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Abstract 

Hepatitis C virus (HCV) infection is a major cause of chronic liver disease and hepatocellular 

carcinoma worldwide. Furthermore, HCV-induced liver disease is a major indication of liver 

transplantation. In the past years, direct-acting antivirals (DAAs) targeting HCV enzymes 

have been developed. DAAs increase the virologic response to anti-HCV therapy but may 

lead to selection of drug-resistant variants and treatment failure. To date, strategies to 

prevent HCV infection are still lacking and antiviral therapy in immunocompromised patients, 

patients with advanced liver disease and HIV/HCV-co-infection remains limited. Alternative or 

complementary approaches addressing the limitations of current antiviral therapies are to 

boost the host’s innate immunity or interfere with host factors required for pathogenesis. 

Host-targeting agents (HTAs) provide an interesting perspective for novel antiviral strategies 

against viral hepatitis since they have (i) a high genetic barrier to resistance (ii) a pan-

genotypic antiviral activity and (iii) complementary mechanisms of action to DAAs and might 

therefore act in a synergistic manner with current standard of care or DAAs in clinical 

development. This review highlights HTAs against HCV infection that have potential as novel 

antivirals, are in clinical development, or are already in clinical use.  
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With approximately 170 million infected individuals worldwide, hepatitis C virus (HCV) 

infection is a major cause of chronic liver disease including liver cirrhosis, liver failure and 

hepatocellular carcinoma (HCC) [1-3]. HCV-induced liver cirrhosis and HCC are major 

indications for liver transplantation (LT) [4]. Thus, HCV-induced liver disease is a major 

challenge for public health [5].  

 HCV is single-stranded RNA virus of positive polarity belonging to the Flaviviridae 

family and the hepacivirus genus (reviewed in [6]). While six major genotypes and several 

different subtypes have been described worldwide, the virus also circulates as a 

quasispecies within a given infected individual. This high variability represents a challenge 

for preventive and therapeutic antiviral strategies as the virus may rapidly evade the host 

immune responses and antivirals [7, 8]. The current standard of care (SOC) of chronic HCV 

infection consists of pegylated interferon-α (PEG-IFN-α) and ribavirin (RBV). Moreover, since 

2011, the new SOC for HCV genotype 1-infected patients is a triple combination of PEG-IFN-

/RBV and a HCV protease inhibitor (telaprevir or boceprevir). Although the addition of these 

direct-acting antivirals (DAAs) improves outcome, an important limitation of these DAAs that 

may contribute to therapy failure is their low genetic barrier for resistance resulting in drug-

escape mutants during long-term treatment due to their general mechanism of action [9] and 

without imposing a large viral fitness cost. DAAs are not approved for LT [10] and IFN-α-

based antiviral therapies have limited efficacy and tolerability in LT recipients. In addition to 

licensed DAAs, other DAAs are at various stages of clinical development in combination with 

PEG-IFN-α or in IFN-free regimens, including second-generation protease inhibitors, 

polymerase and non-structural protein 5A (NS5A) inhibitors. Although rapid decline in HCV 

RNA levels and/or eradication of HCV in IFN-free regimens have been demonstrated in 

clinical trials, viral breakthroughs due to the selection of HCV resistant-variants as well as 

differences in virological outcomes for different genotypes and subtypes have been reported. 

Furthermore, many of these drugs were associated with side effects and raised issues 

related to drug-drug interactions [11]. Finally, it is not yet clear whether DAA-based therapies 

will be effective in difficult-to-treat patients, such as null responders to prior PEG-IFN-α/RBV 
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therapy, patients with advanced liver disease, LT recipients, HIV/HCV-coinfected individuals, 

hemodialysis patients, or immunosuppressed patients [10].  

 Another challenge in the management of chronically infected patients is the absence 

of strategies for prevention of liver graft infection. Development of preventive strategies 

based on anti-HCV envelope antibodies has been challenged by the high variability of HCV 

resulting in rapid viral escape [12-15]. Proof-of-concept of broadly cross-neutralizing 

antibodies in man remains to be demonstrated. Thus, there is an unmet medical need for 

efficient and safe antiviral strategies for difficult-to-treat patients and for prevention of HCV 

graft infection during LT.  

Recent proof-of-concept studies in preclinical models and clinical trials have 

highlighted that host-targeting agents (HTA) provide a novel and promising strategy to 

address current unmet medical needs and limitations of SOC. Two main concepts for HTAs 

are explored: the first strategy aims to interfere with host factors required for pathogenesis, i. 

e. to target host factors indispensible for the viral life cycle. These include host cell entry, 

replication and assembly factors. The second strategy is to target the host by boosting the 

host’s innate immunity, e. g. through the administration of IFN- [16] or Toll-like receptor 

(TLR) agonists [17-19].  

HTAs offer a promising perspective due to the following features distinguishing them 

from DAAs: Compared to the viral variability, genetic variability of the host is low. Thus, HTAs 

impose a very high genetic barrier to resistance [14, 15, 20-23]. As HTAs are essential for 

the viral life cycle, HTAs are characterized by a broad pan-genotypic activity while first 

generation DAAs targeting HCV are characterized by a very narrow antiviral activity limited to 

genotype 1. Indeed, HTAs have been shown to inhibit infection by HCV of all major 

genotypes, highly variable quasispecies isolated from individual patients and highly infectious 

escape variants that are resistant to host neutralizing antibodies [14, 20, 21, 24-27]. Finally, 

by acting through a complementary mechanism of action, HTAs may synergistically act with 

current anti-HCV SOC [28, 29]. It is expected that this synergy will increase the genetic 
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barrier for resistance, shorten treatment schedules and ameliorate adverse effects by 

reducing the doses of the individual compounds. 

This review will highlight recent progress in the development of HTAs targeting HCV 

infection that have the potential to clear chronic HCV infection or prevent HCV infection of 

the liver graft.  

 

Host-targeting agents against hepatitis C virus infection 

The HCV life cycle may be divided into three main steps: viral entry into the target cell, viral 

replication as well as assembly and release of new infectious virions (Figure 1). Each steps 

of the HCV life cycle is dependent on host cell factors [30], thereby offering numerous targets 

for HTAs (Figures 1-3, Table 1).  

 

Entry inhibitors 

Viral entry is the first step of HCV-host cell interactions and involves the HCV envelope 

glycoproteins E1 and E2 as well as several host factors. It is believed that cell-free HCV 

entry is a highly coordinated multistep process (Figure 1). Highly sulfated heparan sulfate 

proteoglycans [31] represent first attachment sites, allowing viral concentration on the 

basolateral hepatocyte membrane. The virus then interacts with several entry factors 

including scavenger receptor BI (SR-BI) [32], CD81 [33], claudin-1 (CLDN1) [34] and 

occludin (OCLN) [35]. The formation of CD81-CLDN1 complexes is essential for HCV 

infection [36, 37]. In addition, host cell kinases play an important role in regulating the HCV 

entry process [21, 38, 39]. Among them, two cell surface receptor tyrosine kinases (RTKs) 

have been identified as HCV entry factors: epidermal growth factor receptor (EGFR) and 

ephrin receptor A2 (EphA2). EGFR and EphA2 promote CD81-CLDN1 co-receptor 

interaction that is required for HCV entry [21]. The Niemann-Pick C1-Like1 (NPC1L1) 

cholesterol absorption receptor has recently been proposed as another host entry co-factor 

[40]. Given its physiological role, NPC1L1 may promote HCV entry either directly by 

interacting with the HCV lipoviral particle cholesterol or act as indirect entry factor by 
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modulating cholesterol homeostasis and membrane composition required for HCV entry. 

HCV is internalized via clathrin- and dynamin-dependent endocytosis and is subsequently 

delivered to the early endosome [41-44]. CD81 and CLDN1 associate during internalization 

[44, 45], but it remains unclear whether other HCV host factors internalize together with HCV. 

Although required for CD81-CLDN1 interaction, EGFR does not seem to be essential for 

CD81 internalization [44]. The fusion of the viral and the endosomal membrane is pH-

dependent and involves both viral and host proteins [41, 46-48]. Among host entry factors, 

CD81 and CLDN1 play a role in HCV envelope glycoprotein-dependent cell-cell fusion 

process [34, 49], which is regulated by RTK function [21]. 

An alternative route of viral entry is direct cell-cell transmission, which also requires 

numerous host factors including CD81, SR-BI, CLDN1, OCLN, EGFR, EphA2 and potentially 

NPC1L1 [21, 40, 50, 51]. As this entry route is resistant to the majority of neutralizing 

antibodies described so far, direct cell-cell transmission probably represents the main 

process of viral spread [50, 51]. It is worth noting that there is an overlap of host factors 

required for cell-free and cell-cell transmission as most of the host factors involved in cell-

free entry have also been described to play a role in cell-cell transmission.  

Targeting HCV entry factors may thus allow to prevent initiation of HCV infection, 

such as after LT, and also reduce viral spread and thus maintenance of infection. However, 

while cell-free HCV entry is strictly dependent on CD81, CD81-independent routes of cell-cell 

transmission have been described [52, 53]. This has to be taken into account for the 

development of HTA directed against HCV entry factors.  

Viral entry has been shown to play an important role for the pathogenesis of HCV 

infection, especially during HCV reinfection of the graft after LT [14, 15]. Viral entry is thus a 

very promising target for prevention of HCV infection of the liver graft (Figure 2). Numerous 

HTAs directed against host entry factors demonstrated potent antiviral activity in vitro 

(reviewed in [54]). Proof-of-concept studies of HTAs targeting HCV entry have been 

conducted in vivo using the chimeric uPA-SCID mouse model. Antibodies directed against 

CD81 and SR-BI have both been investigated in prophylactic and post-exposure treatment 
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studies. Administration of 400 µg of either anti-CD81 or anti-SRBI monoclonal antibodies 

(mAbs) completely protected mice from challenge with HCV [55-57]. Noteworthy, only the 

administration of anti-SR-BI mAb was able to reduce viral dissemination [56, 57]. The 

clinically approved EGFR inhibitor erlotinib, preventing the formation of CLDN1-CD81 

complexes, and NPC1L1 inhibitor ezetimibe, that decreases systemic cholesterol in patients, 

markedly impaired the establishment of HCV infection in the uPA-SCID mouse model [21, 

40]. Indeed, administration of erlotinib (50 mg/kg/day for 10 days) or ezetimibe (10 mg/kg/day 

for 2 weeks) prior to viral inoculation significantly delayed the kinetics of HCV infection [21, 

40]. The clinical potential of kinase inhibitors has been emphasized in a recent case report 

describing rapid virologic response (RVR) after erlotinib monotherapy (150 mg/day for 12 

months) in a HCV-positive HCC patient after LT and viral recurrence due to a discontinued 

SOC treatment [58]. A clinical trial investigating safety and toxicity of erlotinib in chronically 

HCV infected patients will soon be conducted to further assess the potential of kinase 

inhibitors as anti-HCV drugs in combination with DAAs. A Phase 1b study assessing the 

safety of ITX5061 [26], a small molecule inhibitor targeting the HCV entry factor SR-BI, in 

HCV-treatment naive patients is ongoing and an open-label, proof-of-concept Phase 1b 

study assessing the safety and tolerability of ITX-5061 in LT patients has been initiated 

(Table 1).  

Although HCV entry inhibitors are still at a very early step of clinical development, it 

has been demonstrated that combinations of entry inhibitors with IFN-, DAAs, or other 

HTAs in vitro result in an enhanced antiviral activity, compared to each compound used in 

monotherapy, in a synergistic manner [28, 29]. This holds promise for entry inhibitors as part 

of SOC as well as future IFN-sparing regimen(s) for the treatment of HCV infection. 

 

HCV replication inhibitors  

Following HCV entry, the HCV RNA genome is released into the cytosol. Initiation of HCV 

translation occurs through binding of the 40S ribosomal subunit to the HCV IRES and this 

association can be enhanced by miRNA122, a liver-specific miRNA [59, 60]. miR122 is also 
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an important host factor for HCV replication [24] and miR122 sequestration using 122-2’OMe 

oligomers or miR122 antisense locked nucleic acid SPC3649 reduces HCV replication in a 

genotype-independent manner in vitro [24, 25]. Interestingly, weekly intravenous 

administration of miR122 antisense locked nucleic acid miravirsen/SPC3649 (5 mg/kg) for 12 

weeks to chronically genotype 1-infected chimpanzees lead to sustained suppression of HCV 

viremia, with no evidence of viral resistance [61]. Given the physiological role of miR122 in 

cholesterol metabolism, miravirsen/SPC3649 led to markedly lowered serum cholesterol in 

animals but no important adverse effects were observed [61-63]. Recently, the safety, 

tolerability and efficacy of miravirsen/SPC3649 have been assessed in a Phase 2a study 

(Table 1). Miravirsen/SPC3649 given as a four-week monotherapy (3, 5 and 7 mg/kg) to 

treatment-naïve genotype 1 patients was well tolerated and provided robust, dose-dependent 

antiviral activity that was maintained for more than four weeks after the end of therapy [23]. 

Four out of nine patients treated at the highest dose with miravirsen/SPC3649 (7 mg/kg) 

became HCV RNA undetectable during the study. Although markedly decreased 

pretreatment miR122 levels had been reported in livers of chronic HCV-infected patients who 

did not achieve virological response during IFN therapy [64], the data from this first clinical 

trial indicate that targeting miR122 in vivo offers a high barrier to viral resistance and the 

potential for combination in a future IFN-free regimen [23]. Most recently, an allosteric self-

cleavable ribozyme capable of releasing antisense sequence to miR122 only in the presence 

of HCV NS5B was developed in order to minimize potential side effects related to targeting 

physiological miR122 functions [65]. The safety and efficacy of this strategy will next have to 

be assessed in vivo.  

HCV RNA replication depends on viral protein association with altered intracellular 

membranes, probably derived from the endoplasmic reticulum (ER), in a so called 

membranous web (reviewed in [66]). The HCV replication complex, i. e. viral RNA and viral 

proteins associated to altered host cell membranes, is dependent on the host cell lipid 

metabolism. Indeed, this complex requires elements of cholesterol and fatty acid synthesis 

and geranylgeranylation of host proteins as in vitro HCV replication can be disrupted by 
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treatment with inhibitors of 3-hydroxy-3-methyglutaryl CoA (HMGCoA) reductase - such as 

the statin lovastatin, L-659,699 or ZA - or with an inhibitor of protein geranylgeranyl 

transferase I [67, 68]. This is in line with data indicating that HCV replication during acute 

infection of chimpanzees is associated with the modulation of several genes involved in lipid 

metabolism [69]. Noteworthy, not all HMGCoA reductase inhibitors also inhibit HCV 

replication as the statin pravastatin exhibits no anti-HCV activity while fluvastatin has the 

strongest antiviral effect [70]. While initial clinical studies indicated that statin monotherapy 

did either not significantly modulate HCV RNA levels or only modestly reduced HCV RNA in 

chronic HCV patients [71-73], statins may represent interesting adjuvants to SOC. Indeed, 

fluvastatin (20 mg/day) increased the response to PEG-IFN-/RBV, especially in aged 

women who respond poorly to SOC [74]. Moreover, in two recent large retrospective 

analyses, statin use was associated with an improved sustained virological response (SVR) 

in patients receiving combination antiviral therapy [75, 76]. However, the addition of 

fluvastatin (80 mg/day) to PEG-IFN-/RBV did not significantly increase SVR rates in 

HIV/HCV genotype 1 co-infected patients (also receiving highly active antiretroviral (HAART) 

therapy with a complete suppression of HIV replication) although it did significantly improve 

the rapid virological response (RVR) [77]. Taken together, these clinical trials indicate that, 

with the exception of HIV/HCV coinfected patients, statins may increase the efficacy of SOC 

in chronic HCV infected patients. Interestingly, most recently small molecule inhibitors of SKI-

1/S1P, a lipogenic pathway regulator upstream of HMGCoA reductase, have been described 

[78]. The most potent inhibitor, PF-429242, inhibited HCVcc replication more efficiently than 

statins and, in contrast to statins, also reduced infectious particle production [78]. SKI-1/S1P 

inhibitors may thus also be considered for development of novel antivirals.  

Cyclophilins are also important host factors for HCV replication and CypA has been 

demonstrated to interact with HCV NS5A [79, 80]. Cyclophilins had been identified as host 

targets for antiviral therapy more than 20 years ago as cyclosporine, a widely used 

immunosuppressive drug, was demonstrated to inhibit non-A non-B hepatitis virus [81]. More 

recently, cyclosporine analogs lacking immunosuppressive activity and displaying higher 
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in vitro antiviral activity, e. g. alisporivir/Debio 025, NIM811 and SCY-635, have been 

developed [82-84]. These compounds disrupt CypA-NS5A interaction [85, 86]. Moreover, 

SCY-635, currently in Phase 1 clinical study, enhances secretion of type I and type III IFNs in 

replicon cells and increased the expression of IFN response genes [87]. These data suggest 

that in addition to inhibiting viral replication, CypA inhibitors may restore the host innate 

immune responses to HCV inhibitors and thereby enhance their antiviral activity [87]. 

Interestingly, alisporivir/Debio 025 has also proven anti-HIV activity in vitro as this molecule 

inhibits CypA-HIV capsid protein binding [88, 89]. CypA inhibitors may thus have an 

additional benefit in HIV/HCV co-infected patients. In a Phase 1 study, 14-day oral 

alipsorivir/Debio 025 (1200 mg twice daily) treatment significantly reduced HCV RNA serum 

levels in HIV/HCV co-infected patients independently of the HCV genotype (1, 3 and 4) [90]. 

However, potent synergy between alisporivir/Debio 025 (200, 600 and 1200 mg twice a day 

for one week and then once daily) and PEG-IFN- was also observed in a subsequent 

Phase 2 study demonstrating that addition of alisporivir/Debio 025 increases RVR [91]. 

Further Phase 2 trials also demonstrated improved efficacy and good tolerance adding 

alisporivir/Debio 025 to PEG-IFN-/RBV without selection of resistant variants (reviewed in 

[92]). This CypA inhibitor is thus characterized by a high barrier to resistance and is the first 

HTA that reached Phase 3 studies (Table 2). Given three cases of acute pancreatitis, the 

FDA recently put a clinical hold on this trial before proceeding to the next steps. The fact that 

the combination of alisporivir/Debio 025 with DAAs resulted in additive antiviral activity in 

short-term in vitro antiviral assays [93] holds promise for HTAs as part of future IFN-sparing 

regimen(s) for the treatment of HCV infection.  

 

HCV assembly/release inhibitors  

Following HCV replication, new infectious virions are assembled in the vicinity of lipid 

droplets and ER [94-97]. The HCV particle is composed of an encapsidated RNA genome 

that is surrounded by an envelope composed of the envelope glycoproteins E1 and E2 [98, 

99]. E1 and E2 associate as a noncovalent heterodimer and are essential for viral infectivity 
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as they mediate interactions with different host cell factors during viral binding and entry. E1 

and E2 are heavily N-glycosylated, contain ER retention signals and are processed within the 

ER by glucosidases I and II to ensure proper folding and assembly [98]. HCV assembly has 

been suggested to parallel VLDL assembly [100-102]. Microsomal triglyceride transfer 

protein (MTP), the rate limiting enzyme of VLDL assembly [103], probably also contributes to 

HCV particle assembly [101].  

Targeting host glucosidases thus represents a promising strategy to interfere with 

viral infectivity (Table 1). MX-3253/celgosivir (reviewed in [104]), an alpha-glucosidase I 

inhibitor, induces misfolding of HCV envelope glycoproteins and leads to reduced viral 

infectivity in vitro [105, 106]. MX-3253/celgosivir demonstrated modest antiviral efficacy in a 

Phase 2a monotherapy study (200 and 400 mg/day for 12 weeks) in treatment-naive and 

IFN-intolerant genotype 1 HCV patients [107]. While MX-3253/celgosivir (400 mg/day for 12 

weeks) demonstrated clinical benefit in combination with PEG-IFN-/RBV in chronic HCV 

genotype 1 infected patients [108], the further development of MX-3253/celgosivir for HCV 

infection has subsequently been halted.  

Compounds inhibiting VLDL assembly, such as MTP inhibitors, also reduce HCV 

release from infected cells [100-102]. MTP inhibitors have been developed for treatment of 

dyslipidemia and currently several MTP inhibitors are in clinical trials for the treatment of 

hypercholesterolemia or hyperlipidemia (reviewed in [109]). However, whether MTP inhibitors 

display an antiviral effect against HCV infection in vivo remains to be determined. Moreover, 

recent screens revealed that several approved drugs display antiviral activity against HCV by 

targeting HCV assembly and/or release: these studies identified two anti-cancer drugs, 

pterostilbene (a methylated form of resveratrol) and torimefene (a derivative of tamoxifene) 

[110] as well as quinidine, a class I antiarrhythmic agent [111] as potential antivirals against 

HCV. Taken together, these data indicate the further potential of clinical development of HCV 

assembly inhibitors for the treatment of chronic hepatitis C. 
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Clinical perspectives of HTAs interfering with the HCV life cycle 

To date, the main issue of anti-HCV SOC is to avoid viral resistance and severe side effects. 

Generally speaking, the use of DAAs against different potential highly variable viruses, such 

as HCV, HIV or influenza virus, is associated with the development of resistance while HTAs, 

acting on cellular targets that are less prone to mutations, may impose a higher genetic 

barrier for resistance (Figure 3) [112, 113]. On the other hand, the principle theoretical 

drawback of using HTAs is their potential greater cellular toxicity. Nevertheless, it has to be 

pointed out that the development of several DAAs targeting HCV, such as BILN 2061, had to 

be stopped due to severe side effects [114]. Moreover, the majority of current drugs widely 

used for cardiovascular, neurological or endocrine diseases as well as cancer, targets host 

proteins [115-117]. Thus, side effects have to be carefully evaluated for novel antiviral 

strategies against hepatitis C irrespective of the drug target. 

While DAAs allow to increase the virological response of HCV genotype 1-infected 

patients, a large fraction of chronic HCV patients, especially HIV/HCV co-infected patients 

and patients undergoing LT, will not be eligible for DAAs given the important drug-drug 

interactions with anti-retroviral therapy and immunosuppressive agents. Noteworthy, synergy 

between IFN-, DAAs and HTAs allowing to decrease the concentrations of the individual 

compounds [28, 29] holds promise for a variety of possibilities of future combination therapy 

treatments of hepatitis C infection that may be adapted to the individual patient. Furthermore, 

given (i) the importance of host entry factors for HCV reinfection of the graft during LT [15], 

(ii) the broad antiviral activity of entry inhibitors against viral escape variants selected during 

LT [14, 20, 21], and (iii) the synergy between entry inhibitors and neutralizing anti-HCV 

envelope antibodies [27], entry inhibitors also represent a promising strategy to prevent viral 

reinfection of the liver graft (Figure 2).  

 

Conclusions and perspectives 

The goal of current anti-HCV SOC is sustained viral eradication. However, due to the high 

variability of HCV, viral resistance and subsequent treatment failure remain major 
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challenges. Moreover, therapeutic strategies for a large fraction of patients, especially 

HIV/HCV co-infected patients, patients with immunosuppression and co-morbidity and 

patients undergoing LT remain limited [7, 118]. Although early clinical trials have 

demonstrated impressive outcomes for combinations of DAAs in IFN-free regimens for 

treatment naïve patients [11] there will be a need for antivirals addressing resistance, 

treatment of patients with co-morbitity, co-medication or immunosuppression and patients 

undergoing LT [10].  

Alternative or complementary approaches to current anti-HCV therapies are to boost 

the host’s innate immunity or interfere with host factors required for pathogenesis. HTAs act 

on cellular targets and thus may impose a higher genetic barrier for resistance than DAAs. 

Moreover, HTAs are usually characterized by a pan-genotypic antiviral activity. In the past 

years, tremendous progress has been made in the characterization of the HCV life cycle and 

several host targets for specific antiviral therapy have been uncovered. Alisporivir/Debio 025 

and miravirsen/SPC3649, two HTAs inhibiting HCV replication, recently completed proof-of-

concept in man [23, 92]. Many other HTAs targeting the HCV life cycle are at different stages 

of preclinical and clinical development suggesting that the therapeutic arsenal against 

chronic HCV infection may widen within the next years. Furthermore, recent studies 

underscored the importance of host factors during HCV liver graft infection and highlighted 

the potential of HCV entry inhibitors for prevention of graft infection during LT [15, 20, 21, 57, 

119].  

The recent preclinical and clinical development of HTAs for HCV as well as novel 

HTA-based strategies for other pathogens including other viruses and bacteria [120] 

highlights the promise of this approach to address unmet medical needs in the prevention 

and treatment of virus-induced liver disease. 
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Key points 1 

 With more than 170 million infected individuals, viral hepatitis C is a major cause of 

chronic liver disease and HCC worldwide. 

 HCV-induced liver cirrhosis and HCC are major indications for liver transplantation (LT). 

 In contrast to hepatitis B virus (HBV), strategies for immunoprevention of HCV reinfection 

of the graft are absent. 

 The high variability of HCV represents a challenge for preventive and therapeutic antiviral 

strategies. 

 DAAs increase the response to interferon-based antiviral therapy against HCV genotype 

1 but also lead to selection of drug-resistant HCV variants. 

 Given their important side effects and drug-drug interactions, DAAs against HCV are not 

approved for patients undergoing LT, HCV/HIV co-infected patients or pediatric patients. 

 First generation DAAs are not efficient against all HCV genotypes. 

 Although early clinical trials have demonstrated impressive outcomes for combinations of 

DAAs in IFN-free regimens for treatment naïve patients, there will be a need for novel 

antivirals addressing resistance, treatment of patients with co-morbitity, co-medication or 

immunosuppression and patients undergoing LT.  
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Key points 2 

 The HCV life cycle offers several well characterized host targets for antiviral therapy.  

 Due to low genetic variability of host factors, HTAs may impose a higher genetic barrier 

to resistance than DAAs. 

 Most HTAs have a pan-genotypic antiviral activity. 

 Given their complementary mechanism of action, HTAs may inhibit viral infection in a 

synergistic manner in combination with IFN- and/or DAAs. 

 As for DAAs, host-related adverse effects need to be carefully addressed. 

 Pan-genotypic antivirals alisporivir/Debio 025, a specific HTA targeting cyclophilin A, and 

miravirsen/SPC3649, a miR-122 antisense locked nucleic acid, have completed proof-of-

concept in man.  

 Many other HTAs targeting the HCV life cycle are at different stages of development.  

 Synergy between IFN-, DAAs and HTAs holds promise for a variety of possibilities of 

combination therapies for prevention and treatment of hepatitis C infection. 

 HTAs offer the perspective to improve antiviral treatment by decreasing resistance, 

shortening of treatment duration and ameliorating adverse effects. 

 Given the importance of host entry factors for HCV reinfection of the graft during LT, 

entry inhibitors represent a promising strategy to prevent viral reinfection of the liver graft. 
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Figure legends 

Figure 1. Host factors required for the hepatitis C virus life cycle as antiviral targets. 

Outline of the hepatitis C virus (HCV) life cycle in polarized hepatocytes. Host-targeting 

agents (HTAs) and biological response modifiers (BRMs) are indicated in the figure 

according to their presumable point of interference with the viral life cycle. ER, endoplasmic 

reticulum; HS, heparan sulfate proteoglycans; RTKs, receptor tyrosine kinases; SR-BI, 

scavenger receptor BI; CD81, cluster of differentiation 81; CLDN1, claudin-1; OCLN, 

occludin; NPC1L1, Niemann-Pick C1-like 1 cholesterol absorption receptor; apo, 

apolipoprotein; BC, bile canaliculus; TJ, tight junction; Ab, antibody; miR, microRNA; 

HMGCoA, 3-hydroxy-3-methyglutaryl CoA reductase; MTP, microsomal triglyceride transfer 

protein; TLR, Toll-like receptor; IFN, interferon. 

 

Figure 2. HCV entry host-targeting agents for prevention of HCV liver graft infection. 

During liver transplantation, highly infectious variants of the HCV quasispecies escaping from 

the host neutralizing antibodies (nAbs) infect the liver graft. This "bottleneck" effect is caused 

by the implantation of a new graft and the lack of selective pressure due to the strong 

immunosuppression (inset). The inset shows the mechanism of re-infection of naïve 

hepatocytes and viral spread in the liver graft. HCV variants may spread from cell to cell (i) 

indirectly after being secreted from the infected cell and thus being accessible to nAbs (cell-

free transmission) and (ii) directly without being released from the cell and thus being 

protected from nAbs (cell-cell transmission). As a consequence, highly infectious HCV 

variants escaping the host neutralizing immune response are selected during re-infection of 

the new liver graft through a “bottleneck” effect [14, 15]. HCV entry factors are required for 

both ways of transmission and are targets of HTAs. Entry HTAs targeting HCV entry factors 

inhibit HCV entry and spread of all major genotype as well as of HCV escape variants that 

re-infect the liver graft [14, 20, 21, 26, 119]. 

 



 19 

Figure 3. Host-targeting agents exhibit a high genetic barrier of resistance. HCV 

lipoviral particles circulate as quasispecies of viral variants that infect and replicate in 

hepatocytes. The mechanism of viral escape to drug therapy differs between direct-acting 

antivirals (DAAs) and host targeting agents (HTAs). (Left panel) DAAs efficiently inhibit the 

replication of DAA-sensitive HCV variants. An HCV variant that is resistant to DAA treatment 

becomes the predominant HCV variant escaping the antiviral treatment. (Right panel) 

Targeting host factors required for HCV entry and infection inhibit a broader spectrum of 

variants and genotypes since the host factor usage is usually highly conserved for all viral 

variants. As a consequence, the genetic barrier of viral resistance to HTA treatment is higher 

compared to DAA treatment. 
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