

I_TDNN can be considered as a good compromise since its

complexity is lower (identification of 3 transfer functions for

I_TDNN and 12 transfer functions for D_TDNN) and its

performances are equivalent.

C. Quantitative and qualitative performances in the real con-

figuration of an implantable device

Up to now, we have considered the reconstruction for a

research protocol. This section is now devoted to the real

industrial case, where only 3 ECG leads are generally ob-

served (and assumed sufficient during the follow-up process).

Concerning the EGM, only 2 bipolar leads are often used

in practice, which corresponds to a difficult configuration, as

demonstrated in section IV-B2. By comparing three of the four

methods (D_TDNN, I_TDNN and D_RLS) and by considering

all the patients, a quantitative and a qualitative analysis have

been performed on three ECG leads (I, II and V1), containing

10 heartbeats. Let us mention that in a previous work, we

have shown that performances do not depend on the ECG

lead which is synthesized [4].

1) A typical reconstruction example: As an illustration,

Figure 7 shows an example of lead I, synthesized with the three

different methods. Results show the superiority of the TDNN-

based approaches. RLS synthesizes a small high frequency

reconstruction noise around each QRS of the patient of Type

I and fails in reconstructing the three different morphologies

of the patient of Type III. With the patient of Type II,

sinus rhythm is still better estimated with the two TDNN

approaches. However, results also show that the three methods

fail to reconstruct the premature ventricular complexes (PVC),

not included into the training set. Nevertheless, the synthesized

beat is clearly different than the sinus beats and could be

interpreted, by an automatic system, as a PVB.

Type I 

Type II 

Type III 

real 

D_TDNN 

I_TDNN 

D_RLS 

real 

D_TDNN 

I_TDNN 

D_RLS 

real 

D_TDNN 

I_TDNN 

D_RLS 

Fig. 7. Examples of synthesized ECG (lead DI) for a patient of each of the
three types, using two bipolar EGM.

2) Quantitative evaluation: We propose now to evaluate the

quality of the synthesized ECG by comparing feature values

extracted from the real ECG and from the synthesized ECG.

The objective is to appreciate if the reconstruction process

modifies some of the main parameters generally measured on

the ECG signal for diagnosis purposes. It is well-known that

the QRS duration and amplitude of the R wave are part of

such important features and moreover can be used for the

adjustment of the implantable device. In the same manner,

heart rate variability and measurement of the ST segment are

important for patient follow-up, the ST segment being a crucial

parameter for ischemia monitoring.

The RR interval, QRS durations and R wave and ST seg-

ment (measured 60 ms after J point and using as a reference

the mean value of the PR interval) magnitudes have been

extracted from real and synthesized ECGs using a software

developed in our laboratory [19]. Figure 8 shows boxplots of

the absolute error (median and interquartile ranges) measured

for each beat between parameters obtained from the real ECG

and the different synthesized ECG.

Results are globally in accordance with those reported

in the previous section after computation of the correlation
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Fig. 8. Boxplots of the absolute error (median and interquartile ranges) between values of RR interval, R magnitude, QRS duration and ST magnitude
extracted from the real ECG and from the synthesized ECG, for three different approaches: D_TDNN, I_TDNN and D_RLS. Errors have been computed on
all the beats of three leads (I, II and V1) and are grouped by type of patients.

coefficient. As already stressed in Figure 7, performances

obtained with D_TDNN and I_TDNN are generally close and

superior to performances of D_RLS, for which the measured

dispersion is always higher. Likewise, best results are obtained

for Type I. However, differences of performances that were

observed between Types II and III are less important. This

might be explained by the reduced training set in Type III,

which makes the generalization of the transfer function sub-

optimal. This point has a direct influence on the quality of the

features extracted from the synthesized ECG. For instance,

we observe that the RR interval is well reproduced, with

median errors always lower than 5 ms (except for the RLS

method on Type III), the D_TDNN method providing always

the lowest dispersion. Regarding the errors in reproducing

amplitude parameters (R wave and ST segment), median errors

are still acceptable, with values around 50 µV . Finally, the

estimation of the QRS duration produced median errors around

15 ms.

3) Qualitative evaluation: In order to obtain a clinical

appreciation of the results, beyond numerical results, we

requested a cardiologist of the Rennes Hospital to perform

a blinded qualitative evaluation of the synthesized ECG.

For each of the patients, 4 different ECG (the real ECG

and three synthesized ECG using D_TDNN, I_TDNN and

D_RLS), were shown to the cardiologist. He has been asked

to mark, out of 10, each of the synthetic ECG, globally for

the three leads, related to the real ECG, from two points of

view:

• The first should reflect the visual quality of the synthe-

sized ECG. The whole signal has been analyzed: QRS

morphology, P wave and also baseline.

• The second should evaluate the capability to make the

right diagnosis, the database containing several arrhyth-

mias or conduction defects (PVC, bundle-branch blocks,

atrial fibrillation, ...).

Type I Type II Type III
0

2

4

6

8

10
Visual quality

Type I Type II Type III
0

2

4

6

8

10
Diagnostic

 

 

D_TDNN I_TDNN D_RLS

Fig. 9. Results of the qualitative evaluation (marks out of 10) for patients
of Types I, II and III (visual quality: top, diagnosis: bottom).

Results are presented in Figure 9. Firstly, we observe a

good agreement between scores obtained by the visual quality
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analysis and by the capability to give the right diagnosis

(same classification of the methods). In addition, results are

in accordance with conclusions of the quantitative analysis

since no significant differences between the direct method

(D_TDNN) and the indirect method (I_TDNN) were observed

for the proposed TDNN approach. Again, performances of the

two TDNN-based methods are judged superior to the D_RLS,

for the three types of patients. As already reported in this

communication, worse results are obtained with patients of

Type II. Finally, it is worth to mention that scores of diagnosis

are always higher than those of visual quality. In other words,

even if the signal is not always correctly reconstructed, the

diagnosis may be preserved.

V. CONCLUSION

This paper proposes a methodology to synthesize a standard

12-lead ECG from a set of EGM leads, for implanted patients,

which is of main practical importance in cardiology. For

this purpose, two methods, a direct and an indirect, based

on a dynamic TDNN, are proposed and evaluated in this

study. Experiments show that four main issues are of concern

when performing ECG reconstruction. Firstly, a quantitative

comparison, conducted on a database issued from 15 patients,

shows that performances of both TDNN-based methods are

equivalent and outperform the RLS approach. However, the

direct method requires the learning of 12 transfer functions,

whereas the indirect method only requires three transfer func-

tions. It is worth to notice that, in practice, it is also possible

to compute only eight transfer functions and derive the other

four by calculations, since only two of the six extremity leads

are independent. Whatever the approach direct or indirect,

the transfer functions are patient specific and must be trained

either during the implantation or the day just after by collecting

as set of synchronous ECG and EGM, eventually by using the

telemetric system of the device.

Secondly, interesting results were observed for patients

with sinus rhythm or with polymorphic beats if all the beat

morphologies are present in the training set (Types I and III).

When ectopic complexes are not included in the training set

(Type II), both methods show limitations on the reproduction

of PVC. However, the synthesized morphologies still remain

very different from sinus beats, preserving at least the possi-

bility of identifying a pathological beat.

Thirdly, results have also been presented as a function

of the number and the type of EGM leads. As expected,

the best reconstructions are obtained using two bipolar and

two proximal leads, but we also demonstrated that the two

proximal electrodes provide almost the same results.

Finally, we have shown that the industrial configuration,

using only two bipolar EGM, leads to quantitative and quali-

tative efficient performances. These interesting results suggest

that the proposed TDNN-based reconstruction module could

be embedded into an ICD.

It should be noted that the long term validity of this recon-

struction relies on the hypothesis that the ECG morphology

is stable over time. This hypothesis can be assumed to hold

in healthy subjects and we recently verified this stability

in different recording conditions [20], [21]. However, this

may not be the case in implanted patients, who may present

ECG modifications as a consequence of cardiac remodeling,

clinical evolution or transient phenomena (new medication,

. . .). These factors represent the main limitations of any ECG

reconstruction method from EGM data. One way to minimize

the effects of these factors would be to re-estimate the transfer

function during the required follow-up visits at the hospital.

This work also opens the way to new telecardiology chal-

lenges, such as the optimal management of cardiac rhythm

pathologies, the follow-up of implanted patients [22], [23],

and the continuous control of implantable devices [24]. Indeed,

recent studies have demonstrated the interest of a daily data

transmission from the implantable device, through a wireless

remote monitoring system, to improve the care of cardiac

device recipients. It was also claimed in [25] that ambulatory

monitoring of the electrocardiogram is an important comple-

ment to pacemaker follow-up, particularly about changes in

the ST segment of the ECG.

ACKNOWLEDGMENT

The authors acknowledge Professor François Carré from the

Rennes Hospital for his participation to the clinical evaluation

of this study.

REFERENCES

[1] V. L. Roger, A. S. Go, D. M. Lloyd-Jones, R. J. Adams, J. D. Berry,
T. M. Brown, M. R. Carnethon, S. Dai, G. de Simone, E. S. Ford et al.,
“Heart disease and stroke statistics - 2011 Update. a report from the
American Heart Association,” Circulation, vol. 123, no. 4, pp. e18–e209,
2011.

[2] M. Gentil, F. Porée, A. I. Hernández, and G. Carrault, “Surface elec-
trocardiogram reconstruction from cardiac prothesis electrograms,” in
EMBEC05, Prague, Czech Republic, 2005, pp. 2028F1–6.

[3] A. Kachenoura, F. Porée, A. I. Hernández, and G. Carrault, “Surface
ECG reconstruction from intracardiac EGM: a PCA-vectocardiogram
method,” in Asilomar Conference on Signals, Systems, and Computers

2007, Pacific Grove, USA, 2007, pp. 761–4.
[4] ——, “Using intracardiac vectorcardiographic loop for surface ECG

synthesis,” EURASIP Journal on Advances in Signal Processing,
2008:410630.

[5] A. Kachenoura, F. Porée, G. Carrault, and A. I. Hernández, “Comparison
of four estimators of the 3D cardiac electrical activity for surface ecg
synthesis from intracardiac recordings,” in ICASSP’09, Taïpei, Taïwan,
2009, pp. 485–8.

[6] ——, “Non-linear 12-lead ECG synthesis from two intracardiac record-
ings,” in Computers in Cardiology, 2009, Park City, USA, 2009.

[7] S. F. Saba, J. L. Williams, and G. S. Mendenhall, “Electrocardio-
gram reconstruction from implanted device electrograms,” Patent US
2009/0 187 097 A1, July, 2009.

[8] G. S. Mendenhall and S. Saba, “12-lead surface electrocardiogram
reconstruction from implanted devices,” Europace, vol. 12, no. 7, pp.
991–8, 2010.

[9] G. Mendenhall, “Implantable and surface electrocardiography: comple-
mentary technologies,” J. Electrocardiol., vol. 43, no. 4, pp. 619–23,
2010.

[10] F. Castells, P. Laguna, L. Sörnmo, A. Bollmann, and J. Roig, “Principal
component analysis in ECG signal processing,” EURASIP Journal on

Advances in Signal Processing, 2007:74580.
[11] K. Hornik and M. Stinchcombe, “Multilayer feedforward networks are

universal approximators,” Neural Networks, vol. 2, pp. 359–66, 1989.
[12] K. I. Diamantaras and S. Y. Kung, Principal Component Neural Net-

works: Theory and Applications. New York, USA: Wiley-Interscience,
1996.

[13] A. Belouchrani and A. Cichocki, “Robust whitening procedure in blind
source separation context,” Electronics Letters, vol. 36, pp. 2050–53,
2000.



9

[14] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines, “A
blind source separation technique using second-order statistics,” IEEE

Trans. Signal Process., vol. 45, pp. 434–44, 1997.
[15] P. Comon, “Independent component analysis, a new concept?” Signal

Processing, Elsevier, vol. 36, pp. 287–314, 1994.
[16] C. Vásquez, A. I. Hernández, F. Mora, G. Carrault, and G. Passariello,

“Atrial activity enhancement by wiener filtering using an artificial neural
network,” IEEE Trans. Biomed. Eng., vol. 48, pp. 940–4, 2001.

[17] D. J. C. MacKay, “Bayesian interpolation,” Neural Computation, vol. 4,
pp. 415–47, 1992.

[18] F. Porée, G. Carrault, A. Kachenoura, and A. I. Hernández, “Recon-
struction of a surface electrocardiogram from an endocardial electrogram
using non-linear filtering,” Patent US 2010/0 256 511 A1, October, 2010.

[19] J. Dumont, A. I. Hernández, and G. Carrault, “Improving ECG beats
delineation with an evolutionary optimization process,” IEEE Trans.

Biomed. Eng., vol. 57, pp. 607–15, 2010.
[20] F. Porée, J. Bansard, G. Kervio, and G. Carrault, “Stability analysis of

the 12-lead ECG morphology in different physiological conditions of
interest for biometric applications,” in Computers in Cardiology, 2009.
IEEE, 2009, pp. 285–8.

[21] F. Porée, A. Gallix, and G. Carrault, “Biometric identification of indi-
viduals based on ECG. Which conditions?” in Computing in Cardiology,

2011. IEEE, 2011, pp. 761–4.
[22] M. Guéguin, E. Roux, A. I. Hernández, F. Porée, P. Mabo, L. Grain-

dorge, and G. Carrault, “Exploring time series retrieved from cardiac
implantable devices for optimizing patient follow-up,” IEEE Trans.

Biomed. Eng., vol. 55, pp. 2343–52, 2008.
[23] V. Le Rolle, D. Ojeda, and A. Hernández, “Embedding a cardiac

pulsatile model into an integrated model of the cardiovascular regulation
for heart failure followup,” IEEE Trans. Biomed. Eng., vol. 58, no. 10,
pp. 2982–2986, 2011.

[24] P. Mabo, F. Victor, P. Bazin, S. Ahres, D. Babuty, A. Da Costa, D. Binet,
and J. C. Daubert, “A randomized trial of long-term remote monitoring
of pacemaker recipients (the compas trial),” European heart journal,
vol. 33, no. 9, pp. 1105–11, 2007.

[25] D. L. Janosik, R. M. Redd, T. A. Buckingham, R. I. Blum, R. D.
Wiens, and H. L. Kennedy, “Utility of ambulatory electrocardiography in
detecting pacemaker dysfunction in the early postimplantation period,”
The American Journal of Cardiology, vol. 60, no. 13, pp. 1030–1035,
1987.


