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Jérôme Eeckhoute,1, 2, 3, 4 Frédérik Oger,1, 2, 3, 4 Bart Staels,1, 2, 3, 4 and Philippe Lefebvre1, 2, 3, 4
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The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is required for differentiation and function of
mature adipocytes. Its expression is induced during adipogenesis where it plays a key role in establishing the transcriptome of
terminally differentiated white fat cells. Here, we review findings indicating that PPARγ expression and activity are intricately
regulated through control of chromatin structure. Hierarchical and combinatorial activation of transcription factors, noncoding
RNAs, and chromatin remodelers allows for temporally controlled expression of PPARγ and its target genes through sequential
chromatin remodelling. In obesity, these regulatory pathways may be altered and lead to modified PPARγ activity.

1. Introduction

Peroxisome proliferator-activated receptor gamma (PPARγ)
is a transcription factor (TF) belonging to the superfamily
of nuclear receptors. PPARγ has a well-established central
role in differentiation and function of mature adipocytes [1–
5]. This nuclear receptor is activated by endogenous ligands
such as nitrated linoleic acid or oxidized fatty acids (9- and
13-HODE), prostaglandin J2 as well as by various synthetic
ligands, including the insulin sensitizers pioglitazone and
rosiglitazone [6]. Indeed, activation of PPARγ by the thiazo-
lidinediones (TZDs) pioglitazone or rosiglitazone improves
insulin resistance associated with obesity and diabetes [7].
Recent studies suggest that this effect is mainly mediated
through activation of PPARγ in adipocytes [4, 8], although
studies also suggest that macrophage [9] and brain PPARγ
[10] contributes to this therapeutic effect.

Transcriptional regulation in mammalian cells is inti-
mately linked to the genomic organisation of the DNA in
a highly dynamic chromatin structure. Indeed, chromatin

intrinsically impedes transcription factor access to the DNA.
This is illustrated by the finding that TFs bind to a highly
limited number of potential response elements within the
genome of eukaryotic cells [11]. Typically, chromatin regions
bound by TFs are devoid of nucleosomes since they can
mask their DNA recognition motifs [12]. An additional layer
of regulation is provided by epigenomic signatures includ-
ing histone variant incorporation, histone posttranslational
modifications as well as DNA (hydroxy)methylation. Tran-
scriptional regulators and epigenetic modifications mutually
regulate each other in order to achieve proper cell type
and environment-specific usage of all functional DNA sites
embedded within the genome [13–15]. Hence, transcrip-
tional regulatory regions are characterized by different
epigenetic signatures when inactive, poised, or active [16,
17].

In this context, results from several biochemical and
genetic studies led to the concept that many transcription
factors, including nuclear receptors, require presetting of
the chromatin for binding to their response elements in
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the DNA sequence [13, 15]. This consists of preliminary
remodelling of the chromatin landscape allowing subsequent
TF binding. This process involves so-called pioneer factors
that can be recruited to nucleosomal DNA. Such pioneer
factors would be required to initiate chromatin remodelling
and competency of enhancers that are subsequently used by
TFs to mediate transcriptional regulatory signals. Strikingly,
some TFs bearing these functions can remain associated
with mitotic chromatin suggesting they could bookmark
regulatory sites and represent “epigenetic cues” [13, 15].

During adipocyte differentiation, chromatin remodelling
events take place to allow proper PPARγ expression and
activity. We review here our current knowledge of an
integrated control of PPARγ expression and function in
adipocytes emphasizing the central role of chromatin remod-
elling.

2. Regulation of PPARγ Gene Expression
in Adipocytes

2.1. Transcriptional Regulation of PPARγ. The study of
adipogenesis and adipocyte functions has benefited from
cellular models which can be easily manipulated in vitro [18,
19]. Numerous studies made use of the mouse preadipocyte
3T3-L1 cell-line, which can adopt an adipocyte-like pheno-
type with lipid droplet accumulation upon stimulation with
a cocktail of adipogenic inducers (isobutylmethylxanthine
(IBMX), dexamethasone, and insulin). During this process,
PPARγ expression is strongly induced. Two isoforms of
PPARγ are encoded from alternative promoters in the mouse,
namely, PPARγ1 and PPARγ2. While PPARγ1 is found in
numerous tissues, PPARγ2 expression is mostly restricted
to white and brown adipose tissues [20]. PPARγ2 pos-
sesses 30 additional aminoacids, which renders the PPARγ
aminoterminal transactivation domain more active [21, 22].
Thus, while both PPARγ isoforms can induce adipogenesis,
PPARγ2 is thought to play a dominant role in this process
[23, 24].

Very early during adipogenesis, the expression of
ecotropic viral integration site 1 (Evi1), CCAAT/enhancer
binding protein (C/EBP) β and C/EBPδ is induced [25,
26]. This results in expression of low levels of the two
PPARγ isoforms and of C/EBPα [25, 26] maintained in
a repressed state in preadipocytes by the transcriptional
corepressor SMRT (silencing mediator of retinoic acid and
thyroid hormone receptor) [27]. PPARγ and C/EBPα can
then induce each other’s expression in a positive feedback
loop promoting and maintaining the differentiated state of
the adipocyte [3]. Interestingly, genomic profiling of PPARγ
binding sites in adipocytes has revealed that it is present
both at the PPARγ2 promoter and at potential enhancers in
the vicinity or within its own gene [28, 29]. Expression of
PPARγ also requires the activity of the krüppel-like factors
5 and 15 (KLF5 and KLF15) secondarily to their induction
by C/EBP transcription factors [30, 31]. Additionally, the
transcription factors nuclear family I (NFI) and nuclear
factor E2-related factor 2 (Nrf2) regulate both C/EBPα and
PPARγ during adipogenesis most probably through direct

binding to the PPARγ1 and PPARγ2 promoter, respectively
[32, 33]. Additionally, NFI could exert its activities through
binding to enhancers within or near both genes [33].

Gene expression is induced by TFs and their cofactors
through chromatin remodelling events triggered by cofactor
enzymatic activities catalyzing histone and DNA modifi-
cations [13–15]. Indeed, the transcriptional activation of
PPARγ during adipogenesis correlates with an epigenetic
switch at the PPARγ gene. For instance, adipocyte differen-
tiation is associated with a strong increase in levels of histone
activation marks at the two PPARγ promoters. This includes
acetylation of histone H3 lysine 27 (H3K27ac) and methy-
lation of H3K4 (H3K4me2/3) and H4K20 (H4K20me1)
[29, 34]. H3K27ac, which is catalyzed by the transcriptional
coactivators CREB-binding protein (CBP) and p300 [35] and
typically found at active transcriptional regulatory regions,
also increases at enhancers within or near the PPARγ gene
[28]. Activation of the PPARγ promoters is also associated
with the removal of repressive marks including H3K9me2
and H3K27me3 [17, 34, 36, 37]. The switch from methy-
lation to acetylation at H3K27 could therefore represent
a point of integration between activating and repressing
signals. Concomitantly, demethylation of the PPARγ2 pro-
moter, which leads to the release of the transcriptional
inhibitor methyl CpG-binding protein 2 (MeCP2), occurs
gradually during differentiation paralleling the continuing
rise in PPARγ2 mRNA expression [34, 38].

These epigenetic changes create an environment comp-
etent for gene induction. However, additional remodelling is
required. Indeed, PPARγ promoters also undergo chromatin
reconfiguration through the binding of the nucleosome-
remodeling complex switch/sucrose non-fermentable
(SWI/SNF) [39]. SWI/SNF is required neither for epigenetic
changes nor for general TF recruitment, but promotes
transcription elongation [39]. Hence, PPARγ induction
is a multistep process in which sequential chromatin
remodelling events eventually lead to the release of stalled
RNA polymerase II. Control of transcription elongation
through modulation of RNA polymerase II release from
promoters has recently emerged as a central mechanism
governing developmental gene expression [40]. Like
developmental gene promoters in pluripotent cells [41], the
PPARγ1 promoter bears H3K4me3 in preadipocytes [28],
which could facilitate its induction during differentiation
[41]. RNA polymerase II stalling is not a mere consequence
of transcription regulation but is by itself an integral part
of gene regulation by competing with nucleosomes at
promoters and therefore setting the ground for induction
[40, 42]. Finally, release of stalled RNA polymerase II results
in trimethylation of H3K36 within the PPARγ gene, a feature
of actively transcribed regions (Figure 1) [28, 43].

The function of adipose tissues is severely altered in
obesity [44]. However, this does not stem from a reduced
expression of PPARγ, which remains unchanged or increased
in adipose tissues from obese rats, mice, and humans
[45–48]. Accordingly, knock-out of Nrf2 decreases PPARγ
expression, impairs adipogenesis, and protects mice from
obesity [32]. Sustained expression of PPARγ in WAT of obese
mice may involve a decrease in levels of the orphan nuclear
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Figure 1: Chromatin-based regulation of PPARγ expression in adipogenesis. Schematic describing epigenomic events as well as sequential
transcription factor binding involved in the regulation of PPARγ1/2 expression during adipogenesis. Expression of miR-27/130 targeting
PPARγ is also indicated.

receptor chicken ovalbumin upstream promoter transcrip-
tion factor II (COUP-TFII), which represses transcription of
the PPARγ gene by bringing SMRT and decreasing histone
acetylation levels at its promoters [49]. Note however that
COUP-TFII role in adipogenesis is still to be clarified since
contradictory results have been reported [50, 51]. In this con-
text, perturbation of adipocyte functions in obesity might be
linked essentially to modified rather than deficient PPARγ

transcriptional regulatory activities as discussed hereafter.
Alternatively, altered adipogenesis might be linked to the
concomitant perturbed expression of other genes controlling
adipocyte differentiation and functions such as genes of
the Wnt, Notch, and Sonic Hedgehog signaling pathways
[47]. On the contrary to what was observed in obesity,
PPARγ expression is decreased in visceral adipose tissues
of mouse models of diabetes (db/db), which may directly
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affect adipocyte differentiation and/or function. The authors
showed that this decrease in PPARγ expression is linked
to DNA methylation of its promoter [34]. Interestingly,
recent findings have highlighted a link between epigenetics
and metabolism [52] showing that altered metabolism can
lead to changes in activity of chromatin-modifying enzymes
[53, 54]. Whether and how this could participate in PPARγ
abnormal expression in adipocytes remain to be investigated.

2.2. Posttranscriptional Regulation of PPARγ Gene Expression
in Adipocytes: Role of miRNA. Epigenomic transitions during
adipogenesis often occur at regions distinct from promoters
of annotated coding genes [28, 33, 55]. While some of these
regions have been defined as enhancers regulating these
genes, others are most probably linked to modulation of
noncoding RNA (ncRNA) expression. A growing body of
evidence points to a major role for ncRNAs in the control
of cellular differentiation. Among those are microRNAs
(miRNAs), which are short (∼22 nucleotides) ncRNAs that
posttranscriptionally repress gene expression [56]. By pairing
to partially complementary sites in target mRNAs, miRNAs
trigger their degradation and/or repress their translation
[57]. Several miRNAs play key roles in the control of
adipogenesis and adipocyte functions acting as pro- or
antiadipogenic factors including miR-30 [58], miR-21 [59],
and miR-637 [60] (for review [61, 62]).

Among those, miR-27a/b [63–65] and miR-130a/b [66]
are negative regulators of terminal adipocyte differentiation.
This inhibition of adipogenesis stems, at least in part, from
their ability to prevent the transcriptional induction of
PPARγ in preadipocytes. In line, expression of these miRNAs
is downregulated during adipogenesis. Both miR-27a/b and
miR-130a/b directly target the 3′-untranslated region (3′-
UTR) of PPARγ [63, 64, 66]. Additionally, miR-130a/b could
also recognize a sequence within the coding region of PPARγ
[66].

Interestingly, in agreement with their negative effect on
PPARγ expression observed in vitro, miR-130a/b expression
correlates inversely with PPARγ expression and BMI (body
mass index) in abdominal fat depots of female subjects [66].
On the other hand, in contrast to their opposite expression
observed during adipogenesis in vitro, miR-27a/b and PPARγ
are both increased in epididymal fat pads from obese mice
(ob/ob) [65]. Therefore, while these studies demonstrate that
miR-130a/b play a key role in post-transcriptional regulation
of PPARγ expression in adipogenesis and obesity, additional
work is required to clarify the role of miR-27a/b in these
processes.

The 5′- and 3′-UTRs of PPARγ mRNA are relatively
short (173 and 211 nucleotides long, resp.), which may
exclude interaction with a large number of miRNAs [67,
68]. However, since miRNAs can simultaneously target
several mRNAs within defined gene networks [69], it
would be interesting to analyze whether some additional
miRNAs, among those regulating adipogenesis [62], also
target PPARγ. Additionally, some miRNAs controlling adi-
pogenesis indirectly regulate PPARγ expression. For instance,
miR-31 and miR-155 negatively impact on adipogenesis by

directly targeting C/EBPα and C/EBPβ mRNA, respectively,
which is secondarily associated with a decrease in PPARγ
expression levels [70, 71].

3. Chromatin-Based Regulation of
PPARγ Activity in Adipocytes

3.1. PPARγ Transcriptional Activities Require Chromatin
Presetting. Recent insights in our understanding of the tran-
scriptional mechanisms controlling adipogenesis indicate
that, reminiscent of other nuclear receptors, PPARγ activities
require chromatin presetting. For instance, C/EBPβ can
bind to condensed chromatin in preadipocytes and trigger
interdependent recruitment of additional TFs including
the glucocorticoid receptor (GR), signal transducers and
activators of transcription 5 (STAT5), retinoid-X-receptor
(RXR) and C/EBPδ to alleviate the repression exerted by
SMRT [27, 55, 72]. Altogether, these factors are thought
to induce early chromatin opening at enhancers allowing
their replacement by PPARγ (and C/EBPα) in more mature
adipocytes [55, 73, 74]. Consequently, PPARγ binds to
enhancers characterized by early nucleosome depletion and
presence of histone posttranslational modifications typical of
competent/active sites (methylation of histone H3 lysine 4
(H3K4me) and acetylation of histone H3 lysine 9 (H3K9ac))
[28, 33]. These chromatin-based regulatory mechanisms are
most probably involved in defining the adipocyte-specific
PPARγ transcriptional activities. Indeed, cell type-specific
PPARγ binding to chromatin and gene expression regulatory
activities depend on different cell-specific collaborating TFs.
For example, PPARγ is recruited to enhancers that bind the
pioneer factor PU.1 in macrophages [75].

In addition to enhancers whose chromatin is preset
early, PPARγ also binds to many enhancers where chromatin
remodelling occurs during adipocyte differentiation [55]. In
this case, how PPARγ is directed to these regulatory regions
and whether chromatin modifications precede or correlate
with its recruitment are not clear yet.

3.2. Control of Chromatin Structure by PPARγ. Even though
recent studies highlight the need for chromatin presetting
in the regulation of PPARγ transcriptional activities, PPARγ
activation in turn also leads to additional posttranslational
histone modifications. Indeed, PPARγ activation triggers
an exchange of interacting cofactors from corepressors
to coactivators. These complexes bear enzymatic activities
targeting histone acetylation and methylation. For instance,
adipogenic differentiation is linked to a shift from com-
plexes containing histone deacetylase (HDAC) to complexes
containing hisone acetyltransferase (HAT) activities [76].
This exchange is observed during adipogenesis as well as
upon activation of PPARγ with synthetic agonists leading,
for example, to increased acetylation of H3K9 at enhancers
[75]. It emerges therefore that the activity of PPARγ-
dependent enhancers is controlled through sequential stages
of chromatin remodelling linked to the hierarchical binding
of TFs and cofactors. Chromatin remodelling at these
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enhancers also involves hydroxymethylation of cytosines
through mechanisms that remain to be elucidated [77].

Unlike enhancers whose accessibility is highly variable
and cell-type specific, promoters generally lie in open
and nucleosome free chromatin regardless of the cell type
[78, 79]. However, promoters are controlled by epigenetic
modifications that are partly different from those operating
at enhancers [79]. For instance, in addition to chromatin
remodelling taking place at enhancers, gene activation
during adipogenesis also involves modifications at their
promoters. This includes methylation of H4K20 by the SET
domain containing lysine methyltransferase 8 (Setd8), an
enzyme whose expression is induced by PPARγ resulting
in the activation of target gene promoters [29]. PPARγ-
mediated gene activation during adipogenesis also requires
the mediator complex [80]. This complex not only serves as
a platform for recruitment of general TFs and RNA poly-
merase II but can also recruit chromatin remodelers such
as chromodomain helicase DNA-binding protein 1 (CHD1)
[81]. Altogether, these studies indicate that activation of
PPARγ target genes involves a coordinated remodelling of
chromatin at both enhancers and promoters. In this context,
PPARγ-mediated regulation could involve a defined three-
dimensional organisation of chromatin allowing enhancers
and promoters to interact, reminiscent of gene activation by
other nuclear receptors such as the estrogen receptor α [82,
83]. Importantly, PPARγ-bound enhancers could regulate
the expression of coding genes important for adipocyte
functions both directly and/or indirectly by modulating the
levels of miRNAs that control adipogenesis including miR-
103 [84, 85]. Obesity leads to altered gene expression profiles
in adipose tissue [86, 87]. PPARγ transcriptional activity is
exacerbated in obese compared to lean visceral WAT [46].
PPARγ binds to DNA as a heterodimer with RXR, a nuclear
receptor subfamily consisting of the isotypes RXRα, β, and γ.
Interestingly, RXRα protein expression levels are specifically
downregulated in visceral white adipose tissue of obese mice
and humans through proteasomal degradation. This leads to
reduced proportions of the RXRα-PPARγ heterodimer and,
as a result, to an increased sensitivity to PPARγ agonists, since
the SMRT corepressor is more readily dismissed from the
remaining RXRβ-PPARγ complex. Even though not formally
demonstrated, the effect of RXRα on the interaction with
SMRT most probably influences the chromatin structure
resulting in a blunted response to PPARγ agonists due to
enhanced interaction with HDACs [46]. In addition, the
expression of Setd8, which is also increased in white adipose
tissue of obese mice [29], may also participate in the strong
PPARγ transcriptional response of adipocytes from obese
subjects through increased histone methylation.

4. An Integrated View of PPARγ Regulation
in Adipocytes

Taken as a whole, regulation of PPARγ expression and
activity is a highly integrative process defining an adipogenic
transcriptional network involving key cross-regulatory loops
between its members (Figure 2). Epigenomic transitions

during adipocyte differentiation allow for both temporally-
controlled induction of PPARγ expression and subsequent
regulation of its target genes. Chromatin presetting is
observed both at PPARγ and its target genes in preadipocytes
and exploited to implement the adipogenic transcriptional
program. This process is regulated by an intricate network
of hierarchical and combinatorial transcriptional regulatory
events. For instance, the transcription factor C/EBPβ plays
a pioneer role early in the course of adipogenesis to induce
expression of PPARγ, C/EBPα, and KLF5 and 15, which
subsequently collaborate to maintain their own expression
and activate adipogenic genes. Importantly, this activation
requires presetting of chromatin at enhancers by C/EBPβ
[55]. Adipogenesis also involves inactivation of repressors,
including miR-27a/b, which target both C/EBPα and PPARγ
in preadipocytes [63–65]. Among PPARγ target genes are
chromatin remodelers including the histone methyltrans-
ferase Setd8 [29] and transducin-like enhancer of split 3
(TLE3) [88]. Both factors are involved in a positive autoregu-
latory loop with PPARγ simultaneously maintaining its high
level of expression and induction of target gene expression.
While TLE factors are known to have chromatin remodelling
activities [89, 90], how TLE3 induces gene expression in
adipocytes has not yet been characterized. Overall, PPARγ in
adipocytes is therefore controlled by an intricate network of
transcriptional regulators that notably license the chromatin
structure to allow for appropriate expression and activity of
this nuclear receptor.

5. Concluding Remarks and Perspectives

We envision that future studies will extend the adipogenic
transcriptional network by identifying additional transcrip-
tional regulators and chromatin-associated events control-
ling PPARγ activities. In addition to a better definition of
epigenetic marks involved in this process, studies aimed at
identifying mechanisms required for long-range activities of
PPARγ-bound enhancers are awaited. This will include a
thorough description of the three-dimensional organisation
of the chromatin during adipogenesis. Chromosome confor-
mation capture (3C) and its derivatives are recent approaches
that have refined our view of the genome spatial organisation
and that may prove useful [91]. Taking into account the
large diversity of newly discovered ncRNA species, the role
of these RNAs in adipogenesis and control of PPARγ is
likely at its infancy. Another major question regarding the
control of PPARγ activity during adipogenesis relates to
the identification of physiologically relevant endogenous
ligands [6]. This also requires a better understanding of
regulation of PPARγ activities by alternative mechanisms
including notably posttranslational modifications [92–95].
Finally, how these regulatory pathways are affected in
pathophysiological conditions, such as obesity, will also
deserve to be further addressed in order to improve PPARγ
targeting strategies. In this context, we will need to better
understand the consequences of metabolic perturbations on
the enzymatic activities of chromatin modifiers and their
consequences for gene transcriptional regulation [52].
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