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Abstract

Neuronal differentiation is under the tight control of both biochemical and physical information arising from neighboring
cells and micro-environment. Here we wished to assay how external geometrical constraints applied to the cell body and/or
the neurites of hippocampal neurons may modulate axonal polarization in vitro. Through the use of a panel of non-specific
poly-L-lysine micropatterns, we manipulated the neuronal shape. By applying geometrical constraints on the cell body we
provided evidence that centrosome location was not predictive of axonal polarization but rather follows axonal fate. When
the geometrical constraints were applied to the neurites trajectories we demonstrated that axonal specification was
inhibited by curved lines. Altogether these results indicated that intrinsic mechanical tensions occur during neuritic growth
and that maximal tension was developed by the axon and expressed on straight trajectories. The strong inhibitory effect of
curved lines on axon specification was further demonstrated by their ability to prevent formation of multiple axons normally
induced by cytochalasin or taxol treatments. Finally we provided evidence that microtubules were involved in the tension-
mediated axonal polarization, acting as curvature sensors during neuronal differentiation. Thus, biomechanics coupled to
physical constraints might be the first level of regulation during neuronal development, primary to biochemical and
guidance regulations.
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Introduction

In vivo, the behavior of cells and tissues is determined by a

combination of biochemical and physical signals from the

microenvironment. Cells exert forces and sense the environment

to modulate their fundamental functions such as migration and

differentiation. The impact of the mechanical and geometrical

features of the surrounding matrix on the structure and functions

of cells has been increasingly documented [1,2,3]. In neurons,

cytomechanics act at several steps of the developmental program.

The balance between proliferation and differentiation of neuronal

stem cells is modulated by differential forces [4], newborn neurons

are subjected to passive and active mechanical stress that regulates

neurite outgrowth and morphogenesis [5], and growth cones pull

and stretch neurites [6]. The topology of the environment is

crucial during neurodevelopment, as either glial cells bodies or

pre-existing axons are physical supports along which neurons

migrate or extend axons toward their distant targets [7,8,9,10].

During neuronal differentiation, the nascent axons have to sense

and to adapt to the complex topologies arising from the crowded

environment of developing brain [8]. How physical constraints of

the micro-environment may affect axonal polarization remained

poorly described [11,12]. It is known, however, that submitting

equivalent neurites to external tension forces allowed the

specification of the stretched neurite into an axon, even in already

polarized neurons [13]. At the subcellular level, both neuronal

differentiation and the establishment of forces involve cytoskeletal

components; axonal specification correlates with cytoskeletal

rearrangements, including local dynamic instability of actin and

stabilization of microtubules [14]. Also, the crucial contribution of

the centrosome as a microtubule-organizing center during axonal

specification remains debated. Centrosome location has been

reported as a predictor of axonal fate [15,16], but this capacity was

later questioned by both in vitro and in vivo observations [17,18].

In this study, we wished to model the physical constraints

encountered by differentiating neurons in vivo, e.g. pre-existing

axons or cell bodies, and assess their influence on axonal

specification. We thus manipulated neuronal shape through non-

specific poly-L-lysine-covered micropatterns [19]. By applying

geometrical constraints on the cell body we provided evidence that

centrosome location was not predictive of axonal polarization;

rather, it responded to axonal location. Then, by varying the

directions of neuritic growth, we showed that axonal specification

may result from achievement of the highest mechanical tension.

More, we demonstrated that axonal specification of neurites grown

on curved lines was inhibited. This inhibitory effect toward axon
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formation was strong enough to counteract the multiple-axon-

promoting action of taxol or cytochalasin. Finally, using

cytoskeleton-related drugs, we found that microtubules seemed

to act as major players in tension-mediated neuronal polarization.

Results

To assay the effects of physical constraints on neuronal

polarization we provided micropatterned substrates to hippocam-

pal neurons in culture, thereby constraining cell bodies and/or

neurites. Through photolithography techniques, poly-L-lysine

adhesive patterns were engineered on hydrophobic glass cover-

slips, thus providing adhesive and non adhesive surfaces (Fig. S1A–

C) to shape embryonic hippocampal mouse neurons in culture.

A control motif DC, formed with a 20 mm-diameter disk for the

cell body and three straight lines (L1–L3 directions) was first built

according to a three-fold rotational symmetry (angles = 120u,
Fig. 1A). Following neuron plating, we assayed neuronal

differentiation after several days of differentiation in vitro (DIV).

Neurons grown on these micropatterns behaved like freely

differentiating neurons [20]: they generated several equivalent

neurites after 12 hours (stage 2) and, about 36 hours later, a single

neurite underwent rapid elongation and became the axon (stage

3). Accordingly, the early axonal marker tau was found only in the

axonal shaft (Fig. 1B). Axonal neurites were also identified using

ankyrin G-labelling of the initial segment [21] (Fig. S1D) and

dendrites using MAP2 labeling (Fig. S1E).

The percentage of neurons polarized in each direction (L1–L3)

was determined and we found random polarization along L1–L3

(35.8%, 33.2%, and 31.1% along directions L1, L2, and L3,

respectively, Fig. 1C) as expected from the three-fold symmetry of

the DC motif.

Starting from the control DC pattern, new patterns were

engineered to analyze relationship between axonal specification

and external physical constraints. Geometrical constraints were

applied that affected the shape and the surface available for cell

spreading and the direction and the trajectories available for

neuritic outgrowth.

Axonal differentiation and centrosome location in the
presence of physical constraints on the cell body

First, to study the potential role of centrosome location in

axonal polarization, we defined a pattern to geometrically

constraint the cell body. Indeed, an L-shaped (boomerang) pattern

used to constrain Hela cells had been shown to result in

stereotyped cell shape with a centrosome location at the corner

Figure 1. Effect of soma constraints on axonal polarization. (A) Design of patterns DC, BmS, and DS; L1–L3 directions are indicated. (B)
Immunolabelings of stage 3 neurons on DC, BmS and DS patterns: axon (tau staining, red), microtubules (tubulin staining, green) and nuclei (Hoechst
staining, blue). The shape of the cells reflects the global organization of DC/DS patterns in a hexagonal network. Scale bar, 20 mm. (C) Results of
axonal polarization, i.e. percentages of stage 3 neurons with their axon along L1–L3 directions (n = 194, 176 and 267 for the DC, BmS and DS patterns,
respectively). *, significantly different from random (blue dotted line, 33.3% in each direction), p,0.05.
doi:10.1371/journal.pone.0033623.g001
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of the motif [22]. Two patterns were designed (Fig. 1A and Fig.

S2), one with a thick boomerang-like shape (BmS) and another

built from a 20 mm-diameter disk (DS). Due to its L-shape, the

BmS pattern exhibited an asymmetric direction for neurite

outgrowth with an angle of 90u between L2 and L3 and of 135u
between the other directions (Fig. 1A). This asymmetry for the

direction of neurite outgrowth was reproduced in the DS pattern

(Fig. 1A).

Centrosome distribution was analyzed from c-tubulin immu-

nolabelings in stage 2 undifferentiated neurons (1 DIV) (Fig. 2A).

The L-shaped pattern BmS was able to induce centrosome

distribution along its symmetry axis (Fig. 2B), strikingly reproduc-

ing what was observed for HeLa cells [22] and extending to a

radically different cellular type the benefits of micropatterns in

terms of stereotyped organelle localization. Note that neurons

grown over BmS patterns did not display any new actin structures

as compared to non-patterned cells i.e. stress fibers were not

observed (Fig. S3). In contrast, undifferentiated neurons exhibited

a largely central centrosome location on DS and DC patterns

(Fig. 2B).

On both DS and BmS patterns, axonal polarization was

assessed via a positive staining for Tau (Fig. 1B) and preferentially

occurred along L1 (44.9% and 47.2%, respectively) as compared

to random (Fig. 1C) (*, p,0.05) with no significant difference

between BmS and DS (p = 0.647).

Hence, centrosome location in stage 2 neurons was not

predictive of axonal specification at stage 3. After axonal

polarization however, centrosome distribution quantified from

neurons grown over BmS patterns revealed that, although 64.7%

of the centrosomes were still located along the symmetry axis L1 of

the pattern, (Z0 area, Fig. 2C, as compared to 87.5% at stage 2

***, p,0.001), the others spread toward L2 (14.1%) and L3

(20.1%) directions. Interestingly, axonal polarization occurred in

each direction with the following ratio: 47.2% for L1, 27.8% for

L2, and 23.3% for L3 (Fig. 1C) directions. Thus at stage 3, on

BmS patterns, the position of centrosomes seemed to be associated

with polarization success along each direction. These results

indicated a possible redistribution of the centrosome toward the

actual axon, following axonal specification. To directly address this

possibility we analyzed the centrosome location and the position of

the axon from the same individual neurons. As displayed in

Figure 2D, location of centrosomes correlated with the direction of

axonal specification. Altogether, these results showed that the

initial centrosome localization was not the key factor leading to the

observed preferential axonal polarization along L1; rather,

centrosome position was determined by axonal location.

To explain the axonal preference along L1 in BmS and DS

patterns, we focused on the rotational symmetry breaking in the

neuritic directions in these motifs as compared to the DC control

pattern. Hence, we considered that neurites were maintained in

mechanical equilibrium through the development of mechanical

tensions [6,23]. The vectorial analysis of these tensions yielded

different values for their modulus along direction L1 (TL1, Fig. 3),

i.e. TL1 was higher by a factor of !2 on DS and BmS than on DC

control pattern. This analysis suggested that the neurite that

Figure 2. Effect of soma constraints on centrosome position. (A)
Microtubule labeling (green), highlighting the different organizations of
microtubules in DC, BmS, and DS patterns. Nuclei (blue) and centrioles
(red) stained with antibodies against c-tubulin. Red arrows point to the
centrioles. (B) Superimposition of density maps for centrioles and
corresponding patterns (n = 154, 168, and 160 from stage 2 neurons for
the DC, DS, and BmS patterns, respectively). (C) Centrosome distribution
in stage 2 (1 DIV) and 3 (3 DIV) neurons grown on BmS patterns. Upper
panel: Scheme of BmS pattern indicating the regions of interest Z0-Z3;
with the scatter plot of centriole distribution superimposed (red dots,
stage 3). Percentages of centrioles in each region of interest with inset
showing the density map of the upper scatter plots superimposed on
dashed lines delimiting the patterns. (n = 160, stage 2 neurons; n = 184,
stage 3 neurons). (D) Centriole positioning (red dots) and axonal
localization in neurons grown over the BmS pattern. (n = 31, 12, and 20
neurons for the L1, L2, and L3 directions, respectively).
doi:10.1371/journal.pone.0033623.g002

Figure 3. Vectorial analysis of tension forces on DC, DS, BmS
patterns. Neuronal directions of outgrowth represented by lines of
forces in the DC and BmS/DS patterns. Each vectorial representation
shows the magnitude of the tensions (multiple of T, the tension exerted
along the L2–L3 directions) exerted along L1 under the hypothesis of a
mechanical equilibrium state at the cell level.
doi:10.1371/journal.pone.0033623.g003
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displayed the highest tension probably became the axon and that

intrinsic asymmetry of tensions may be involved during axonal

differentiation. In brief, intrinsic differential tension was possibly

associated with axonal polarization and could trigger a subsequent

redistribution of the centrosome population toward the basis of the

axon.

Effect of neuritic constraints on axonal fate
Geometrical constraints were applied to neurite trajectories by

imposing curved lines for neuritic outgrowth. By doing so we

wished to mimic in vivo neuronal path-finding in a crowded

environment to determine how the corresponding physical

constraints might affect axonal fate.

Curved lines for neuritic outgrowth prevented axonal

polarization. We designed a succession of micropatterns

offering a 20 mm-diameter disk (D) dedicated to soma adhesion

and 2 mm-thick lines for neurite outgrowth with four directions

(L1–L4) made of one straight (L1) and three curved lines (L2–L4)

of increasing curvature (Fig. 4A). Curved paths were built from full

or truncated half circles of variable radius in order to set the half

wavelength of the curvatures to the value of 20 mm (Fig. S4).

Additionally, we designed a control pattern named DW0 and

characterized by four straight directions L1–L4 (Fig. 4A).

Analysis of axonal specification from 3 DIV neurons grown over

this class of micropatterns showed new neuritic outgrowth figures

where neurites seemed to be partially (Fig. 4B, upper panel) or

totally torn off their curved adhesive track (Fig. 4B, lower panel),

which we termed ‘‘unhookings’’. Video-microscopy analysis of

neuronal differentiation showed that neurites dynamically, and

sometimes reversibly, unhooked from the curved adhesive track in

a time scale of minutes (Fig. 4C, see also Movie S1). Hence, the

actual unhookings observed at 3 DIV recapitulated irreversible

tearing events that occurred during the first three days in culture.

These observations led us to consider the tension forces developed

within neurites growing onto curved lines (Fig. 4D). Whenever a

neurite undergoes internal tension T, unhooking forces Fc
depending on the specific angle characteristic of each micropattern

will tend to tear it off (Fc= 2Tsinc, Fig. 4D). Hence, actual

unhookings corresponded to neurites whose adhesive forces

towards the micropattern were overcome by the unhooking forces

when increasing tension developed within neurites. In agreement

with the mechanical modelization of Figure 4D, quantification of

unhooking events in the different patterns showed that increasing

the curvature increased the unhooking events as well, reaching

22.7% of neurons with at least one unhooked neurite on the DW4

micropatterns (Fig. 4E). A possible relationship between unhook-

ing forces and axonal polarization resulted from observations of

unhooked neurites. Out of 132 neurons grown over DW4

micropatterns, 30 displayed unhookings (22.7%) unevenly distrib-

uted between axonal and non-axonal neurites. Of 67 neurons that

polarized along L1, 8 displayed unhookings out of the (3667)

neurites growing on L2–L4, thus indicating a low 4.1% probability

of unhooking for non-axonal neurites. In contrast, of 65 neurons

with axonal polarization along L2–L4, 18 unhooked axons were

counted, indicating a significantly higher 27.7% frequency of

unhooked axons (p,0.001). Since these results were obtained for

DW4 micropatterns with fixed physical parameters (c= 90u,
k= 0.1 mm21), the different probabilities of unhooking suggest

that maximal internal tensions differ for axonal versus non-axonal

neurites.

Correspondingly, quantification of axonal polarization along

each direction showed that axonal polarization along L1 increased

with the curvature of the L2–L4 lines (Fig. 4F), reaching 52.3%

(p,0.001 as compared to random, i.e. 25% in each direction) on

the DW4 pattern, whereas the other axons differentiated

uniformly onto L2–L4 (Fig. S5). We stress here that curvature

influenced the process of axonal differentiation but not the process

of axonal growth. As illustrated on Fig. 5, once formed, the axon

developed freely over hundreds of microns along either straight or

curved paths. Taken together, these results indicated that

increasing curvature led to increasing unhooking forces, respon-

sible for more actual unhookings and resulting in better axonal

Figure 4. Influence of neurite curvature on axonal polarization.
(A) DW4 set of patterns of increasing curvature along directions L2–L4;
Scale bars, 20 mm. (B) Partial and complete unhookings observed on
fixed cells (microtubules: green, F-actin: red). White arrows point to
partial unhooking, characterized by a displaced neuritic shaft still
attached to the substrate by a large lamellipodium. The yellow arrow
indicates a complete unhooking characterized by a high density of MTs
crossing the pattern arch and remaining entities strictly following the
curved adhesive line. Scale bar, 10 mm. (C) Time-lapse experiment
(indicated in minutes, beginning 30 hours after plating) of a neurite
developing on a DW4 pattern showing partial unhooking (white arrow).
The black arrowhead points to the neurite tip and the green dashed line
marks the position of the adhesive pattern. Scale bars, 20 mm. Refer to
Movie S1 for the original time-lapse sequence. (D) Physical modeling of
a curved neurite (in red) as an elastic wire under tension T. Curvature is
reflected by the angle c (see text), and Fc= 2 T sin c (black arrow) is the
force experienced by the elastic wire. (E) Percentages of neurons
displaying unhookings when grown over DW0 (0%), DW4-1 (4.7%),
DW4-2 (7.0%), DW4-3 (10.6%), and DW4 (22.7%) patterns. (n = 117, 129,
128, 132, and 132, respectively). (F) Preferential axonal specification
along the straight direction L1 were plotted from stage 3 neurons
plated over DW0 (24.4%), DW4-1 (32.6%), DW4-1 (34.7%), DW4-3
(45.5%), and DW4 (52.3%) patterns. (n = 115, 285, 225, 330, and 216,
respectively). ***, significantly different from random, p,0.001.
doi:10.1371/journal.pone.0033623.g004
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polarization along L1, as if curved lines inhibited axonal

polarization.

Last, we established a map of centrosome distribution for DW4

micropatterns and verified that centrosome distribution did not

predict axonal specification when more directions were provided

(4 for DW4 versus 3 for DS) (Fig. S6).

Curved lines conflicted multiple-axon-promoting effect of

cytoskeleton drugs. We further investigated the inhibitory role

of curved lines toward axonal polarization by performing

experiments in the presence of pharmacological compounds

known to promote the formation of multiple axons (MA) in

hippocampal neurons grown on flat unconstrained substrates

[24,25]. Neurons grown on DW0 control patterns were treated

either with cytochalasin (CD, 0.5 mM), taxol (3 nM), or vehicle. At

2 DIV, the proportion of MA neurons was similar to that reported

in the literature, i.e. 78.6% and 73.3% MA neurons in the

presence of cytochalasin D and taxol, respectively, while virtually

none (1.7%) were observed in sham conditions (Fig. 6).

We then assayed the ability of neurons to develop MA when

grown on DW4 patterns. In sham conditions, only few MA

neurons were detected (1.8%); in the presence of cytochalasin D or

taxol, MA neurons were still observed (Fig. 6A, B) but in

significantly smaller proportions than on DW0 (32.0% versus

78.6%, p,0.001 and 25.7% versus 73.3%, p,0.001 for cytocha-

lasin D and taxol respectively) (Fig. 6 C). These results indicated

that curved lines displayed a strong axon-inhibiting effect that

opposed the multi-axon-promoting action of the drugs.

Microtubules support curvature-mediated inhibition of

axonal polarization. The inhibition of axon specification on

curved lines most probably involved cytoskeletal relays in neurons.

To investigate the involvement of cytoskeleton elements in the

inhibitory role of curvature toward axonal polarization, we analyzed

axonal preference along L1 from experiments performed in the

presence of cytoskeletal-targeted drugs: the actin destabilizer

cytochalasin D (CD, 0.5 mM), the microtubule stabilizer taxol (Tx,

3 nM), or the microtubule destabilizer nocodazole (Nz, 45 nM).

Neurons grown on DW4 patterns were treated with each drug

and axonal polarization along L1 was measured in neurons

displaying a unique axon (Fig. 6D). After nocodazole treatment, as

compared to sham conditions, axonal polarization toward L1 was

significantly reduced (37.7% versus 50.5%, p,0.05), indicating

that microtubule integrity was crucial for the inhibitory effect of

curved lines toward axonal polarization. On the other hand,

cytochalasin and taxol induced the formation of multiple axons

and this effect needed to be taken into account: after the

differentiation of a first axon, neurons trying to develop a second

axon will unequally succeed to do so whether they have developed

the first axon on the straight line L1 or along any of the curved

lines L2–L4. Thus, the probability of failing to grow a second axon

and remaining a neuron with a unique axon will differ according

to the position of the first axon. We developed a simple

probabilistic model of successful axon specification along straight

or curved lines to predict expected values of polarization along L1

in the presence of the multiple-axon-promoting drugs (Text S1).

We then compared the predicted values of axonal polarization

along L1 with the measured values (Fig. 6D). In the presence of

cytochalasin D, the predicted value of polarized neurons in

direction L1 was 59.0% and in agreement the measured value was

55.8% (p = 0.671, not significantly different). In contrast, in the

presence of taxol the predicted value of polarized neurons in

direction L1 was 58.4% and the measured value of 47.7% was

significantly lower (p,0.05).

Altogether these results demonstrated that cytoskeletal elements

were differently involved in the inhibitory ability of curved lines to

induce axonal polarization. Actin integrity seemed dispensable for

the inhibition of axonal polarization by curved lines. In contrast,

more neurites grown along curved lines became axons in the

presence of taxol or nocodazole i.e. curved lines’ capacity to inhibit

axonal polarization was decreased in the presence of MT-targeting

drugs.

Discussion

Neuronal polarization is sensitive to external physical
constraints

In vivo, neuronal differentiation and axonal specification are

both under the control of a large number of parameters including

adhesion [26,27] to the extra-cellular matrix, complex responses to

guidance molecules [8], and physical constraints [11,12]. In this

study, we analyzed the role of specific physical parameters on

axonal specification. We developed a simplified protocol where

neurons were plated on top of geometrically constrained

micropatterns in a defined cell culture medium. By using various

micropatterns, we provided evidence that neuronal polarization

was indeed sensitive to external constraints such as curved

trajectories for neuritic outgrowth. Our results also indicated that

axon polarization was favored along straight lines; such a property

might be used in vivo by newborn neurons when extending their

nascent axon along pre-existing straight structures. Indeed,

hippocampal granular neurons extend and fasciculate their axons

in the same direction, e.g. dentate gyrus neurons extending axons

to form the mossy fiber bundle [28].

Geometrical constraints revealed internal neuritic tension
The involvement of forces during neuronal differentiation was

first described for the growth cone of chick sensory neurons and

PC12 cells that pulled onto neurites [6,29]. Mimicking such forces

by mechanically pulling a neurite with a micropipette even caused

its active growth [29], with constant parameters dependent on

intact actin and microtubular networks [30,31]. Similar experi-

ments with rodent hippocampal neurons unambiguously demon-

strated that pulling a neurite could change it into an axon [13].

Figure 5. 7 DIV neurons spread over DW4 patterns. Dendritic
marker MAP2 (green), microtubules (tubulin in red) and nuclei (Hoechst
staining, blue). Scale bar = 40 mm. Once formed, the axon developed
freely over hundreds of microns along either straight or curved paths
following the global organization of DW4 patterns arranged in a
network.
doi:10.1371/journal.pone.0033623.g005
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Finally, identification of low velocity transport independent from

the growth cone [32] and observations of axonal stretching from

fixed reference points in chick sensory neurons [33] confirmed that

internal neuritic tensions may act in living neurons. Our work

extends these observations by revealing endogenous neuritic

tension in mouse hippocampal neurons grown on micropatterns.

In our system, neurons grown over curved lines displayed figures

of unhooking formed by neurites progressively detaching from the

curved lines they were growing on. This observation led us to

consider that individual neurites were submitted to a fine balance

of forces, Fadhesion and Funhook, the latter depending on the

curvature of its substrate. Recent modeling of chick sensory

neurons estimated the friction coefficient relative to adhesion to be

about 9600 N.s.m22 [34]. Such adhesion along a full curved line

of the DW4 motif (area = 62.8 mm2 for c= 90u, see Fig. S4) would

correspond to a force Fadhesion = 1–10 nN to detach in 1–10 min

(Fig. 4C and Movie S1). Interestingly, this value of 1–10 nN is of

the same order of magnitude as estimations of resting tension in

neurites of PC12 cells (1 nN) or Drosophila neurons (4 nN) and of

tension needed to differentiate neurites of rat hippocampal

neurons into axons (0.4–1 nN) [33,35,36].

Differential internal neuritic tensions may be involved in
axonal polarization

The angular orientation applied to straight neuritic directions

seemed to be involved in axonal polarization preference (DS

micropattern, Fig. 1), suggesting asymmetric internal tensions

during axonal differentiation. This observation led us to propose

that the neurite expressing the highest tension probably became

the axon. Then, the simple mechanical model displayed in Fig. 4D

suggested that neuritic tension may be causal in the unhooking

phenomenon revealed in neurons grown over the DW class of

micropatterns. When unhooking occurred, we very often observed

a pause in growth cone advance and even neurite retraction

Figure 6. Combined action of drugs and micropatterns on axonal polarization. (A–B) Immunolabeling of stage 3 neurons on DW4 patterns
grown in the presence of 0.5 mM cytochalasin D (A) or 3 nM taxol (B): axon (tau staining, red), microtubules (tubulin staining, green) and nuclei
(Hoechst staining, blue). Both drugs induced multiple axon (MA) formation as revealed by a tau positive staining of several neurites (white arrows).
Scale bar, 20 mm. (C) Percentages of multiple axon (MA) neurons grown over DW0 or DW4 micropatterns, in sham conditions or in the presence of
cytochalasin D (0.5 mM) or taxol (3 nM); (sham n = 117; CD, n = 112; Tx, n = 150 for DW0 and sham n = 109; CD, n = 153; Tx, n = 319 for DW4). ***,
significantly different from DW0, p,0.001. (D) Axonal preference along L1 for neurons grown on DW4 micropatterns, in the presence of DMSO, 45 nM
nocodazole (Nz), 0.5 mM cytochalasin D (CD) or 3 nM taxol (Tx) (n = 107, 146, 104, and 237 neurons with a unique axon, respectively). Blue dotted lines
represent the predicted preference along L1 in the presence of CD or Tx as determined with the probabilistic model (Text S1). *, significantly different
from the expected distribution, p,0.05.
doi:10.1371/journal.pone.0033623.g006
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(Fig. 4C, black arrowhead). Such events could result from a

collapse of the initially stretched neurite by the disruption of its

adhesive contacts with the PLL curved stripe [34]. Therefore,

unhookings could participate to inhibiting axonal polarization on

curved lines by actively reducing neuritic tension, thereby

introducing a differential tension between neurites. Note that

curvature itself could also be inhibitory and unhookings mere

consequences (see below).

Centrosome positioning is not predictive of axonal
polarization but rather respondent to neuritic tension

The localization of centrosome at stage 2 did not seem to be

predictive of axonal polarization, as using BmS and DS patterns

resulted in the same polarization ability. More, a significant axonal

preference for L1 was observed in DW4 despite the mainly central

centrosome localization imposed by this pattern at stage 2. The

centrosome has been reported to be highly motile during axonal

differentiation [37,38] and accordingly we found that centrosome

distribution changed between stage 2 and stage 3, being clearly

aligned along the chosen axonal direction at stage 3. The

sensitivity of centrosome positioning to neuritic forces could be

further expressed in the course of axonal polarization. At the end

of stage 2, one neurite will take precedence over the others and

develop a higher force, thus reorienting the centrosome. At this

point, the centrosome position may correspond to the consequence

of the active cytoplasmic flux toward the most active neurite, i.e.

the developing axon [18]. It was suggested that centrosome

location at the basis of the axon may further stabilize the emerging

axon but it was recently shown that centrosome ablation after

neuronal specification did not modify axonal growth [39].

Curvature-mediated inhibition of axonal polarization
relies on MT cytoskeleton

On DW4 micropatterns, no change of axonal preference toward

the straight direction L1 was observed in the presence of

cytochalasin D, indicating that the molecular support of

curvature-mediated inhibition of axonal polarization was not

strongly affected when the actin network was perturbed. In

contrast, treatment with taxol or nocodazole induced less L1

preference than expected from the observations made in the

presence of the vehicle. Both drugs are known to affect the

microtubule network but their effect strongly depends on the

concentrations used in experiments. Low doses of taxol (below

10 nM) affect microtubule dynamics (growing and shortening

events at the ends of microtubules) without inducing massive

microtubule stabilization and without increasing the microtubule

mass [14,40,41]; similarly low doses of nocodazole (,100 nM)

modulate the dynamics of microtubule without depolymerization

[42]. In our study we used such low doses of both taxol (3 nM) and

nocodazole (45 nM) to affect microtubule dynamics and we

observed decreased axonal preference toward L1. Given our

observations of unhooking figures on the one hand and the

vectorial analysis of forces (Fig. 3 and S6) on the other hand, it

seems that forces mainly express in the axonal shaft. We may

speculate that microtubule dynamics in the axonal shaft are linked

to neuritic tension: disturbances of microtubule dynamics will

affect the mean length of individual MTs within the axonal shaft

[43,44], allowing them for more or less resistance to bending along

curved lines. Interestingly, a recent study using rat dorsal root

ganglion neurons grown over propylene tubular surfaces demon-

strated that curvature per se could be used to control the direction

of spontaneous neuritic growth [45]. Neuritic outgrowth was

inhibited by the curvature of the tubes when it reached values

.0.05 mm21, much similar to the curvature of DW4 curved lines

(0.1 mm21 when c= 90u). Using these values, the authors

estimated neuritic bending stiffness and indicated that it was

compatible with that of bundled MTs [45]. These data, in addition

to our results showing that microtubule integrity and dynamics

were necessary for axonal polarization, support the hypothesis that

MT may be curvature sensors during neuronal differentiation.

Materials and Methods

Micro-pattern fabrication
Poly-L-lysine patterns were transferred on glass substrates

silanized with 3GPS [46] using UV classical photolithography

steps, including Shipley S1805 photoresist spinning (4000 rpm,

0.5 mm thickness, 115uC annealing step for 1 min), insulation

through a mask, development (Microposit concentrate 1:1,

Shipley), PLL deposition (1 mg/ml one night), and lift-off using

an ultra-sound ethanol bath.

Neuron culture and labeling
Mouse hippocampal neurons were prepared as previously

described [47] and plated at a concentration of 10,000–20,000

cells/cm2. For centrosome, tau and MAP2 immunolabelings,

neurons were fixed for 30 min in 3.7% formaldehyde/0.5%

glutaraldehyde and then permeabilized for 1 min with 0.1% triton

6100. For Ankyrin G immunostaining, neurons at 6–7 DIV were

fixed for 6 min in methanol (220uC). Primary antibodies: mouse

mAbs against Ankyrin G (Santa Cruz, Heidelberg, Germany); Tau

(clone tau-1, Millipore, Molsheim, France); MAP2 (clone AP-20,

Sigma, Lyon, France); rat mAb against tubulin (cloneYL1/2), and

rabbit Ab against c-tubulin (M. Bornens, Institut Curie, Paris,

France). Secondary antibodies were Alexa488- or Cy3-coupled

(Invitrogen, Villebon-sur-Yvette, France). Isolated neurons were

analyzed with an inverted microscope Axioskop 50 (Carl Zeiss,

Inc., Le Pecq, France) controlled by Metaview software (Universal

Imaging, Downingtown, PA, USA) using a 406 and 636 oil-

immersion objective. Images were digitized using a Coolsnap ES

camera (Roper Scientific, Trenton, NJ, USA).

Centrosome analysis
Image sortings were performed using Labview vision software

(National Instrument) and a semi-automatic interface that

positioned the motifs associated with each pattern. The two

centrioles were visible in more than 85% of cases and were then

pointed separately. When indistinguishable, the unique fluorescent

point counted for two centrioles. Density maps of centrioles’

position were achieved by a custom-made Matlab program using

an algorithm for smoothing of two-dimensional histograms [48].

The centrosome distribution according to ROIs was assessed using

programs in the free Octave language, administered by the GNU

General Public License.

Statistics
All percentage comparisons were performed using x2 tests as

implemented in Prism 4.0 (GraphPad Software, La Jolla, USA).

Supporting Information

Figure S1 Micropattern with contrasted adhesiveness.
(A) Micrograph of a micropattern showing the mask used during

photolithography and properties of the resulting surface: adhesive

in white and non adhesive in black. (B) Micrograph of the

micropattern showing the adhesive surface covered by FITC-

grafted poly-L-lysine (green). (C) Micrograph showing a hippo-
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campal neuron (phalloidin-Texas red staining of actin) spread on

the adhesive surface (poly-L-lysine in green). Scale bar 20 mm. (D)

Micrographs of hippocampal neurons after 7 days in vitro. (Left)

axonal labeling with ankyrin G (red), microtubules (tubulin, green)

and nuclei (Hoechst staining, blue); (Right) dendritic marker

MAP2 (green), microtubules (tubulin, red) and nuclei (Hoechst

staining, blue). Scale bar = 20 mm.

(DOC)

Figure S2 Bm, DC and DS motifs, geometrical details.
(A) Geometrical dimensions of the Bm elementary motif. (B) DC

and DS patterns, built with different orientations of the L2–L3

directions.

(DOC)

Figure S3 Actin network of a stage 2 neuron (1 DIV)
grown on BmS pattern. Cell nucleus (Hoechst staining, blue),

centrosome (c tubulin labeling, green), and actin (phalloidin-Texas

red staining, red). No actin stress fibers are visible around the cell

body. Scale bar, 10 mm.

(DOC)

Figure S4 Summary of geometrical characteristics of
DW patterns.
(DOC)

Figure S5 Influence of neurite curvature on axonal
polarization. Axonal specification along the L1–L4 directions

was plotted for DW0 and for each DW4 pattern. The number of

neurons polarizing along L1 increased with curvature; other

neurons polarized uniformly along L2–L4 directions. ***,

significantly different from random distribution (dotted line),

p,0.001. DW0: 24.4%, 24.4%, 26.0% and 25.2% for L1, L2,

L3 and L4, respectively. DW4-1: 32.6%, 24.6%, 21.1% and

21.8% for L1, L2, L3 and L4, respectively. DW4-2: 34.7%,

23.6%, 23.6% and 18.2% for L1, L2, L3 and L4, respectively.

DW4-3: 45.5%, 18.2%, 19.7% and 16.7% for L1, L2, L3 and L4,

respectively. DW4: 52.3%, 13.3%, 18.8% and 15.1% for L1, L2,

L3 and L4, respectively.

(DOC)

Figure S6 Centrosome distribution and correlation with
axonal localization in stages 2 (1 DIV) and 3 (3 DIV)
neurons grown over DW4 patterns. (A) Top: an example of

microtubule (green), nuclei (blue) and centrosome (red and red

arrow) immunolabelings. Scale bar = 10 mm. Bottom: Superimpo-

sition of centrosome density map from stage 2 neurons (n = 174)

and DW4 micropattern; Scale bar = 10 mm. (B) Top: Scheme of a

DW4 pattern and regions of interest Z0–Z4; the scatter plot of

centrosome distribution from stage 3 neurons was superimposed

(red dots). Bottom: Percentages of centrosomes located in each

region of interest from stage 2 and stage 3 neurons (n = 174 and

340, respectively). (C) Distribution of centrosomes (red dots) from

neurons with an axon in the indicated direction (n = 43, 11, 17,

and 21 for the L1, L2, L3, and L4 directions, respectively). (D)

Directions of neuritic outgrowth represented by vectorial forces

showing tensions exerted along each neurite, supposedly all equal

in amplitude (stage 2, undifferentiated neurites). The resultant is

drawn in red and points down and leftward.

(PDF)

Movie S1 Neuritic unhookings observed on a DW4
pattern. Time-lapse recording of neurons plated for 30 hours.

Phase contrast images of living cells were captured with a charge-

coupled device camera (CoolSNAP HQ; Roper Scientific) using a

20x Phase3 Plan ApoChromat oil NA 1.4 objective mounted on an

inverted motorized microscope (Axiovert 200 M; Carl Zeiss, Inc.)

equipped with a device enabling regulation of temperature and

CO2 levels and controlled by MetaMorph software (MDS

Analytical Technologies).

(MOV)

Text S1 Probabilistic Model of Axonal Polarization on
DW4 patterns.

(DOC)
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