
HAL Id: inserm-00744512
https://inserm.hal.science/inserm-00744512v1

Submitted on 23 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The posterior insular-opercular region and the search of
a primary cortex for pain

Luis Garcia Larrea

To cite this version:
Luis Garcia Larrea. The posterior insular-opercular region and the search of a primary cortex for
pain. Neurophysiologie Clinique = Clinical Neurophysiology, 2012, pp.2012;. �inserm-00744512�

https://inserm.hal.science/inserm-00744512v1
https://hal.archives-ouvertes.fr


REVIEW 

The posterior insular – opercular region 

and the search of  a primary cortex for pain 

 

Luis Garcia-Larrea 

Central Integration of  Pain Laboratory, Centre for Neuroscience of  Lyon 

Inserm U1028 & University Lyon 1, France 

 

Abstract 

To be considered specific for nociception, a cortical region should (a) have plausible connections 

with ascending nociceptive pathways; (b) be activated by noxious stimuli; (c) trigger nociceptive 

sensations if  directly stimulated, and (d) tone down nociception when injured. In addition, lesions in 

this area should have a potential to develop neuropathic pain, as is the case of  all lesions in 

nociceptive pathways. The single cortical region approaching these requirements in humans 

encompasses the suprasylvian posterior insula and its adjoining medial operculum (referred to as 

“PIMO” in this review). This region does not contain, however, solely nociceptive networks, but 

represents in primates the main sensory receiving area of  the spinothalamic system, and as such 

contributes to the processing of  thermo-sensory, nociceptive, C-fibre tactile, and visceral input. 

Nociception (and, a fortiori, pain) should therefore not be considered as a separate sensory modality, 

but rather as one component of  a global system subtending the most primitive forms of  

somatosensation. The medial opercular part of  the PIMO is cytoarchitectonically and functionally 

distinct from the outer operculum containing the S2/PV sensory areas. Although a clear functional 

segregation of  PIMO sub-areas has not yet been achieved, some preferential distribution has been 

described in humans: pain-related networks appear preferentially distributed within the posterior 

insula, and non-noxious thermal processing in the adjacent operculum. Thus, spinothalamic sub-

modalities may be partially segregated in the PIMO, in analogy with the separate representation of  

dorsal column input from joint, muscle spindle and tactile afferents in S1. Specificity, however, may 

not wholly depend on ascending „labelled lines‟ but also on cortical network properties driven by 

intrinsic and extrinsic circuitry. Given its particular anatomo-functional properties, thalamic 

connections, and tight relations with limbic and multisensory cortices, the PIMO region deserves to 

be considered as a third somatosensory region (S3) devoted to the processing of  spinothalamic inputs.  

 



Résumé 

Pour être considérée spécifique de la nociception, une region corticale doit (a) recevoir des 

connexions ascendantes plausibles avec les voies nociceptives ; (b) être activée par des stimuli 

nociceptifs ; (c) évoquer des sensations nociceptives lorsqu‟elle est directement stimulée, et (d) 

réduire la nociception si elle est lésée. Par ailleurs, les lésions d‟une telle aire doivent avoir la 

potentialité de générer des douleurs neuropathiques, comme c‟est le cas de toute lésion au sein des 

voies nociceptives. La seule aire corticale qui approche ces conditions est située chez l‟Homme dans 

la région suprasylvienne, et comprend l‟insula postérieure et l‟opercule médial adjacent (qui dans cette 

revue sera appelée “PIMO”, pour « Posterior-Insula-Medial-Operculum »). Ce territoire représente 

chez le primate l‟aire sensorielle majeure de réception du système spinothalamique, et contribue par 

conséquent au traitement cortical des afférences non seulement nociceptives, mais aussi thermo-

sensorielles et, dans une certaine mesure, tactiles et viscerales. La nociception (et a fortiori la douleur) 

ne doit donc pas être considérée comme une modalité sensorielle séparée, mais plutôt comme une 

des composantes d‟un système global assurant les formes les plus primitives de sensation somatique. 

La partie operculaire du cortex PIMO, accolée à l‟insula, peut être différenciée sur le plan 

cytoarchitectonique et fonctionnel de l‟opercule latéral contenant les régions sensorielles S2 et PV. 

Bien qu‟une ségrégation fonctionnelle du PIMO en sous-aires ne soit encore possible, une certaine 

distribution différentielle a été décrite chez l‟Homme, les réseaux nociceptifs étant distribués 

préférentiellement au sein de l‟insula postérieure et ceux voués au traitement de la chaleur non-

nociceptive dans l‟opercule suprasylvien adjacent. Il est donc probable que des sous-modalités 

spinothalamiques puissent être représentées de façon disjointe au sein de cette region, de manière 

analogue aux représentations disjointes des sous-modalités lemniscales au sein de S1. Cependant, la 

spécificité peut non seulement dépendre de « voies ascendantes dédiées », mais également de 

propriétés intrinsèques des réseaux corticaux, liées à leur connexions intrinsèques et extrinsèques. De 

par ses propriétés anatomo-functionnelles, ses connexions thalamiques et ses relations avec les cortex 

limbiques et multisensoriels, la region PIMO mérite à nos yeux d‟être considérée comme une région 

somesthésique à part entière (S3) vouée au traitement des afférences spinothalamiques.  



 

I. Introduction 

Knowledge on human cortical pain processing has received tremendous impetus in the last 20 years, 

through the use of  functional brain imaging and electrophysiology combined with stimulus 

procedures that selectively activate nociceptive pathways. The concept of  “Pain Matrix” (PM) arose 

in the early 90‟s to underscore that noxious stimuli do not activate a unique “pain centre” but a 

widespread network of  brain regions (Talbot et al 1991, Jones et al 1992; Coghill et al 1994). Such 

network, supposedly responsible for the building of  human pain sensation, consists of  a basic core 

formed by the suprasylvian opercular area, the mid- and posterior insula and the mid-anterior 

cingulate cortex, which are systematically activated by noxious stimuli, but also a number of  other 

regions including the primary sensory cortex, anterior insula, prefrontal and posterior parietal 

cortices, amygdala and hippocampus, detected in 40-80% of  studies (reviews in Peyron et al 2000, 

Garcia-Larrea et al 2003, Apkarian et al 2005, Stephenson & Arneric 2008). 

Being activated by external stimuli does not imply, however, being crucial for the expression 

of  a given function (Price et al 1999). Pain is the conscious interpretation of  nociceptive input and, 

as such, is influenced by memories, emotional and cognitive factors (Tracey & Mantyh 2007, Tracey 

2008). Accordingly, painful stimulation induces brain activations supporting functions connected 

with, but distinct from the process of  pain perception proper, such as orienting reactions, memory 

encoding and anxious anticipation (Peyron et al 1999, Porro et al 2002, Valet et al 2004, reviews 

Lorenz and Garcia-Larrea 2003, Tracey & Mantyh 2007, Valet et al 2010). Pain literature has 

sufficiently demonstrated that a number of  elements within the PM are definitely not specific for 

pain, and can be triggered by any behaviourally relevant stimulus. Thus, while some investigators still 

consider the PM as a „direct measure‟ of  the actual pain experience (e.g. Borsook et al 2010), current 

trends assail the very concept of  a specific pain-related network, claiming that most, if  not all, the 

PM regions represent a non-specific salience-detection system for the body (Iannetti et al 2008, 

Iannetti and Mouraux 2010, review Legrain et al 2010, and see Legrain et al, this Volume). 

While accepting that most of  PM activity is nonspecific, it remains obvious that normal 

human beings clearly distinguish the sensory or non-sensory origin of  an aversive perturbation. 

While social and moral suffering may activate regions that overlap with the PM (Eisenberger et al 

2004, MacDonald & Leary 2005, Kross et al 2011, Singer et al 2004), normal humans rarely 

confound moral sorrow with physical pain, which is identified as a sensation pertaining to the somatic 

modality, “caused by stimuli that threaten the integrity of  the tissues”. The detection of  such stimuli 

by neural systems is called nociception (Perl 1998), a termed coined by Sherrington from latin capio: 



« to take » and noxa: “harmful”. This paper will first explore the cortical regions and processes that 

subserve nociception, and which are necessary and sufficient to trigger in normal humans the 

complex and multifocal experience we call “pain”. We shall first delineate the features that a cortical 

area should exhibit to aspire to a specific role in nociception, and show that the only region in 

humans exhibiting such features lies within the posterior granular insula and medial suprasylvian 

operculum –the “PIMO” cortex. We will suggest that nociceptive networks are part of  a larger 

somatosensory area that can be defined as a thalamo-cortical projection of  the spinothalamic system, 

whose functionality is not restricted to nociception but encompasses non-noxious thermal 

discrimination, C-fibre-mediated touch, visceral somatosensation, and sensory components of  sexual 

pleasure. In this view, nociception should not be considered as a separate sensory modality, but rather 

as one component of  a primitive but complete somatosensory system.  

 

II. The conditions to consider a cortical brain area as a nociceptive region 

A cortical region can be considered as containing nociceptive networks if: (a) there is anatomical 

evidence that the region receives projections from ascending systems conveying pain-related 

information; (b) the region is activated systematically by noxious stimuli; (c) direct stimulation of  the 

region generates pain, and (d) lesions of  this region entail specific nociceptive deficits. Furthermore, 

lesions of  the region should be able to generate chronic neuropathic pain, which is a distinctive trait 

of  lesions involving nociceptive pathways (Boivie 2006). In this section we shall explore these 5 

conditions, and suggest that the region comprising the Posterior Insula and adjacent Medial 

Operculum (the “PIMO” area) contains networks that can be considered as specific for nociception.  

IIa. The spinothalamic system in primates projects to the PIMO 

The ascending system in the anterolateral spinal cord, or spinothalamic tract (STT), has long been 

known to be a major pathway for transmitting information on pain and temperature to the cerebral 

cortex. This system is not uniform, and comprises both direct axons transiting from the dorsal horn 

to the thalamus, and more complex pathways that activate the thalamus, or the cortex, only after 

synapses in the brainstem or hypothalamus (reviews in Willis 1985, Willis & Westlund 1997, Craig 

2003). The primate STT consists of  anatomically and functionally differentiable components, which 

in monkeys originate largely from neurons in laminae I, V, and VII of  the spinal cord (Apkarian and 

Hodge 1989). The axons of  these spinal neurons terminate in multiple nuclei of  the thalamus, mainly 

in its posterior part, with more than 90% concentrated in the ventral posterior complex 

(ventroposterolateral (VPL), ventroposteromedial (VPM), and ventroposteroinferior (VPI) nuclei) the 

central lateral (CL), the posterior-suprageniculate complex (Po-SG), and the caudal mediodorsal 



nucleus (MD). The posterior - supragenicular nuclear group is thought to include a subdivision 

termed “VMpo”, receiving input essentially from lamina I (Craig 2004). Lamina I neurons project, 

however, to many other thalamic sites (Graziano and Jones 2004, Craig 2006), and the independent 

existence of  VMpo has been questioned by other authors (e.g. Willis et al 2002, Graziano and Jones 

2004). 

In primates, the precise location and relative strength of  input to the cortical spinothalamic 

targets could be defined only recently, using trans-synaptic viral transport from spinothalamic 

neurons in the cord (Dum et al 2009). Injection of  herpes virus within dorsal horn laminae I, V and 

VII allowed the virus to be taken up by spinal cord neurons and transported rostrally to infect 

second-order thalamic neurons, then third-order cortical neurons receiving thalamic projections. 

While spinothalamic projections to primary somatosensory cortex, already known to be scarce (Casey 

and Morrow 1983, Gingold et al 1991), appeared to receive less than 5% of  the spinothalamic system 

input, the vast majority of  spinothalamic cortical targets were found in (a) the posterior insular 

cortex (granular insula, ~40%), (b) the medial parietal operculum (~30%), and (c) the motor sections 

of  the mid-cingulate cortex (~24%). Thus, the region comprising the posterior granular insula and 

the adjacent parietal operculum (PIMO) is the recipient of  a vast majority (70%) of  spinothalamic 

cortical projections, and of  almost 95% of  all spinothalamic input to sensory cortices. Within the 

PIM, the posterior insula is connected principally with the thalamic posterior-suprageniculate 

complex (Po-SG), the VPI and oral-medial pulvinar nuclei (Mufson and Mesulam 1984; Friedman 

and Murray 1986), while major afferents to the parietal operculum arise from the VPI (Friedman and 

Murray 1986; Stevens et al 1993).  

IIb. The PIMO is activated by noxious stimuli (Fig 1A) 

The opercular - insular region is the area most consistently activated of  the „Pain Matrix‟, whether the 

latter is defined by functional imaging or electrophysiological methods (reviews Peyron et al 2000, 

Garcia-Larrea et al 2003, Kakigi et al 2005, Apkarian et al 2005, Tracey 2008). Unfortunately, 

haemodynamic imaging is unable to disclose which are the primary cortical recipients of  afferents, 

nor is able to determine whether a given activated region is necessary or just contingent for the 

function considered. Indeed, contrary to anatomical studies targeting primary cortices (third-order 

neurons), functional imaging is largely dependent on fourth-order or longer connections developing 

during seconds to minutes after stimulation, thus mixing up early and late cortical responses. For 

instance, functional imaging of  pain responses detected two independent foci of  maximal 

significance, one in the posterior and the other in the anterior insula (Peyron et al 2000, Apkarian et 

al 2005, Tracey 2008), but only the former may be related to third-order thalamo-cortical projections 

(Dum et al 2009). Intracranial EEG recordings in humans have demonstrated that the PIMO region 



responds early and systematically to thermo-nociceptive laser stimuli (Lenz et al 1998, Frot et al 1999, 

2001) (Figure 1A). Source modelling of  the earliest brain responses to noxious thermal stimuli 

consistently shows activation in the opercular and insular regions, together with the mid-cingulate 

gyrus (Garcia-Larrea et al 2003), thus reflecting the STS projections determined by anterograde 

tracing in monkeys. The latencies of  initial responses (150-180 ms) are very similar in the opercular 

and mid-cingulate areas (Schlereth et al 2003, Frot et al 2008), providing electrophysiological support 

in humans to the parallel spinothalamic projection to the PIMO and the motor cingulate (Dum et al 

2009). The recruitment curves of  medial opercular and posterior insular regions differ: the 

operculum responds to thermal pulses at perceptive threshold, but do not fully reflect the intensity 

scale (Chen et al 2006, Frot et al 2007). Conversely, the posterior insula tends to respond only when 

stimulus intensity has almost reached subjective pain levels (Frot et al 2007), and does not show 

saturation for intensities well above pain threshold (Börnhovd et al 2002) (Figure 2B).  

 

IIc.  Opercular-insular stimulation can generate acute pain in humans (Fig. 1B) 

While reporting the results of  fully awake craniotomy, Pereira et al (2005) described that neocortical 

manipulation of  frontal, temporal, parietal or occiptal lobes was unpainful in 38 consecutive patients, 

whereas 10 out of  10 patients reported intense pain during vascular, arachnoid or cortical dissection 

of  the PIMO area. In the same line, the only cortical sites where painful sensations were triggered by 

intracortical electric stimulation are within the opercular-insular cortex (Ostrowsky et al 2002, 

Mazzola et al 2006, 2012) (Figure 1B). Extensive reports on stimulation of  other cortical regions of  

the PM, including the primary sensory cortex and lateral operculum (Penfield & Jasper 1954, Richer 

et al 1993), supplementary motor area (Fried et al 1991), lateral frontal cortex and mid-anterior 

cingulate (Bancaud et al 1976, Chassagnon et al 2008) never mention pain responses. This issue was 

extensively investigated recently, by analysing the behavioural responses to more than 4000 

intracortical stimulations covering the whole cortical mantle in 164 patients (Mazzola et al 2012). 

Subjective pain responses were obtained exclusively in the medial part of  the parietal operculum and 

neighbouring posterior insula, with same incidence in both regions, whereas pain could not be 

elicited by stimulation of  any other brain area. The stimulation of  the PIMO region, however, 

generated pain in 10% of  cases only, and thus differed from classical “primary sensory areas” where 

stimulation-driven sensory symptoms are virtually constant. As was the case with evoked potentials, 

different subregions showed different functional properties to focal stimulation, and both the size of  

projection of  cutaneous fields and the incidence of  painful (versus non-painful) responses were 

higher in the posterior insula than in the adjacent operculum (Mazzola et al 2006). Interestingly, Lenz 

et al (1995) reported the possibility of  evoking “full pain experiences” by stimulating a thalamic 



region posterior to the main sensory nucleus (the human counterpart of  VPL), at sites consistent 

with the posterior complex and nucleus ventrocaudalis parvocellularis, which do project to the PIMO 

(Mehler 1962, Wirth 1973).  

Pain is a very rare symptom of  epileptic seizures, reported in less than 1.5% of  cases. Siegel 

et al (1999) described 8 patients, all of  them with parietal origin, and discovered an opercular focus in 

two of  them who underwent intracranial recordings. We recently reported purely painful epileptic 

seizures triggered by a very limited dysplasia in the posterior insula (Isnard et al 2011). Attacks 

originated in the posterior right insula and propagated with 80 ms delay to other areas of  the PM, 

including the parietal operculum and the mid-cingulate gyrus. Stimulation of  the insula, but not of  

other PM regions, induced pain identical to that of  seizures, which could be successfully treated by 

millimetric thermo-coagulation of  the insular epileptic focus. Together with the results of  intracranial 

stimulation, these observations suggest that the „experience‟ of  pain can be triggered in the posterior 

insular cortex, but its development depends on the subsequent activation of  a larger network of  PM 

cortical areas.  

IId. Lesions in the PIMO entail selective nociceptive deficits (Fig 1, C-D) 

The first description of  a selective loss of  pain & temperature sensation, with preserved 

proprioception and tactile discrimination probably comes from Dejerine & Mouzon (1915), in a 

soldier who underwent a parietal gunshot injury during the 1st World War. Post-mortem 

neuropathological analysis of  this syndrome was however not available until 1956, when Biemond 

[1956] reported two cases of  selective loss of  pain and temperature senses following posterior insular 

stroke; since then, a number of  reports have confirmed that lesions involving the posterior insula 

and medial parietal operculum can give rise to selective pain & temperature deficits (Obrador et al 

1957, Bassetti et al 1993, Greenspan et al 1992, 1999; Horiuchi et al 1996, Birklein et al 2005, Kim 

2007, Garcia-Larrea et al 2010), and this region is indeed the only where focal lesions have been 

described to selectively abolish or attenuate pain sensation (review in Garcia-Larrea 2012) (Figure 1C-

D). In contradistinction to this, lesions concerning exclusively the anterior insula were never associated 

with pain or temperature deficits in the detailed study of  Greenspan et al (1999); those involving the 

lateral parietal operculum have been reported to produce global hypaesthesia, or a cheiro-oral 

syndrome with preserved pain sensation (Bogousslavsky et al 1991, Bowsher et al 2004), and lesions 

disconnecting the anterior from the posterior insula were reported to dampen emotional reactions to 

pain, but preserve recognition of  nociceptive stimuli (Berthier et al 1988).  

IIe. PIMO injury can lead to the development of  central pain 



Lesions at any level of  the pain pathways not only entail nociceptive hypaesthesia, but are also able to 

generate chronic neuropathic pain (Bowsher 2004, 2005; Boivie 1998, 2006). Combination of  

nociceptive hypaesthesia and spontaneous pain may occur at all levels of  the neuraxis: in small-fibre 

neuropathies (Mendell and Sahenk 2003) as well as in spinal, brainstem or thalamic lesions involving 

the spinothalamic system (review Boivie 2006). In the cerebral cortex, the PIMO region is the only 

area where focal injury has been shown to induce central pain together with selective pain 

hypoesthesia. That central pain could emerge from operculo-insular lesions has been known for 

decades (e.g. Biemond 1956, Bowsher et al 2004, Kim 2007), but individualisation of  „parasylvian 

pain‟ as a distinct central pain syndrome is recent (Garcia-Larrea et al 2010). Central pain associated 

with selective nociceptive hypaesthesia is an exclusive feature of  lesions in ascending pain pathways, 

and this underscores the role of  the PIMO as a receiving area of  ascending nociceptive projections 

(see IIa). 

 

III. The PIMO area is more than a primary sensory cortex for pain 

The identified capacity of  the PIMO region to process pain-related stimuli has lead some 

investigators to claim that this region represents a “primary area for pain”. However, the PIMO is 

involved in the processing of  other, miscellaneous sensory inputs, and during the last 15 years the 

human operculo-insular region has been considered to contain primary sensory networks for a 

number of  sensibilities including thermo-sensation, emotional touch, mechanical and heat pain, or 

„protopathic feelings subserving interoception‟. While each of  these claims may be founded on sound 

experimental data, none of  them captures the whole functional complexity of  the PIMO region. 

IIIa. The PIMO as a thermo-sensory area.  

Thermal stimuli significantly activate the PIMO (Coghill et al 1999, Craig et al 2000, Maihofner et al 

2002, Hua et al 2005), and haemodynamic activity within this region shows linear correlations with 

both increasing (Coghill et al 1999) and decreasing temperature changes (Craig et al 2000). Pain and 

temperature being closely interconnected sensations, it is not surprising that both be encoded by 

closely-lying brain networks. Thus, even minute focal lesions in the PIMO can suppress both thermal 

and pain perceptions (Greenspan et al 1999, Kim 2007, Garcia-Larrea et al 2010; see Figure 1, C-D), 

and stimulation of  the operculo-insular region in awake humans elicits thermal warm and painful 

heat sensations in a comparable proportion of  cases (Ostrowsky et al 2002, Mazzola et al 2006, 

2012). Noteworthy, stimuli evoking non-painful warm and cold tended to concentrate in the medial 

operculum, while those yielding pain predominated in the posterior dorsal insula (Figure 2, and see 

Mazzola et al 2006, 2011). This is in accordance with studies of  evoked potentials to thermal laser 



stimuli, where the opercular region was able to encode low levels of  thermal change, (Chen et al 

2006, Frot et al 2007) whereas the posterior insula tended to respond only when thermal stimuli 

almost had reached the subjective pain threshold (Frot et al 2007). 

IIIb. Mechano-sensation in the PIMO 

The PIMO region is involved in different types of  mechano-sensation too. The pain reported after 

opercular-insular stimulation is often non-thermal in nature, and described as electric-like shocks, 

strong “pins and needles”, crushing sensations or cramps in more than 30% of  cases (Mazzola et al 

2006). Moreover, almost 50% of  stimuli in the PIMO evoke non-painful and non-thermal sensations, 

mainly cutaneous paresthesiae (Ostrowsky et al 2002, Mazzola et al 2006, 2009). Patients with focal 

lesions in the PIMO commonly have strong deficits in mechanical pain, and as early as 1956 

Biemond reported patients with operculo-insular injury being “hardly troubled by strong pressure” 

(Biemond, 1956, p. 233). More recently Greenspan et al (1999) observed that pain deficits from 

opercular lesions could in some patients be exclusively mechanical, with “not even a slight difference in 

heat pain threshold or cold pain tolerance”. High-resolution fMRI during specifically mechanical pain 

(prick) demonstrated a significant focus of  posterior insular activation, the location of  which was not 

different from those obtained using thermal stimuli (Baumgartner et al 2010). Both in monkey and 

man, some neurons in the lateral thalamus are responsive to noxious mechanical, but not to noxious 

thermal stimuli (Kenshalo et al 1980, Chung et al 1986, Lenz et al 1993, 1994).  

Mechano-sensation in the PIMO is not limited to pain. Non-painful tingling, light touch, 

feeling of  pulsation, vibration, or slight electric current were produced by direct stimulation of  the 

medial parietal operculum and the posterior insula in no less than 35% of  cases (Mazzola et al 2006, 

2012), thus in a greater proportion than any pain or temperature sensations. Single-unit recordings in 

monkeys show responses to mechanical activation, including gentle hair deflection, in the dorsal 

posterior insula (Robinson and Burton 1980, Schneider et al. 1993, Coq et al. 2004), and injury to the 

PIMO in humans often modifies significantly the tactile thresholds (Schmahmann et al 1992, 

Greenspan et al 1992, 1999, Garcia-Larrea et al 2010). A dual tactile innervation exists in humans, 

based respectively on fast-conducting Aβ fibres and slow-conducting C-afferents responding to light 

touch. C-fibre tactile sensations are carried by the spinothalamic tract via synapses in lamina I (Craig 

2002) and layers III-V (Zhang et al 1991), and may be relayed to the posterior insula by the thalamic 

posterior (Po) and suprageniculate-limitans nuclei (Apkarian and Shi 1994). In monkeys, neurons in 

the posterior granular insula often responded to gentle hair deflection within receptive fields covering 

large areas of  the body (Robinson and Burton 1980), and in patients totally deprived of  Aβ fibres, 

stimulation of  C-tactile afferents activated selectively the posterior insula, but not the primary 

somatosensory cortex or the lateral operculum (Olausson et al 2002, 2008). Comparison of  tactile 



activation of  the forearm (where Aβ and C-tactile afferents coexist) and the palm (devoid of  C-tactile 

afferents) suggested that the most posterior part of  the insula is a selective target for C-driven touch 

afferents (Olausson et al 2002, Björnsdotter et al 2009). The insular activation by C-mediated touch 

increased at low stroking velocities consistent with caresses (Morrison et al 2011), and produced “a 

faint sensation of  pleasant touch” in one patient devoid of  Aβ fibres (Olausson et al 2002). Based on 

these observations, C-driven tact has been considered the specific support for „emotional‟, „sensual‟ 

or „social‟ touch (Olausson et al 2001, 2010, Craig 2003, Morison et al 2011). However, a strict 

relation between C-tactile afferents and emotional aspects of  tact cannot be derived confidently: For 

instance, C-afferents can evoke tactile sensations devoid of  any particular pleasure, such as those 

elicited by punctate Von Frey filaments (Cole et al 2006), and direct stimulation of  the posterior 

insula, where these afferents project, evokes tactile sensations of  pulsation, vibration or electric 

current, which are not described as particularly pleasant (Mazzola et al 2006, 2009). Furthermore, 

“emotional tact” is not specifically triggered by C-afferents: tickle can be induced after complete 

interruption of  the spinothalamic tracts (Nathan, 1990), and sensual tactile sensations can be derived 

from regions devoid of  C-tactile fibres, such as the hand‟s palm (Löken et al 2012), as beautifully 

described by Honoré de Balzac (“the kiss she allowed me to lay upon her hand, […] only the back 

and never the palm, as though she drew the line of  sensual emotions there”) (De Balzac 1836). Thus, 

although the notion of  a C-driven tactile system projecting to the PIMO can be avowed with 

confidence, the pleasant character of  such sensations appears essentially context-dependent.  

Itching, or the “sensation associated with the desire to scratch” is another non-thermal 

feeling involving the PIMO region. Peripheral itching depends on activation of  thin afferents, both C 

(Mochizuki et al 2008) and A-delta (Ringkamp et al 2011), and is transmitted rostrally via the 

spinothalamic tract (Jeffry et al 2011). Histaminergic and nonhistaminergic itching seem to involve 

different STT channels (Davidson et al 2007, Papoiu et al 2011) but all STT neurons responding to 

itching also respond to mechanical pain, and two thirds to thermal heat (Davidson et al 2007, 2010). 

In humans, anterolateral cordotomy simultaneously abolish itch and pain (Nathan 1990), patients 

with congenital insensitivity to pain also lack itch sensations (Indo 2010), and the same neurological 

illnesses that cause neuropathic pain can also, or instead, cause neuropathic itch (Seo et al 2009, 

review Oaklander 2011). Such intimate relations between itch and pain make the existence of  itch-

related projections to the PIMO highly plausible, and this is supported by functional imaging studies 

in humans. Most fMRI and EEG/MEG studies have shown activations within the PIMO areas 

(posterior insula, medial operculum or both: Drzezga et al 2001, Herde et al 2007, Leknes et al 2007, 

Mochizuki et al, 2007, 2009; Yosipovitch et al 2008, Vierow et al 2009). Studies in which these 

regions were not activated by itching (e.g. Hsieh et al 1994, Darsow et al 2000, Mochizuki et al 2003) 



mostly tested lower concentrations of  histamine (discussed in Leknes et al 2007) or used PET-scan 

to determine activated regions, with possible lack of  sensitivity to small activation volumes. Studies 

comparing directly brain responses to pain and itching are scarce and mostly due to the Kyoto group: 

in the medial operculum, ACC and (especially) in the thalamus the BOLD response to pain was more 

intense and long-lasting for pain than for itch, while surprisingly the reverse was true in the posterior 

insula (Mochizuki et al 2007, see their Fig 3). Despite close association between itch and pain, the 

two subjective experiences are subjectively distinct and even inversely related: clear instances of  this 

are the reduction of  itching by nociceptive scratching, and the emergence of  itch as a side effect of  

analgesic opioids. Also, itching sensations have never been described following intracranial 

stimulation of  neither the posterior insular nor the medial operculum.  

IIIc. Interoception and the PIMO  

As defined by Sherrington, interoception refers to “stimuli that originate inside the body”, and 

comprises all sensations coming from the gastrointestinal, urinary or reproductive tracts, circulatory 

or respiratory systems. This generic term includes such dissimilar feelings as hunger and thirst, air 

hunger, sexual arousal, orgasm, nausea, or urge to void. Although it has been proposed to redefine 

interoception as including “temperature, pain, itch and other somatic feelings” (Craig 2002), such all-

inclusive definition contradicts the very notion of  internalness (i.e. “coming or acting from within” –

Collins®), and does not adequately replace the classical views (see also Lenz et al 2004).  

Visceral afferents reach the CNS via two pathways, involving respectively the vagus and the 

splanchnic nerves. Vagal afferents reach the nucleus of  the solitary tract (NST), itself  projecting to a 

large number of  central targets in the brainstem, hypothalamus and limbic forebrain (amygdala and 

anterior insula) (Jänig 1996; Rinaman 2010). It is likely that most visceral vagal inputs bypass sensory 

areas and never reach consciousness (Jänig 1996), but can lead to cortical arousal and are associated 

to regulatory reflexes inducing conscious sensations, such as nausea (Cameron 2001). The second 

visceral path reaches via the splanchnic nerves the dorsal horn, where there is substantial 

convergence with exteroceptive afferents in laminae I, V and X (Tattersall & Cervero 1986). Visceral 

afferents extend over more cord segments than corresponding exteroceptive C-afferents, and only 2-

5% of  spinal afferents with bodies in the root ganglia come from the viscera (Jänig & Morrison 

1986), explaining the poor spatial localisation of  visceral sensation. Visceral afferents ascend both 

within the STT and a post-synaptic dorsal column pathway (Willis et al 1999).  

A review of  54 functional imaging studies found substantial overlap between the projections 

of  visceral and exteroceptive inputs, and considered the posterior insula as “the primary projection 

area for visceral afferent information” (Mayer et al 2009). In contrast with this, interoceptive units in 



monkeys are found in the mid-insula rather than its posterior part (Zhang et al. 1998, 1999), and in 

the recent meta-analysis from Kurth et al (2010) the region specific to human interoceptive 

processing was not in the posterior but in the central insula. Also, interoceptive sensations such as air 

hunger, listening to one‟s own heartbeat or urge to void tend to activate the central and anterior 

insula (Banzett et al 2000, Kuhtz-Buschbeck et al 2005), and direct electrical stimulation in humans 

entails visceral feelings at locations clearly anterior relative to those eliciting general somatosensory or 

pain sensations (Isnard et al 2004, Stephani et al 2011, Isnard personal communication). The 

assertion that the posterior insula constitutes a primary interoceptive image of  homeostatic afferents 

(Craig 2002) is therefore inconsistent with the evidence reviewed above. One hypothesis to be 

confirmed is that anterior and mid-insular activity would depend upon vagal afferents, by-passing 

somatosensory cortices and projecting via the NST to anterior insular segments (Rinaman 2010), 

while the (anterior portion of) posterior granular insula may represent one target of  viscero-somatic 

input carried exclusively by splanchnic pathways. 

While the insula is commonly activated by interoceptive stimuli, it is noticeable that the 

activation in opercular areas most often does not reach significance (e.g. Lu et al 2004). Also, visceral 

perceptions in humans are clearly more prevalent to insular than opercular stimulation (Mazzola et al 

2006, 2009), and in rat and monkey the percentage of  neurons responding to interoceptive changes 

in the medial parietal operculum was much smaller than in the adjacent mid-insula (Zhang et al 1998, 

1999). There may exist, therefore, a functional segregation within posterior insula and medial 

operculum, which reminds that observed in its responsiveness to warm and hot stimuli (see Section 

IIIa). 

 

IV. The PIMO as a distinct somatosensory area  

Based on anatomical plausibility, activation by appropriate stimuli, lesion-induced deficits, and 

stimulation-induced perceptions, the previous sections illustrate how the PIMO region contains 

networks specific for nociception, but also for a number of  non-noxious sensations including heat, 

cold, touch, itch, and visceral feelings. Since each of  these somatosensory attributes is represented in 

this region, the PIMO appears as the cortical target projection of  a distinct system for somatosensory processing.  

The modalities of  somatosensation converging in the PIMO have several points in common. 

First, the neural machinery ensuring their transmission relies, with little exception, upon thin A and 

C fibres in the periphery, and the spinothalamic system (STS) in the spinal cord1. Accordingly, 
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sensory modalities processed in the PIMO do not cover the whole spectrum of  somatosensory 

abilities: proprioception, graphesthesia or stereognosis, transmitted by the medial lemniscal pathways, 

are not processed in the PIMO (Kim 2007). Second, the outer, most lateral portions of  the parietal 

operculum appear to be excluded from this somatosensory input. The spinothalamic system targets 

the inner operculum, rather than its outer part (e.g. Figure 5 in Dum et al 2009), and although 

noxious stimuli may entail haemodynamic activation of  the lateral operculum too (Peyron et al 2000, 

Apkarian et al 2005, Mazzola et al 2012), such stimuli most often imply simultaneous tactile input, 

which vigorously activates this area. Lesions restricted to the lateral operculum do not entail selective 

spinothalamic symptoms (Bogousslavsky et al 1991, Bowsher et al 2004), while lesions affecting the 

PIMO generate deficits identical to those encountered after injury to spinothalamic pathways (se 

above, section IId). C-driven tact and itching, which consistently activate the PIMO, spare the lateral 

operculum (Olausson et al 2002, 2008; Björnsdotter et al 2009, Drzezga et al 2001, Herde et al 2007, 

Leknes et al 2007, Mochizuki et al 2007). Conversely, Aβ tactile stimuli, which somatotopically 

activate the lateral operculum, hardly activate its medial part (Eickhoff  et al 2007). 

Evidence for different functional areas within the parietal operculum of  mammals, especially 

primates, has accumulated since the 1990‟s. This lead to functional segmentation and redefinition of  

a cortex that had sometimes been loosely labelled “S2” (Krubitzer and Kaas 1990, Krubitzer and 

Calford 1992, Krubitzer et al 1995, Burton et al 1995, Qi et al 2002, review in Kaas and Collins 

2003), and four distinct areas with their own somatotopic representations have been described in 

monkeys, two in the lateral operculum (S2 proper and Parietal Ventral area, or PV), and two in its 

medial part (Ventral Somatosensory areas caudal and rostral, VSc and VSr) (Coq et al 2004, Kaas & 

Colllins 2003). In humans, histological examination of  10 post-mortem brains also identified four 

distinct opercular regions, labelled OP1 to OP4 by Eickhoff  and colleagues (2006a,b). Two of  these 

areas are lateral (OP1 and OP4) and would correspond to S2 proper and the parietal ventral area PV 

(see Figure 4 in Eickhoff  et al 2006b), while the two medial regions, contiguous with the insula (OP2 

and OP3), appear as human equivalents of  the ventral somatosensory area (VS), retroinsular and 

insular-opercular vestibular cortex (Eickhoff  et al 2006c, 2007; Gallay et al 2012). There is an 

intimate macro- and microscopic relationship between the medial operculum and the dorsal insula: 

not only the medial opercular areas extend into the insular domain, beyond the circular sulcus in 

monkeys and humans (Kurth et al 2010, Gallay et al 2012), but also the somatotopic representation 

in inner operculum (VS areas) follows an antero-posterior axis similar to that in the posterior insula, 

and different from the medio-lateral somatotopy in lateral opercular S2/PV (Krubitzer et al 1995, 

                                                                                                                                                 
 � Exceptions to this rule are nociceptors with conduction velocity in the low Aβ range (Djouhri & 
Lawson 2004) and post-synaptic visceral afferents in the dorsal-columns (Willis et al 1999)    

 



Brooks et al 2005, Mazzola et al 2009, see Fig 15 in Coq et al 2004). Such relation is also 

neurochemical and highlighted by the study of  human opioid receptors, which shows a medio-lateral 

gradient with highest opioid receptor density in the insula and inner operculum, which decreases 

laterally (Baumgartner et al 2006). Therefore, the innermost operculum can be segregated 

histologically, somatotopically and neurochemically from the more lateral S2/PV areas, and appears 

functionally associated with the posterior insula, of  which it forms the dorsal border. The assertion 

that the primate posterior insular cortex contains “a sensory representation of  small-diameter 

afferent activity” (Craig 2002), while generally correct, should therefore include the medial 

operculum, which contains a representation of  thin afferents too (Dum et al 2009). Interestingly, the 

dorsal insular region, suggested as a specific recipient of  lamina I projections (Craig 1995), has been 

recently shown to extend into the medial operculum too, as suggested by higher myelination and 

enhanced staining for parvalbumin, SMI-32 and acethylcolinesterase (Gallay et al 2012). Together, the 

posterior insula and innermost parietal operculum behave as a somatosensory area on its own. Given 

its anatomical and functional differences from the S1 and S2 cortices, this region might be 

conceptualised as a genuine „third somatosensory area‟ (S3). 

 

V. The PIMO as cortical processor of  primitive somatosensory attributes 

From a phylogenetic perspective, several lines of  evidence suggest that the sensory attributes handled 

in the PIMO are among the oldest somatosensory capabilities of  living organisms. The most 

conspicuous PIMO role is the processing of  rudimentary mechanical, thermal and noxious inputs, 

which are essential for survival and must have developed before discriminative tactile abilities, 

stereognosis or proprioception appeared (Smith and Lewin 2009). Invertebrates (annelida) such as 

the leech possess segmental ganglia containing touch, pressure and noxious cells (Nicholls and Baylor 

1968, Pastor et al 1996). The latter respond to strong mechanical, chemical or thermal stimuli, and 

lower their threshold for repeated activation, just as mammalian nociceptors. „Wide dynamic range‟ 

neurons responding to both weak and noxious stimulation are observed in mollusca such as Aplyssia 

(Walters et al 1983), and all these primitive senses in invertebrates are conveyed by unmyelinated 

fibres. In vertebrates, the evolution pursues from an unmyelinated nervous system in the sea lamprey 

(which displays both mechanical and heat sensitivity) to fishes, where myelinated nociceptors are first 

observed (Smith & Lewin 2009). 

Study of  the ascending pathways also supports the old phylogenetic history of  spinothalamic 

system precursors. Paleospinothalamic connections have not been described in teleost fishes 

(Sneddon 2009), while they might exist in some amphibians and not in others (e.g. salamander vs. 



frog; Herrick 1948, Kevetter & Willis 1984). In the masurpial phallanger the ascending nociceptive 

system is interrupted in the brainstem (Clezy et al 1961) whereas in the Opossum 2% of  anterolateral 

fibres reach the thalamus (Mehler 1969), and the proportion of  direct fibres reaching the thalamic 

VPL/VPI increases with phylogenetic progression (Mehler 1969). Thus, a somatosensory system 

based on unmyelinated or thinly myelinated inputs appears to have preceded that of  large diameter 

myelinated fibres. Physical disjointing of  their respective cortical targets may have existed since the 

beginning, or develop in parallel with the progressive “operculation” of  the insular cortex, which is 

situated entirely on the hemisphere surface in hedgehogs and rabbits, partly covered by adjacent 

cortical formations in carnivores and prosimians, to become totally “operculated” only in primates 

and cetaceans (Brodmann 1909, Russo et al 2009, Nieuwenhuys 2012). The insula is a 

phylogenetically conservative telencephalic part that has preserved most of  its functions in species 

ranging from the Rodentia to the Primates (Russo et al 2008, Nieuwenhuys 2012), and may have 

undergone the operculation process while keeping its main functions, including that of  cortical 

recipient of  somatosensory input. Even the oldest mammals studied are provided of  5 

somatosensory areas (Kaas 1995), but the intrinsic evolution of  these regions may have been largely 

independent: for instance, mirroring of  the complete S1 body representation is a feature of  

anthropoid primates, while virtually all extant mammals have a complete S2 sensory region (Johnson 

et al 1994). Different somatosensory areas appear to have operated first as “parallel systems”, and 

thalamocortical somatosensory projections present indeed a parallel arrangement in carnivores and 

most prosimians, in which inactivation of  one area does not abolish activity in the other (Zhang et al 

1996). A serial somatosensory processing develops only in simians, in whom removal of  S1 

denervates S2 (Garraghty et al 91, review in Mountcastle 2005), suggesting new connectivity patterns 

to form a cascaded cortico-limbic somatosensory pathway involved in recognition and recall 

(Mountcastle 2005).  

 

VI. Sub-areas within the PIMO – multiple primary cortices? 

At millimetric level, different somatic representations largely overlap in the PIMO, and lesions 

restricted to this area tend to simultaneously alter thermal, tactile and pain thresholds (Greenspan et 

al 1999, Birklein et al 2005, Kim 2007, Garcia-Larrea et al 2010). In monkeys, a same neuron in the 

posterior insula could respond to noxious and non-noxious stimuli (Robinson and Burton 1980), and 

in at least one human case electrical stimulation in the insula generated first a cold sensation and later 

a painful electric-like shock (Ostrowsky et al 2002). Despite such obvious convergence, both 

intracortical stimulation and intracortical evoked potentials in humans suggest some modal 

segregation, whereby non-noxious thermal encoding tends to concentrate in the medial operculum 



whereas pain and viscero-sensitive responses predominate in the dorsal posterior insula (Mazzola et 

al 2006, Frot et al 2007) (Fig 2). Segregation is not solely cortical: a study of  63 patients with lesions 

of  ascending spinothalamic pathways found separable deficits of  touch, sharpness, innocuous 

warmth/cold, mechanical and heat pain, suggesting partially independent representation of  these 

sub-modalities at all levels (Bowsher 2005). Functional parting in insula and operculum would bear 

resemblance to that in S1, where neurons of  different sub-modalities are distributed differentially in 

post-central areas 3a, 3b, 1 and 2. Slowly and quickly adapting neurons are preferentially restricted to 

areas 3b and 1, respectively, while input from muscle spindle afferents reaches area 3a, and joint 

receptor inputs are mainly projected to area 2 on the top of  the gyrus. Noteworthy, the concept of  a 

“S1” cortex has survived despite the fact that area 3b may be considered as a “primary cortex” for 

discriminative tact, area 2 for joint position sense, and area 3a for muscle stretch perception 

(Desmedt and Ozaki 1991, Jones 1983, Kaas & Collins 2003, Kutoku et al 2007, Mountcastle 2005). 

The “S1” concept survived because it reflects a functional unit of  essentially tactile processing 

receiving input from the dorsal column – medial lemniscus system through the ventrocaudal 

thalamus. In this line, the PIMO area corresponds to another functional unit receiving input from 

spinothalamic channels through thalamic relays different from, and posterior to, the VPL/VPM 

complex. As in S1, it might be possible to separate within the PIMO different functional subareas, in 

particular a more internal part concerned predominantly with noxious stimuli (and perhaps C-tactile 

and viscerosomatic), and a more external, opercular part, where non-noxious thermal and pressure 

stimuli are preferentially processed. However, the whole system appears to share a common 

functional role as the first sensory cortical recipient of  the most primitive somatic inputs (Kim 2007). 

Between the PIMO and S1, the lateral operculum containing the S2/VP areas appears to participate 

from both systems, receiving both dorsal column - lemniscal afferents and spinothalamic input via 

the VPI (Pollin and Albé-Fessard 1979, Dykes et al 1981, Dum et al 2009). 

 

VII. Labelled lines versus network specialisation  

Segregation of  functional abilities lends support to the hypothesis that “labelled lines” with partially 

independent processing machineries may sustain specific sub-modalities, from the periphery to the 

cortex. However, while labelled lines in the ST system have received abundant anatomical support 

(e.g. Andrew and Craig 2002, Craig 2003, 2004b 2006, Bowsher 2005), they show obvious limits too. 

Recording studies in monkeys failed to discover differences between the response properties of  

individual neurons in the posterior granular insula and the adjacent operculum (Robinson and Burton 

1980, Schneider et al 1993; Zhang et al., 1999, comment in Dum et al 2009). Neurons responding to 

different sub-modalities are evenly distributed in the opercular-insular region (Robinson and Burton 



1980), and there is much evidence of  convergence of  different sub-modalities of  autonomic and 

somatosensory input in the insula, with for example neurons responding to both baroreceptor and 

nociceptive activation (Zhang et al 1999). Thalamic units projecting to the insula receive both 

autonomic and nociceptive input (Zhang et al 1997), and STT neurons responding to itching in 

primates also respond to mechanical pain and thermal heat (Davidson et al 2007, 2010). We may 

propose that segregation of  sub-modalities in sensory cortices, including the PIMO, may not rely on 

the intrinsic properties of  individual neurons, but rather on stimulus timing and biophysical network 

properties. Thus, it has been suggested that discriminating noxious from non-noxious stimuli is based 

on temporal network dynamics and reverberation within thalamocortical loops (Wang et al 2008), and 

the most conspicuous differences between itch and pain-related activations concerned timing and 

duration of  thalamic activity (Mochizuki et al 2007). Also, the much more extended connectivity 

patterns in the posterior insula than the opercular region may sustain differences in their regional 

responsiveness, the massive amount of  afferent input to the insula entailing a greater background 

activity than in the adjoining operculum. This should hamper the precise encoding of  low-energy 

stimuli barely emerging from background noise, and may explain why posterior insula networks are 

biased toward nociception (Frot et al 2007), despite the fact that approximately 70% of  primate 

insular neurons can respond to non-noxious somatic inputs too (Robinson and Burton 1980). Thus, 

the afferent signals generated in the periphery are not obligatorily „carried through‟ to the cerebral 

cortex in labelled-line systems (see comment in Jänig 1996); the cortex can create segregation by its 

internal properties, and network activity rather than intrinsic attributes of  individual neurons can 

tune a region toward a functional significance or another.   

Conclusion.  

Sensory experiences are the emergent result of  intensively connected networks, and cannot be 

„contained‟ in a discrete cortical area. The search of  a “primary cortex for pain” leads to a region 

comprising the posterior granular insula and its adjacent medial operculum, which are not solely 

devoted to nociception but also to the processing of  somatosensory attributes transmitted by the 

spinothalamic system, of  which they constitute the main cortical projection. Nociception can be 

triggered by virtually all kinds of  spinothalamic input, be it cold, heat, pressure or distension, when a 

potentially harmful deviance from homeostasis is reached. At a difference with other sensations also 

signalling homeostatic deviances, such as thirst or hunger, nociception implies urgency, and the need 

of  an immediate reaction –commonly escape. Each of  the somatosensory cortical areas, by virtue of  

its unique pattern of  extrinsic connections and intrinsic operations, contributes “a particular attribute 

to the final perceptual image” (Mountcastle 2005). Given its particular anatomo-functional 

properties, thalamic connections, and tight relations with limbic and multisensory cortices, the PIMO 



would deserve to be considered as a third somatosensory region (S3) contributing to the 

spinothalamic attributes to this final perceptual experience. 
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Figure legends 

Figure 1. The medial operculum – posterior insula contains nociceptive-specific networks. A. 

Intracortical evoked potentials to thermo-nociceptive (laser) stimuli recorded from the inner 

opercular area. Increasing the stimulus intensity enhances the amplitude of  responses, which are 

visible at sensory threshold (ST), increase till reaching pain threshold (PT) but do not change much 

between pain threshold and supra-threshold levels (upper traces) (Modified from Frot et al 2007). B. 

Points of  intracortical opercular-insular stimulation giving rise (red) or not giving rise (white) to a 

subjective painful sensation. Most of  the points evoking pain are concentrated in the dorsal posterior 

insula. (Modified from Mazzola et al 2006). C. Focal lesions entailing a selective suppression of  pain 



sensations in the opposite side of  the body, with preserved proprioception. Lesions involve the 

posterior insula and medial operculum (two left scans from Garcia-Larrea et al 2010; right frame 

from Greenspan et al 1999). D. Diagram representing in color-code the brain regions where focal 

lesions gave rise to central neuropathic pain with alteration of  pain sensitivity. The area where all 

lesions converge covers the posterior insular – medial opercular cortex (PIMO). From Garcia-Larrea 

et al 2010. All references by permission. 

 

 

Figure 2. Differential encoding of  noxious and non-noxious thermal stimuli in the PIMO. (A 

–left panel) Operculo-insular sites evoking pain and thermal perceptions in humans. Upper part: 

axial slices; lower part: coronal slices. Sites where stimulation induced non-noxious thermal 

sensations (in green) were situated more laterally, in the inner operculum, while those evoking pain 

(in red) tended to concentrate more medially, in the posterior insula (adapted from Mazzola et al Pain 

2006). B (right panel). Intracortical evoked potentials to thermal laser stimuli recorded from the 

posterior insula (black squares) and the inner operculum (black crosses). In the lower part, responses 

from 8 consecutive subjects are superimposed. Sizeable responses at low intensities (sensory 

threshold) could be obtained from opercular sites (left), but not from the insula (right), which only 

responded when intensity almost reached the subjective pain threshold. (Adapted from Frot et al, 

Cereb Cortex 2007). All references by permission.    

 

 


