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Abstract Data below the quantification limit (BQL data) are a common challenge in data
analyses using nonlinear mixed effect models (NLMEM). In the estimation step, these data
can be adequately handled by several reliable methods. However, they are usually omitted or
imputed at an arbitrary value in most evaluation graphs and/or methods. This can cause trends
to appear in diagnostic graphs, therefore, confuse model selection and evaluation. We extended
in this paper two metrics for evaluating NLMEM, prediction discrepancies (pd) and normalised
prediction distribution errors (npde), to handle BQL data. For a BQL observation, the pd is
randomly sampled in a uniform distribution over the interval from 0 to the probability of being
BQL predicted by the model, estimated using Monte Carlo (MC) simulation. To compute npde
in presence of BQL observations, we proposed to impute BQL values in both validation dataset
and MC samples using their computed pd and the inverse of the distribution function. The
imputed dataset and MC samples contain original data and imputed values for BQL data. These
data are then decorrelated using the mean and variance - covariance matrix to compute npde.
We applied these metrics on a model built to describe viral load obtained from 35 patients in
the COPHAR 3 - ANRS 134 clinical trial testing a continued antiretroviral therapy. We also
conducted a simulation study inspired from the real model. The proposed metrics show better
behaviours than naive approaches that discard BQL data in evaluation, especially when large
amounts of BQL data are present.

Keywords model evaluation · nonlinear mixed effect models · prediction discrepancies ·
normalised prediction distribution errors · limit of quantification · HIV dynamic model

Introduction

Nonlinear mixed effect models (NLMEM), also referred to as population analysis, have gained
broad acceptance in longitudinal data analysis since their first applications to pharmacokinetic
data, introduced by Sheiner et al in the late 1970s [1, 2]. NLMEM can help us to understand
many complex nonlinear biological processes as well as the mechanisms of drug action, the differ-
ent sources of variation, e.g., the interindividual variability. NLMEM are also useful to study the
progression of chronic diseases under treatment such as chronic infections with hepatitis virus
or HIV [3–6]. In HIV infection, the viral load is a widespread marker for the disease progression
and decrease of HIV viral load is used to evaluate the efficacy of antiretroviral treatment [4, 7–9].
NLMEM are well adapted to study repeated viral load measurements and different sources of
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variation. HIV viral load evolution can be characterised by a complex system of several differen-
tial equations [7–11] but in practice, the biphasic decline of HIV viral load under treatment can
be simply described by a bi-exponential model. This model is an approximate analytical solution
for the complex differential equations system obtained through additional assumptions: a con-
stant concentration of CD4+ cells during treatment and no pharmacokinetic/pharmacodynamic
(PK/PD) delay [7, 8].

NLMEM are associated with a number of assumptions with regards to the complex nonlinear
model structure, variability distributions etc. It is therefore a crucial part of modeling to assess
the validity of these assumptions by evaluating how well the model predicts a validation dataset.
The validation dataset can be the original dataset that was used to build the model (internal
evaluation) or can be another dataset (external evaluation). We define the null hypothesis, H0,
the fact that the tested model describes adequately the validation dataset. Many evaluation
methods have been developed and used for assessing NLMEM. The methods based on residuals
and prediction errors are the most classical diagnostic tools. However, in the context of NLMEM,
these metrics show poor statistical properties, due to the linearization step required in their
computation [12]. Another family of evaluation tools, Posterior Predictive Check (PPC), was
proposed by Bayesian statisticians [13, 14]. These PPC metrics are also known under the name
"simulation-based metrics" as simulations are required in their computation. These methods con-
sist in comparing a statistic calculated from the validation dataset with the predictive distribution
of the chosen statistic under the tested model. They are shown to present better behaviours than
residuals-based methods. Several metrics belonging to this family are now widely used for eval-
uating NLMEM, e.g. the Visual Predictive Check (VPC) [15], the Numerical Predictive Check
(NPC), the prediction discrepancies (pd) [12] or the normalised prediction distribution errors
(npde) [16, 17]. In this family, the prediction discrepancy (pd), an evaluation metric proposed
by Mentré and Escolano, is widely used to evaluate NLMEM in PK/PD modeling [12, 18]. In
case of repeated measurements, if modelers want to perform statistical tests, npde, a decorrelated
version of the metric, should be used instead of pd because pd are correlated within individuals
[16–19]. These metrics are now routinely output in NONMEM and MONOLIX, the two most
popular software for PK/PD modelling. A library for R (npde) is also available [17].

Data below the limit of quantification (LOQ) is a common challenge in data analysis using
NLMEM. In fact,the decline of viral loads below the detection limit is a marker of the efficiency of
HIV treatments. Consequently, the proportion of BQL data observed during HIV clinical studies
increases with the appearance of more efficient treatments. This is a concern for parameter
estimation, since it was shown that common naive approaches such as discarding all these BQL
data or imputing them at an arbitrary value (LOQ or LOQ/2) could lead to biased and inaccurate
estimates if the percentage of BQL data is high [20–23]. More sophisticated approaches that
account for BQL data in the likelihood function were also developed and evaluated such as the
M3, M4 methods [22–25], the MCEM algorithm [26] or the extended SAEM algorithm [6]. These
methods were shown to allow more accurate and less biased estimates than the naive approaches
[6, 22, 23, 25]. However, although BQL data are correctly handled during the estimation step, they
are often omitted or imputed at an arbitrary value in most of the current evaluation methods.
In this paper, we show how trends can appear in diagnostic graphs when BQL data are omitted
from the plots and we extend two evaluation metrics (pd and npde) to take into account these
data. As the bi-exponential HIV dynamic model has been used as illustrated example in another
study on BQL data [6], we decided to use that model to illustrate the use of the new metrics and
to evaluate their properties. We first applied the new metrics to evaluate a HIV dynamic model
describing the HIV viral load evolution under a new anti-retroviral treatment. The HIV viral load
data were obtained in the COPHAR 3 - ANRS 134 trial, a phase II clinical trial supported by the
French Agency for AIDS Research [27]. A simulation study was also carried out to evaluate the
graphical use of the two new metrics using diagnostic tools as well as their statistical properties
(type I error and power) using statistical tests.
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Statistical methods

Notations

Let i denote the ith individual (i = 1, . . . , N) and j the jth measurement of an individual
(j = 1, . . . , ni, where ni is the number of observations for individual i). The statistical model for
the observation yij in individual i at time tij is given by:

yij = f(tij , θi) + εij (1)

where the function f is a (nonlinear) structural model supposed to be identical for all individuals,
θi is the vector of the individual parameters and εij is the residual error, which is assumed to
be normal with zero mean. We assume that the variance of the error follows a combined error
model:

V ar(εij) = (σinter + σslope × f(tij , θi))
2 (2)

where σinter and σslope are two parameters characterizing the error model. We can also assume
a constant error model in which σslope = 0 or a proportional error model where σinter = 0.

The individual parameters θi can be decomposed into fixed effects µ representing mean effects
of the population and random effects ηi specific for each individual. We assume frequently an
additive effect, e.g., for the qth component of the vector θi:

θiq = µq + ηiq (3)

or an exponential effect:
θiq = µq × exp(ηiq) (4)

It is assumed that ηi ∼ N(0, Ω) with Ω defined as the variance - covariance matrix so that each
diagonal element ω2

q represents the variance of the qth component of the random effect vector ηi.
We define Ψ the vector of population parameters, including the vector of fixed effect param-

eters µ, parameters characterizing the distribution of random effect (unknown elements of the
variance - covariance matrix Ω) and parameters for residual errors (σslope, σinter), Ψ ={µ, Ω,
σslope, σinter}.

Prediction discrepancies

The null hypothesis assumes that the validation dataset can be described by the model being
tested. First, to compute the prediction discrepancy, let pi(y|Ψ) be the whole marginal predictive
distribution of observations for the individual i predicted by the tested model, it is defined as:

pi(y|Ψ) =

ˆ

p(y|θi, Ψ)p(θi|Ψ)dθi (5)

Let Fij denote the cumulative distribution function of the predictive distribution pi(y|Ψ). The
prediction discrepancy is defined as the percentile of an observation in the predictive distribution
pi(y|Ψ), as given by:

pdij = Fij(yij) =

ˆ yij

pi(y|Ψ)dy =

ˆ yij
ˆ

p(y|θi, Ψ)p(θi|Ψ)dθidy (6)

The discrepancy can be considered as a new "type" of residuals: unlike the "classical" resid-
ual or prediction error which is the difference between the observation and a fitted or predicted
value, the prediction discrepancy evaluates the position of the observation in its predictive dis-
tribution. In NLMEM, the predictive distribution pi(y|Ψ) has no analytical expression and can
be approximated by MC simulation. In this method, we simulate K datasets using the design of
the validation dataset and the parameters of the tested model. The prediction discrepancy can
then be calculated as:

pdij = Fij(yij) =
1

K

K∑
k=1

1
y

sim(k)

ij
<yij

(7)



4 J Pharmacokinet Pharmacodyn (Year) Vol39

where y
sim(k)
ij is the simulated observation at time tij for the ith individual. Note that if yij ≤

y
sim(k)
ij for all k = 1 . . . K, then pdij = 1

2K
. Similarly, if yij ≥ y

sim(k)
ij for all k = 1 . . . K, then

pdij = 1 − 1
2K

.
BQL observations are referred to as left-censored observation, denoted ycens

ij . Using the pre-

dictive distribution, we can evaluate its probability of being under LOQ at time tij for the ith

individual, Pr(ycens
ij ≤ LOQ) predicted from the model:

Pr(ycens
ij ≤ LOQ) = Fij(LOQ) =

1

K

K∑
k=1

1
y

sim(k)

ij
≤LOQ (8)

We propose to compute the pd for a left-censored observation ycens
ij , pdcens

ij , as a random
sample from a uniform distribution over the interval [0, P r(ycens

ij ≤ LOQ)], assuming that the
model is correct.

By construction, pd are expected to follow a uniform distribution U [0, 1]. pd can also be
transformed to a normal distribution using the inverse function of the cumulative distribution
function Φ of N (0, 1):

npdij = Φ−1(pdij) (9)

where the npd are the normalised prediction discrepancies.
In case of repeated measurements, npd within an individual are correlated which increases

the type I error of the test.

Prediction distribution errors

In order to decorrelate pd, Brendel et al [16] proposed to decorrelate the observations and pre-
dictions before computing pd by evaluating the mean E(yi) and the variance - covariance matrix
V ar(yi) over the K simulations under the tested model. The mean is approximated by:

E(yi) ≈
1

K

K∑

k=1

y
sim(k)
i (10)

and the variance - covariance matrix is approximated by:

Vi = V ar(yi) ≈
1

K

K∑

k=1

(y
sim(k)
i − E(yi))(y

sim(k)
i − E(yi))

′ (11)

Both observed and simulated data are decorrelated as follows:

y∗
i = V

− 1
2

i (yi − E(yi)) (12)

y
sim(k)∗

i = V
− 1

2

i (y
sim(k)
i − E(yi)) (13)

and are then used to compute the decorrelated metric, pde, with the same formula as Eq.8

pdeij = F ∗
ij(y∗

ij) =
1

K

K∑
k=1

1
y

sim(k)∗

ij
<y∗

ij

(14)

The decorrelated pd are called prediction distribution error (pde). The normalised version of this
metric, denoted npde, is more frequently used in model evaluation:

npdeij = Φ−1(pdeij) (15)

In the presence of BQL data, we cannot simply decorrelate the vector of observed data yi as
it also contains censored observations. One possible approach is to impute these censored data
to a value between 0 and LOQ using the distribution of the observations predicted by the model.
However, this distribution is unknown and for this reason, we use the uniform distribution of pd
to impute values for BQL data as described as followed. We first impute a pd for the censored
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observation by randomly sampling in U(0, pLOQ), then using the inverse function of the predictive
distribution Fij to get the imputed value for the BQL observation:

y
cens(new)
ij = F −1

ij (pdcens
ij ) (16)

The new vector of observations ynew
i contains both observed values, for non-censored data, and

imputed values for censored data. As for other simulation-based evaluation methods, simulation
must be performed by taking into account all factors influencing the observations, we propose
to treat simulated and observed data identically. BQL values in the MC samples are therefore
replaced by the same imputation method: we calculate pdsim

ij for each ysim
ij below LOQ in the

simulated data and these ysim
ij are replaced using the same imputation method applied on the

observed data.

y
sim(new)
ij = F −1

ij (pdsim
ij ) if ysim

ij ≤ LOQ (17)

As a result, we obtain, after this imputation step, a new vector of observations ynew
i and new

simulated data ysimnew

i . The complete data are then decorrelated using the same technique as
described above.

Under the null hypothesis, we expect pde to follow the distribution U [0, 1] and npde to follow
the distribution N (0, 1). However, one should bear in mind that npde are uncorrelated but not
totally independent as observations in NLMEM are not Gaussian [18, 28]. To use statistical tests
on npde, we have to assume that the decorrelation step renders the pde independent. This can
sometimes cause type I errors to be higher than the nominal level [28]. Also, it should be noted
that with the proposed method, left censored observations in the validation datasets are imputed
using the model to be evaluated and this could lead to loss of power if the model is wrong.

Alternative approaches for computing pd & npde in presence of BQL data

In the previous sections, we proposed a new method for handling BQL data when computing
pd and npde. One can think of other approaches to calculate pd and npde in presence of BQL
observations. For instance, we could omit all BQL observations in the validation datasets and
also discard all the simulated values in the MC samples corresponding to these BQL data. This
approach is named "omit obs" method in the paper. Another possible approach, denoted "omit
both" method, consists in discarding BQL values in both the validation dataset and the MC
samples. In this method, we remove also BQL values in the simulated data in order to compare
observations and simulations under the same conditions. However, removing BQL values in the
simulated datasets makes the decorrelation become much more complex and the usual decorre-
lation method cannot be applied as the variance - covariance matrix cannot be easily calculated.
For this reason, we only evaluate this method on the sparse design, where decorrelation step is
not required.

Graphs & Tests

Graphs can be used to evaluate visually the distribution of npde. The npde package for R
provides 4 types of graphs: (i) q-qplot of the interested metric versus the expected distribution;
(ii) histogram; scatterplots (iii) versus time and (iv) versus predicted values (calculated as the

mean E(y
sim(k)
ij ) over the K simulated value of yij). Under the null hypothesis, no trend is

expected to be present in the last two plots. To facilitate visual interpretation, we added in
this paper 95% prediction intervals around some selected percentiles (e.g. the 10th, 50th, 90th

percentiles as in the VPC plot) of the observed npde/pd as proposed in [18]. The prediction
intervals of the interested metric can be calculated using K MC datasets or by simulating K
samples following the expected distribution, e.g., the standard normal distribution. Prediction
band can also be added to the q-qplot of npde (pd) versus theorical quantiles of the expected
distribution. As pd are correlated, prediction band for the q-qplot must be calculated from the
K simulated MC datasets. If we assume that decorrelation renders npde independent, then the
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prediction band for the q-qplot of npde can be calculated from K samples simulated from the
N (0, 1) distribution.

We can use a statistical test to evaluate the distribution of npde with respect to the expected
distribution N (0, 1). To test if a sample follows the N (0, 1) distribution or not, Brendel et al

proposed three tests [16]: (i) Wilcoxon signed rank test, to test if the mean is significantly
different from 0; (ii) a Fisher test, to test whether the variance is significantly different from 1;
(iii) a Shapiro-Wilk test, to test whether the distribution is significantly different from a normal
distribution. The global test combines these 3 tests with a p-value corrected using Bonferroni
correction for multiple tests: the p-value reported in the global test is the minimum of the p-
value of three component tests multiplied by 3. We can also use an "omnibus" test such as the
Kolmogorov-Smirnov to compare the distribution of npde with N (0, 1). It should be noted that
the type I error will increase when testing the npd because of correlation between individuals
[12, 19].

Clinical data and HIV dynamic model

Data

The data used in this paper were collected from the COPHAR 3 - ANRS 134 clinical trial, a phase
II multicentric study supported by the French Agency for AIDS Research [27]. In this study, 35
patients infected with HIV and naive to antiretroviral treatment were included and followed up for
a period of 24 weeks. All patients received the same treatment with a once daily dose containing
atazanavir (300 mg), ritonavir (100 mg), tenofovir disoproxil (245 mg) and emtricitabine (200
mg) during 24 weeks. Viral load was measured at the first day of treatment and at weeks 4, 8,
12, 16 and 24 (corresponding to days 28, 56, 84, 112, 168) after the initiation of treatment. If the
viral load at the week 16 was higher than 200 copies/mL, another measurement was added at the
week 20. The HIV RNA assays used in this multicentric study had LOQ of 40 or 50 copies/mL.
Only viral load under treatment were kept in the analysis.

Methods

We used the bi-exponential model which was proposed by Ding et al [7, 8] and previously used
in other studies to describe the dynamic of the viral load obtained in COPHAR 3 - ANRS 134
trial:

f(tij , θi) = log10(P1ie
−λ1itij + P2ie

−λ2itij ) (18)

where f is the log10-transformed viral load. This model contains four individual parameters θi:
P1i, P2i are the baseline values of viral load and the λ1i, λ2i represent the biphasic viral decline
rates. These parameters are positive and assumed to follow a log-normal distribution with the
fixed effects µ = (P1, P2, λ1, λ2). We tested different error models in order to choose the most
appropriate one. Model selection was based on the log-likelihood ratio test (for nested models) or
the Bayesian information criterion (for non nested models). The parameters of the dynamic model
were estimated using the extended SAEM algorithm to take into account BQL data (see more
about this algorithm in [6]). An additional variable were used to indicate censoring. Parameters
were estimated using the MONOLIX software, version 3.2.

Results

A total of 211 measurements of viral load obtained in 35 patients were used for model building,
of which, 102 observations (48.3%) were below the LOQ (40 or 50 copies/mL). The spaghetti
plot of viral load data in logarithmic scale versus time is presented in Fig. 1.

We first tested and compared several residual error models on the simplest interindividual
variability model where no random effect correlation was present. A constant error model was
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finally selected. Secondly, we examined different interindividual variability model with or without
correlation terms between random effects and a correlation coefficient between the random effects
of the parameters P1, P2 was found to be significant (with a gain in BIC = 24.3). The optimal
statistical model is composed of (i) a bi-exponential structural model, (ii) an exponential model
for interindividual variability with correlation between the random effects of P1, P2, and (iii)
a constant error model on log10 viral load. The parameter estimates for the final model are
presented in Table 1. Parameters were well estimated with the relative standard errors about
30% for fixed effect and smaller than 50% for variability. The relative standard error for the fixed
effect of P1 was a little higher than 30% but this can be explained by its large interindividual
variability. We also found a high correlation between the random effects of the two parameters
P1 and P2 (ρ = 0.76).

Figure 2 presents some examples for individual fits provided by MONOLIX 3.2. In general,
we obtain very good fits for observed data. However, we cannot evaluate how well the model
works for BQL data region as in the plots of individual fits, all these data are imputed at the
LOQ value.

Some of goodness-of-fit plots provided by MONOLIX of the final model are shown in Fig.
3. The plots of observations versus population predictions and versus individual predictions in-
dicate that the model adequately describes data above LOQ. However, clear trends which is a
consequence of imputing BQL data at an arbitrary value can be observed in the BQL data region
and prevent to evaluate any model misspecification.

The residual plots are shown in Fig. 4. The residuals (weighted residuals calculated using
population predictions WRES, weighted residuals calculated using individual predictions IWRES
and npde) seem to distribute homogenously around 0 in the early times when the viral load
remains detectable by the HIV RNA assay. However, at later times, where BQL data appear
more frequently, we can see important departures of the residuals from 0, that could be explained
by the omission of BQL data in residual plots because trends only appear in later times where
BQL data are present at high proportions.

The model is also assessed by a visual predictive check (VPC) (Fig.5). Two types of VPC
were provided by MONOLIX 3.2 to evaluate the model with respect to both data above and
under LOQ. Figure 5(a) is the classical VPC plot, showing the 10th, 50th, 90th percentiles for
observed data over time and their corresponding 90% prediction intervals calculated from K
Monte Carlo samples (simulated using the model, the parameter estimates and the design of the
building dataset). In the VPC plot, the percentiles of observed data are expected to be within
the corresponding prediction bands. This VPC graph shows a good predictive performance of the
model for observed data above LOQ. However, as BQL data in the building dataset as well as in K
MC samples are imputed at LOQ values, the three observed percentiles and their corresponding
prediction bands cannot be correctly calculated. This renders model evaluation in BQL data
regions meaningless. Figure 5(b) shows the 90% prediction interval for the observed cummulative
proportion of BQL data over time. The fact that this proportion of BQL data remains within
the 90% prediction interval supports the choice of final model.

We next illustrated the use of new approach to take into account BQL data when calculating
npde on the real data for the final model. Figure 6 shows different graphs, npde versus time and
q-qplot of npde versus the distribution N (0, 1), calculated by the "omit obs" or new methods.
Once again, we can see that omission of BQL observations in the validation dataset introduces
trends in the scatterplot of npde versus time and the model begin to fail in regions where BQL
data are frequently observed. Taking into account BQL data by the new approach, trends found
in the scatterplot of classical npde disappear in the graph of new npde versus time. Q-qplot and
results of different tests performed on the two npde samples show no departure of npde from the
normal distribution N (0, 1) in either case; with the original npde however, we could not rule out
a loss of power since about half of the observations were omitted (48.3%).
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Evaluation by simulation

Simulation setting

The model used in the simulation study is inspired from the bi-exponential model built for real
data obtained in the COPHAR 3 - ANRS trial. To simulate data under alternative hypotheses
(i.e., under false models), we modified the value of the fixed effect and the variability of the
parameter λ2, a parameter having direct impact on the percentage of BQL data, of the "true"
model: two false models were obtained by multiplying or dividing λ2 by 2 and two other false
models were generated by multiplying or dividing the variability of λ2 (ωλ2

) by 3. The parameters
used for simulating these models are shown in Table 2.

We chose the main sampling times of the COPHAR 3 - ANRS 134 trial in our simulation
study: viral loads were measured on day 0, 28, 56, 84, 112, 168 after the beginning of treatment.
In this simulation, we did not simulate the adaptive design which was used in the COPHAR
3 - ANRS 134 trial, where the measurements at week 20 (day 140) depend on the viral load
measured at week 16 (day 112). Therefore, we removed the measurement at week 20 in our
sampling schedule. We used two designs, both with a total number of 300 observations and with
the same number of observations (50 observations) at each time. The first design, called "sparse"
design Dsparse, is composed of a total of 300 observations in 300 patients, 1 observation per
individual. This design, which was first proposed and used by Mentré et al in a publication on
pd [12], is certainly not realistic but is interesting to study the statistical properties of pd in
the absence of within-subject correlations. The second, termed "rich" design Drich, is closer to
the real life data with 50 patients, each of them having 6 sampling times. This design was used
to study the impact of within individual correlations on the type I errors of pd and to evaluate
the properties of the decorrelated metric, npde. Datasets were simulated under H0 with the true
model and under alternative assumptions H1 with the false models described in the previous
paragraph. To study the impact of intra-individual correlation caused by random effects on type
I errors, two variability settings S were used: in the first setting, Shigh, the variability of the two
parameters P1, P2 are close to those obtained from real data (2.1 and 1.4, respectively); in the
second setting, Slow, the variability for these parameters are both decreased to 0.3. For datasets
simulated with the sparse design, because only one observation is measured for each patient,
we cannot study how the two variability settings affect within individual correlation using this
design. Therefore, for the sparse design, we chose to use only the high variability setting, which
is closer to real life data. Contrarily, for datasets generated with the rich design, both variability
settings were used to study the impact of within individual correlation on the new metrics.

In pratical modeling, we can encounter another type of model misspecification: the structural
misspecification. For example, data characterising a one-compartment model can be modelled
using a two-compartment model. This situation can become true in HIV treatment if a very
effective treatment is discovered someday. For this reason, we also want to evaluate the ability of
the new method to detect this kind of false model. For this purpose, we chose to simulate a HIV
mono-exponential model, Vmono, with the following parameters: P1 = 10000 copies/mL, λ1 =
0.1 day−1, ωP1

= 2.1, ωλ1
= 0.3 and σinter = 0.14. These parameters are close to those obtained

by fitting the real COPHAR 3 data with the mono-exponential model with ωP1
, ωλ1

and σinter

fixed at the values used for simulating bi-exponential model.

We defined names for different validation datasets, simulated from true model Vt, and from
false models Vfix1

, Vfix2
, Vvar1

, Vvar2
, Vmono. The last false model, Vmono, is only simulated

with the rich design. A set of 1000 validation datasets were then simulated for each scenario. To
calculate pd and npde, K = 1000 Monte Carlo samples were simulated with the true model and
the design of the underlying validation dataset.

Each simulated dataset was further studied under 3 settings: uncensored, and with two levels
of censoring (LOQ = 20 or LOQ = 50 copies/mL), thus generating 3 datasets with different
percentages of BQL observations. This allows us to study the behaviour of these new metrics
in different conditions. Table 3 shows the proportion of BQL data under the three censoring
schemes.
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Evaluation of the new npde

To illustrate visually the use of new metric, we first used one randomly selected dataset sim-
ulated with the rich design for each scenario under the null hypothesis. The spaghetti plots of
these validation datasets are shown in Fig. 7. The figure also shows a randomly selected dataset
simulated under each alternative assumption.

We then evaluated the type I errors of chosen statistical tests on the new metric, using 1000
simulated datasets for each scenario. Similarly, under alternative assumptions, we estimated the
power of the different tests on new npde using 1000 simulated datasets to detect the corresponding
model misspecification. All computations were performed using the statistical software R, version
2.12.2.

Results

Model evaluation under null hypothesis H0

Graphical illustration Scatterplots of npde calculated using the "omit obs" and new methods vs
time are shown in Fig. 8 for one dataset simulated under the null hypothesis H0, i.e. with the
true model, for each of the two settings Shigh (high variability, top two lines) and Slow (low
variability, bottom two lines). For each dataset the value of the LOQ used for censoring increases
from left (no censoring) to right (LOQ = 20 then 50 copies/mL). This figure clearly shows the
necessity of taking these data into consideration in the evaluation step. Indeed, while the model
does not show misspecification on the full dataset, trends start appearing in the scatterplots with
the "omit obs" npde when a part of the dataset is omitted. These trends disappear with the new
npde when BQL data are imputed (red dots).

Figure 9 shows the result of the imputation directly on the data, for the same datasets as in
Fig. 7. The red dots represent imputed data for observations which were censored, and comparing
both figures shows that the imputation step allows to reconstruct a dataset very similar to the
original.

Type I error For the sparse design (N = 300, n = 1), npd are identical to npde. For the rich
design (N = 50, n = 6), performing tests on npd calculated for rich design results in elevated
type I errors: 64.7% (Shigh setting) and 35.0% (Slow setting) compared to 5%. It is not surprising
that the type I error is higher with the Shigh setting as larger values of interindividual variability
used in this setting induce a high correlation within individuals. Table 4 presents the type I error
of several statistical tests (Wilcoxon, Fisher, Shapiro-Wilk, global and KS tests) performed for
the npde calculated using different methods, under the three designs Dsparse, Drich (Shigh and
Slow). As expected, in the absence of BQL data, the type I errors of different statistical tests for
npde (or npd for sparse design) are close to the significant level (5%). In the presence of BQL
data, omitting BQL values (with "omit obs" method) results in a significant increase of type I
errors for all designs. The increase in the type I error for the npde obtained with the "omit obs"
method under censoring is particularly spectacular under Dsparse, because discarding one BQL
observation means discarding a whole individual. Using the "omit both" method, the type I error
is satisfactory. For the new npde, the type I error only increases under Drich in the Shigh setting,
where the interindividual variability is highest. The inflation of the type I errors of the Fisher
tests are thought to be the result of the imputation method and the decorrelation step. However,
type I errors of the global test remain much lower than those obtained by omitting all BQL data
and is very close to the theoretical level.

Model evaluation under alternative assumptions

Graphical illustration The scatterplots of npde versus time, calculated by the new methods, for
different false models (Vfix1

, Vfix2
, Vvar1

, Vvar2
), are shown in Fig. 10. In absence of BQL data

(first column), under the two alternative hypotheses basing on modifications of fixed effect (Vfix1
,

Vfix2
), the scatterplots of npde versus time show a clear trend, which becomes more important
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in later times. These trends allow us to detect model misspecification in the second decay phase,
which is mainly characterised by parameter λ2 (upper two lines). Under the hypothesis Vvar1

,
npde are able to detect model deficiencies caused by an increase of the variability of λ2 as their
10th percentile falls out of its prediction interval. However, npde appear less sensitive to detect
a decrease of variability, even when there is no BQL data (last line).

These trends in the scatterplots of the new npde versus time remain in presence of BQL
data, under the two assumptions Vfix1

, Vfix2
. Nevertheless, as the BQL fraction increases over

the time course, the percentiles of npde tend to return to their prediction intervals, especially
in regions with a high fraction of BQL data. Thus a high level of BQL data is thought to cause
some loss of power. Also, we find in the datasets simulated with Vvar1

that trends can be seen in
the Slow setting but not in the Shigh setting; this figure is not shown here as the difference was
only observed under the assumption Vvar1

. In fact, it is logic that an increase of variability can
be detected more easily on a system of lower interindividual variability. Moreover, the dataset
Vvar1

simulated using Slow setting contains less BQL data than those obtained with Shigh (see
Table 3). Therefore, model deviation due to modification of variability is more evident with Slow

setting. Finally, on the datasets simulated assuming a decrease of variability of λ2 (Vvar2
), the

new npde is not able to detect model misspecification, as their observed percentiles are within
the corresponding prediction intervals, but this is also the case in the absence of BQL data.
Spaghetti plots of imputed data for false models were shown in the last four rows of Fig. 9. As
BQL data are imputed using the true model, it is not suprising that the imputed datasets are more
comparable to datasets simulated under true model than the corresponding validation datasets.
The difference between imputed data and the initial datasets can be more clearly observed in
datasets simulated with increased variability.

Figure 11 displays the spaghetti plots of simulated and imputed data as well as the scatterplots
of the new npde versus time for the false structure model Vmono. In absence of BQL data, npde
allow us to correctly detect a misspecification of the structural model. When the BQL data
fraction increases, the new npde still allow us to identify this kind of misspecification but they
seem to be less sensitive. This phenomenon is also observed under other false models. It is also
predictable that the spaghetti plots of the imputed data (upper pattern, two last columns) appear
to be different to the original simulated dataset as the true model was used to impute BQL data.

Power We examined next the powers of statistical tests for the new metrics under several alter-
native assumptions (Vfix1

, Vfix2
, Vvar1

, Vvar2
, Vmono). We also evaluated the power of the "omit

both" method under the assumption Vfix1
as the type I error obtained with this method is also

satisfactory. The results are given in Table 5.
In the absence of BQL data, for all the designs, systematic deviations due to changes in fixed

effect parameter (Vfix1
, Vfix2

) can be detected by the global test and the KS test with very high
powers (100%). The increase in the variability of λ2 (Vvar1

) can also be detected by KS or global
tests on npd or npde with very satisfactory powers when there are no BQL data (100% with the
global test and greater than 93% with the KS test). On the contrary, the powers to detect model
deficiencies due to a decrease of variability of λ2 (Vvar2

) are much lower even in absence of BQL
observations. The power of the five tests used for detecting a false structure model, Vmono, is very
high, which indicates that npde are a good tool for evaluating this type of model misspecification.

In presence of BQL data, using the new method, the powers of the global and KS tests to
detect model deviations caused by changes in fixed effect parameter (Vfix1

, Vfix2
) remain very

satisfactory (greater than 99%), even when the fraction of BQL data becomes more important.
Nevertheless, a very slight loss of power (around 1%) can be observed when LOQ value is raised
from 20 to 50 copies/mL. Under the third alternative assumption (Vvar1

), the power to detect a
modification of variability of λ2 in datasets simulated using Shigh setting decreases rapidly when
BQL data fraction increases. The more BQL observations become frequent in the validation
datasets, the more important is the loss of power. This can be clearly observed for both Dsparse

and Drich, Shigh. For Drich, Slow, the power to detect the increase of ωλ2
remains very satisfactory,

even when BQL data are present at very high percentages (100% at LOQ = 20 copies/mL and
99.4% at LOQ = 50 copies/mL). This illustrates that an important change of variability can
be more easily detected when interindividual variability is low. Under the assumption Vvar2

, the
unsatisfactory powers to detect a model deviation could be expected, especially since even when
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no BQL data are observed, the power was already very low. Under the alternative assumption
based on a false structure model Vmono, the power remains very high even when BQL data are
present at a very high proportion. This high power indicates that the new npde can be used to
detect structure model misspecification, a common issue in practical modeling when performing
internal evaluation. We notice that in all cases, as the BQL data fraction increases, the power to
detect model misspecification decreases, as expected.

Using the "omit both" method, the power for detecting an important change in fixed effect
parameter of the false model Vfix1

in presence of BQL data is much lower than the one obtained
with the proposed method for all the test (Table 5). The loss of power when the BQL data
proportion increases is also larger in comparison with the new method. Therefore, we did not try
to evaluate power of the "omit both" method under other alternative assumptions or under the
two rich designs.

Discussion

Evaluation of NLMEM is a crucial issue in population modelling. Therefore, numerous diagnostic
tools have been developed and used to examine the adequation of these models. However, most
recent evaluation methods are not yet developed to take into account BQL data, even though
they are correctly handled in the modelling step by reliable estimation methods. Frequently, in
many "goodness-of-fit" graphs, BQL data are discarded or imputed at an arbitrary value such as
the LOQ. We have demonstrated in this paper that omitting BQL observations in the validation
dataset can introduce patterns or trends in diagnostic graphs when BQL data are present at
non-ignorable proportions and thus, could lead to wrong conclusions concerning model adequacy.
It is therefore essential to develop new approaches to account for BQL data in the evaluation
step.

We focused here on prediction discrepancies (pd) and normalised prediction distribution errors
(npde). The two metrics are now widely used to evaluate PK/PD models. Like other diagnostic
tools, the recent version of these metrics does not take BQL data into consideration. We proposed
in this paper new methods to extend the two metrics to handle BQL data.

We first applied the new methods to evaluate a model obtained from real data. Using the new
methods, trends in scatterplots of the classical npde (calculated using the "omit obs" method)
disappear from the graph of the new metrics. However, as always in real life, we do not know
whether the model is in fact correct for describing the datasets. For this reason, we carried out
a simulation study in order to correctly evaluate the properties of the two extended metrics.

The new npde appear to be a promising diagnostic tool in the presence of BQL observations.
Indeed, the simulation under H0 shows very satisfactory type I errors that are close to the
significant level for validation datasets with uncorrelated observations. Using the new npde on
the datasets simulated with Shigh, we obtain type I errors that are close to 5%, except for some
values that are slightly higher than 5%. Unexpectedly, for about 9% of 1000 datasets, the Fisher
test become significant and this value (9%) falls out of the 95% confidence interval of 5%. One
possible explanation for the increase of type I errors of the Fisher test is the use of the proposed
imputation method. In this method, BQL values if exist in the simulated data (MC samples) are
also replaced using the same imputation method applied on the validation data and this step
can cause the variance - covariance terms of the observed data to be modified. Indeed, simulated
data in each of K MC samples, which correspond to data above LOQ in the validation dataset,
may contain some values below LOQ and these BQL values are replaced independently using
the imputation method. Thus, when a large number of values in MC samples corresponding to
the observed data in the validation dataset are being imputed, the variance - covariance matrix
estimated by the imputed MC samples may not reflex correctly the dispersion of the validation
data, and change the distribution of the resulting npde. To test that explanation, we used a lower
variability setting to study whether within subject correlation could have influence on the variance
of npde. For datasets obtained with Slow setting, due to low variability data, MC samples are
much closer to the validation dataset or, in other words, the MC samples are more likely to have
a similar number of data above or below LOQ as those of the validation dataset, in comparison
with those simulated with Shigh setting, and we obtained lower type I errors of the Fisher test
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with Slow setting. Hence, the increase of type I errors of the Fisher test is probably a result of the
imputation method. However, in our opinion, we should keep treating identically the validation
data and simulated data, i.e., applying the same imputation method on both observations and
simulations. In fact, in any simulation-based method, we should account for all the factors that
can have impact on the generation of the validation dataset during the simulation process. For
example, if an adaptive design was used then this step should be reproduced during simulation;
otherwise, model evaluation could be misleading [29]. In the proposed approach, we did impute
BQL values in the validation dataset using a special method. For this reason, we should reproduce
the same process on the simulated data. One possible approach to overcome the limitation of the
present imputation method (high type I errors of the Fisher test) is to develop a new imputation
method that can take into account correlations with data above LOQ within subject.

It should also be noted that the design used in the COPHAR 3 - ANRS 134 trial is, in fact,
an adaptive design as the observations at week 20 are conditionnal on the observations at week
16. However, in this trial, there were only 5 over 35 patients having an additional measurement
at week 20 (i.e. 5 samples out of 211 observations). Therefore, we considered that the adaptive
design has little impact on the dataset. For this reason, we did not try to reproduce this process
during simulation step to compute npde and VPC for the real data. Moreover, the objective of
the study is to evaluate a new method for BQL data and hence, we did not simulate adaptive
design (as in the COPHAR 3 trial) and assumed that there was no measurement at week 20 in
our simulation study.

In spite of some problems of the Fisher tests, type I errors for the npde computed by the new
method, especially those of the global test, are very close to 5% and much more lower than those
obtained by the "omit obs" method or than those of tests performed on non-decorrelated npd.
The type I error of the global test obtained with the "omit both" method is also satisfactory in
the presence of BQL data. However, the power of this method to dectect an increased fixed effect
is much lower than those obtained with the new method. Contrarily, the power to detect changes
in fixed effect parameters of the new npde is very high, even at very high proportion of BQL data.
Moreover, we observed an more important loss of power with the "omit both" method when the
fraction of BQL data inscreases. The low power of the "omit both" method is the consequence of
the loss of available information due to removing BQL data. In the new method, we proposed a
method to impute values for BQL data, which means, to add a certain quantity of information
into the dataset. This can lead to a gain of power when testing. However, as the information
added is based on the use of the model to be validated, a loss of power is expected when BQL
data increase. In addition to that, the "omit both" method is likely to have some disadvantages.
First of all, a part of simulations which contains BQL values is discarded in the censoring step
and only the remaining part of the simulation is used to calculate pd. As a consequence, if a
model predicts many BQL values, then we lose an important number of simulations. In this case,
pd may not be correctly calculated as the predictive distribution is not well approximated if we
do not increase the number of MC samples. Another question is how many simulations we have to
increase to assure that pd is correctly calculated. This should not only depend on the number of
subjects, of observations but also depends on models and LOQ levels. The second disadvantage
is that, when calculating npde for an individual, by removing BQL values in the simulations,
we may not obtain vectors of the same length for each time point (each vector corresponds to
the simulations at each time point). Thus, the variance - covariance matrix cannot be easily
calculated and another method for decorrelating observations/simulations must be investigated.

The high power to detect modifications in fixed effects (Vfix1
, Vfix2

) and also misspecifications
in structure model (Vmono) of the new npde indicates that the extended metrics are probably good
diagnostic tools for checking the structural model in presence of BQL data. On the contrary, the
powers to detect deficiencies of variability model are lower, especially much lower for detecting
a decreased variability. This is consistent with the results of previous studies concerning PPC
metrics in general, showing that it is difficult to detect a decrease of variability of a parameter
[12, 16]. In all cases, we observed a loss of power (more or less important) as the BQL data fraction
increases. This behaviour can be anticipated from the proposed methods. Indeed, our method
uses the model to compute pd and/or npde: first, to compute the probability to be below LOQ
which is used to quantify pd and/or to obtain the predictive distribution for each observation and
the inverse of that distribution for imputing BQL observations. This dependency on the model
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could account for the loss of power when increasing the proportion of BQL data. In addition to
that, the more BQL data are present in the dataset, the less informative data we possess and this
affects not only the evaluation step but also the estimation step. Despite this property, the new
metrics show better performance than those computed by omitting BQL data in validation data
("omit obs" method) or also in simulations ("omit both" method). Therefore, the new npde is
useful in evaluating models with not too high variability parameters and is acceptable to evaluate
models with high variability parameters in presence of BQL data.

In the proposed methods, new pd and npde are quantified using a stochastic approach with
a single imputation: pd of BQL observation is randomly drawn from a uniform distribution
from 0 to the probability for the observation to be under LOQ. Consequently, using the same
validation dataset and the same Monte Carlo samples, we could obtain different results (for
instance, p-value) when performing the imputation several times. However, in a small simulation
study (results not shown), the p-values obtained from different computations were not very
different. In fact, we consider the random sampling step to quantify pd as a part of the stochastic
properties of simulation-based metrics. For this reason, we performed a unique sampling for each
BQL observation and obtained satisfactory type I errors as presented in Table 4. Extension to
multiple imputation should be studied.

In this work, we did not include covariates into the model and the simulation study but it
would be straightforward to perform another simulation study using this method to evaluate
models with one or more covariates. This type of study has been conducted by Brendel et al to
evaluate models with covariates on datasets containing no or only few censored data [19].

To test the distribution of npde under the null hypothesis, we used the KS test or the global
test that is a combination of three sub-tests: the Wilcoxon test, the Fisher test and the Shapiro-
Wilk test. The KS test is a general test that can be used to assess any distribution but it is
conservative and may have lower power in comparison with other normality tests such as the
Anderson - Darling, Cramer - von - Mises or Shapiro-Wilk tests [12]. In this simulation study,
comparing results of the KS test and the global test, we also found that the KS test is less
powerful than the global test. It is therefore worth performing the normalisation step to obtain
normalised metrics in order to use the global test. In the global test, the Wilcoxon test is used
to assess whether the mean of the npde is significantly different from 0 because in real life, we
could never know if our npde (npd) follow a normal distributionn. However, the Wilcoxon does
not test the mean but the ranks of our npde sample. In consequence, sometimes we observed
a significant p-value of the Wilcoxon test while only the value of the variance was changed in
the simulation (see Table 5, Vvar1

assumption). In fact, for data received in a population-based
clinical trial, the sample size is usually large enough to make the normal approximation and we
can thus conduct a t-Student test to compare the mean of npde (npd) to 0. If the t-Student test
can be used, it might be more powerful than the Wilcoxon test for detecting model deviation
due to fixed effect parameters. A perspective of this work is to look for more appropriate tests
to test the null hypothesis.

To evaluate a model, a large number of diagnostic tools have been developed, including
qualitative (graphs) and quantitative tools (statistical tests). These tests were developed with
a purpose to render interpretation more objective. For npde, statistical test results provide us
another way interpreting model misspecifications instead of examining several graphs that may be
not very easy to be visually investigated (for example, scatter plots of npde vs time or predictions
when we have very large numbers of observations at each time). However, the use of statistical
tests in model evaluation is still controversial and an agreed-upon solution may not exist. One
should bear in mind that statistical tests can fail to reject a poor model due to lack of power or
contrarily, a useful model can be refuted by high-power tests. For this reason, it is worth noting
that statistical tests should never be used as a sole criterion for evaluating a model as they can be
easily misinterpreted or misleading. It is, therefore, very important to understand the limitations
of statistical tests and exercise caution in model evaluation.

Because of the complexity of NLMEM, evaluation should necessarily rely on several criteria
and methods. As a consequence, it is important to develop new approaches to correctly handle
BQL data for other evaluation methods (VPC, NPC, residuals or prediction errors and also
individual - based metrics). In the meanwhile, the VPC plot in the presence of BQL data can
be presented in several ways. One of the first approaches is to keep original simulations and to
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plot the prediction intervals calculated from original simulation while for the observations, the
percentiles lower than LOQ are not plotted [23]. Another approach is to impute BQL values
in both observations and simulations at the LOQ in order to compute observed percentiles and
the corresponding prediction intervals as proposed in MONOLIX 3.2. The final approach is to
remove BQL values in both observations and simulations to compute VPC. These methods are
usually used when there are BQL data in the validation dataset but they do not account for
BQL data. One possible approach to take into account BQL data in the VPC plot is to use the
proposed imputation method which is straightforward to be applied to compute metrics where a
decorrelation step is not necessary (VPC). Another approach to impute BQL data in VPC plots
was recently proposed by Lavielle and Mesa, which consisted in replacing BQL observations of
an individual by values simulated with their conditional distribution (calculated using the model
and data of that individual) [30]. VPC or residuals such as npde are then computed using these
imputed BQL values. This method needs to be evaluated by simulation study.

In conclusion, the new pd and npde are useful diagnostic tools for evaluating NLMEM in
presence of BQL data. Although they are not be able to detect model misspecification in some
cases (modifications of variability, large fraction of BQL data), they offer better assessment of
model adequacy than other classic metrics omitting all BQL data in the validation dataset or
also in simulation data. The methods proposed in this paper to take BQL data into account will
be implemented in the next version of the library npde for R.
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Fig. 1 Spaghetti plot of viral load in logarithmic scale versus time from COPHAR 3 - ANRS 134 trial. Data
above LOQ are presented as blue circles, data below LOQ are imputed at LOQ in this graph and presented
as red circles
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Fig. 2 Some examples of individual fits for the final model. Data above LOQ are presented as blue cross.
In this plot, BQL data are imputed at LOQ and are presented as black star symbol
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Fig. 3 Observations versus population predicted values and individual predicted values. Observations are
plotted as blue closed circles. In these plots, BQL observations are imputed at LOQ values and are presented
as black closed circles
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Fig. 4 Residuals (provided by MONOLIX) versus time plots and q-qplots versus the standard normal
distribution N (0, 1) of different types of residuals for the final model. In these plots, BQL data are omitted
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(a) VPC for observed data
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(b) BQL data fraction over time

Fig. 5 Visual Predictive Check for final model. Figure 5(a) is the classical VPC graph for data above LOQ.
BQL data are imputed at LOQ in the graph. The green (dashed and solid) lines represent the 10th, 50th and
90th percentiles for observed data. The shaded blue and pink areas represent 90% prediction intervals for the
corresponding percentiles calculated from simulated data. Figure 5(b) represents the observed cummulative
fraction of BQL data versus time (the fraction of BQL data at a time point is calculated by the ratio between
the number of BQL data and the total number of measurements obtained from the beginning to the study
to this time) (green solid line) and its 90% prediction interval calculated under the final model (blue shaded
area)
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Wilcoxon test: 0.482 Wilcoxon test: 0.204
Fisher test: 0.344 Fisher test: 0.366

Shapiro-Wilk test: 0.131 Shapiro-Wilk test: 0.937
Global test: 0.393 Global test: 0.611

KS test: 0.461 KS test: 0.551

Fig. 6 Scatterplot of npde versus time and the q-qplot of npde for the final model. npde are calculated
using the "omit obs" method (left) or the new method (right). npde for data above LOQ are presented by
blue closed circles, npde for BQL data are presented by red closed circles. Dashed (blue and dark red) lines
in the scatterplot represent 10th, 50th and 90th percentiles of the npde corresponding to observed data.
Light blue and pink shaded areas in the scatterplot are 95% prediction intervals of the selected percentiles
calculated from K MC samples. Green shaded area in the q-qplot represents the 95% prediction intervals for
the npde sample.
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Fig. 7 Spaghetti plots of different validation datasets simulated using the rich design, under two variability
settings Shigh, Slow. Data are not censored and two LOQ levels (20 and 50 copies/mL) are co-plotted as
brown and red dashed lines in the graphs
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Fig. 8 Scatterplots of npde (calculated using "omit obs" and new methods) versus time for datasets Vt

simulated under the true model. Three levels of censoring were applied on each datasets : 0 copie/mL (first
column), 20 copies/mL (second column) and 50 copies/mL (third column).
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Fig. 9 Samples of spaghetti plots of validation datasets presented in the Fig. 7, at a censoring level of 20
copies/mL after the imputation step (see methods).
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Fig. 10 Scatterplots of npde versus time for different validation datasets (Vfix1 , Vfix2 , Vvar1 , Vvar2 )
simulated using the rich design and the high variability setting. npde are calculated by new method that
accounts for BQL data. Data above LOQ are presented by blue closed circle, BQL data are presented
by red closed circle. Dashed (blue and dark red) lines represent 10th, 50th and 90th percentiles of the npde
corresponding to observed data. Light blue and pink shaded areas are 95% prediction intervals of the selected
percentiles corresponding to simulated data
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Fig. 11 Spaghetti plots (upper pattern) before (1st column) and after imputation (last two columns) and
scatterplots of new npde versus time for the dataset simulated under the false structure model (Vmono). BQL
data and npde are presented by red circle, observed data and npde related to observed data are presented
by blue circle. Dashed lines in spaghetti plots represent LOQ levels. Dashed (blue and dark red) lines in
scatterplots of npde represent 10th, 50th and 90th percentiles of the npde corresponding to observations.
Light blue and pink shaded areas are 95% prediction intervals of the selected percentiles corresponding to
simulated data
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Table 1 Parameter estimates for the final model in the 35 patients of the COPHAR 3 - ANRS 134 trial

Parameters Estimates RSE (%)

P1 (copie/mL) 22000 36
P2 (copie/mL) 222 27

λ1 (day-1) 0.222 11
λ2 (day-1) 0.0198 8

ωP1 2.1 13
ωP2 1.31 14
ωλ1 0.232 48
ωλ2 0.218 37

ρ(ηP1
,ηP2

) 0.758 13

σinter 0.15 5
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Table 2 Parameters used for simulating Vtrue, Vfix1 , Vfix2 , Vvar1 , Vvar2

Parameters
True model False models

Vt Vfix1 Vfix2 Vvar1 Vvar2

P1 (copie/mL) 25000 25000 25000 25000 25000
P2 (copie/mL) 250 250 250 250 250
λ1 (day-1) 0.2 0.2 0.2 0.2 0.2
λ2 (day-1) 0.02 0.04 0.01 0.02 0.01

Shigh
ωP1 2.1 2.1 2.1 2.1 2.1
ωP2 1.4 1.4 1.4 1.4 1.4

Slow
ωP1 0.3 0.3 0.3 0.3 0.3
ωP2 0.3 0.3 0.3 0.3 0.3

ωλ1 0.3 0.3 0.3 0.3 0.3
ωλ2 0.3 0.3 0.3 0.9 0.1

ρ(ηP1
,ηP2

) 0.8 0.8 0.8 0.8 0.8

σinter 0.14 0.14 0.14 0.14 0.14
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Table 3 Proportions (in %) of BQL data in different types of dataset (evaluated on 1000 validation datasets
for each scenario)

Dsparse, Shigh Drich, Shigh Drich, Slow

LOQ = 20 LOQ = 50 LOQ = 20 LOQ = 50 LOQ = 20 LOQ = 50

Vt 27.9 43.1 27.9 42.9 22.2 42.4
Vfix1 50.5 60.5 50.6 60.5 51.3 62.8
Vfix2 12.4 26.3 12.3 26.2 2.5 14.6
Vvar1 31.2 43.2 31.3 43.3 26.5 39.2
Vvar2 27.1 42.7 27.0 42.7 21.2 43.2
Vmono - - 53.5 59.0 - -
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Table 4 Type I errors under the null hypothesis (in %) of different statistical tests for npd (datasets
simulated from Dsparse, Shigh) and for npde (datasets obtained from Drich, Shigh and Drich, Slow). Type
I errors are evaluated on 1000 simulated datasets and at three LOQ levels. npde (npd) are calculated using
different methods. Values significantly different from 5% are in bold

Methods Tests

Dsparse, Shigh Drich, Shigh Drich, Slow

npd npde npde

LOQ (cp/mL) LOQ (cp/mL) LOQ (cp/mL)

0 20 50 0 20 50 0 20 50

"omit obs" method Global test 5.5 99.8 100 5.4 25.8 46.9 5.6 23.9 64.3

"omit both" method Global test 5.5 4.7 5.0 − − − − − −

New method Wilcoxon 5.5 4.3 5.5 5.1 6.2 5.6 5.3 4.8 6.2
Fisher 4.9 5.1 4.8 5.7 9.1 8.6 5.8 6.3 6.5
Shapiro-Wilk 5.3 5.4 6.2 4.3 4.0 3.9 6.1 5.0 4.9
Global test 5.9 5.6 5.2 5.4 6.7 6.2 5.6 6.2 6.1
KS 5.8 4.8 4.7 5.4 6.5 7.0 5.1 4.8 5.4
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Table 5 Power under several alternative assumptions (in %) of different statistical tests for npd (Dsparse,
Shigh) and for npde Drich, Shigh and Drich, Slow) evaluated on 1000 simulated datasets and at 3 LOQ
levels. Values greater than 90% are in bold. npd and npde are calculated using the"omit both" or new method

Methods Tests

Dsparse, Shigh Drich, Shigh Drich, Slow

npd npde npde

LOQ (cp/mL) LOQ (cp/mL) LOQ (cp/mL)

0 20 50 0 20 50 0 20 50

"omit both" method Vfix1 Wilcoxon 100 62.5 21.9 - - - - - -
Fisher 99.9 6.5 7.2 - - - - - -
Shapiro-Wilk 82.7 6.6 5.4 - - - - - -
Global test 100 47.1 14.0 - - - - - -
KS 100 55.6 17.7 - - - - - -

New method Vfix1 Wilcoxon 100 100 100 100 100 100 100 100 99.9

Fisher 99.9 34.2 57.4 99.4 91.1 35.8 100 99.9 28.2
Shapiro-Wilk 82.7 46.4 21.1 70.5 47.4 23.0 96.9 18.7 5.5
Global test 100 100 100 100 100 98.8 100 100 99.9

KS 100 100 100 100 100 99.7 100 100 99.6

Vfix2 Wilcoxon 100 100 100 100 100 99.8 100 100 100

Fisher 9.2 32.9 66.3 7.2 9.8 15.1 4.9 16.5 98.3

Shapiro-Wilk 7.0 10.9 8.9 5.4 48.8 28.9 5.0 6.9 17.5
Global test 100 100 100 100 100 99.7 100 100 100

KS 100 100 99.9 100 100 99.8 100 100 100

Vvar1 Wilcoxon 43.4 5.1 6.1 51.0 28.7 25.1 50.6 63.4 67.3
Fisher 100 63.8 40.1 100 81.9 59.9 100 100 99.9

Shapiro-Wilk 99.5 17.2 15.7 95.2 14.7 5.6 98.5 21.6 29.4
Global test 100 53.6 31.6 100 78.7 53.6 100 100 99.4

KS 96.5 19.1 9.5 93.0 56.6 39.6 95.5 92.3 82.0

Vvar2 Wilcoxon 8.8 4.6 4.2 4.7 5.1 5.5 3.6 11.0 10.5
Fisher 23.1 7.4 6.7 24.8 14.7 9.3 42.4 41.6 21.3
Shapiro-Wilk 5.7 6.3 5.5 5.0 7.0 5.0 4.9 6.9 7.7
Global test 17.1 6.1 5.9 14.2 11.2 8.2 30.5 30.7 17.8
KS 8.5 4.5 4.2 5.2 6.8 6.7 6.0 14.7 11.1

Vmono Wilcoxon - - - 100 67.5 22.9 - - -
Fisher - - - 100 100 100 - - -
Shapiro-Wilk - - - 100 95.0 78.4 - - -
Global test - - - 100 100 100 - - -
KS - - - 100 100 99.0 - - -
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