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ABSTRACT  

 

Background & Aims: During chronic HCV infection, activation of fibrogenesis 

appears to be principally related to local inflammation. However, the direct role of 

hepatic HCV protein expression in fibrogenesis remains unknown.  

Methods: We used transgenic mice expressing the full-length HCV open reading 

4). Both 

acute and chronic liver injuries were induced in these mice by CCl4 injections. Liver 

injury, expression of matrix re-modeling genes, reactive oxygen species (ROS), 

inflammation, hepatocyte proliferation, ductular reaction and hepatic progenitor cells 

(HPC) expansion were examined. 

Results: After CCl4 treatment, HCV transgenic mice exhibited enhanced liver 

fibrosis, significant changes in matrix re-modeling genes and increased ROS production 

compared to wt littermates despite no differences in the degree of local inflammation. 

This increase was accompanied by a decrease in hepatocyte proliferation, which 

appeared to be due to delayed hepatocyte entry into the S-phase. A prominent ductular 

reaction and hepatic progenitor cell compartment expansion were observed in 

transgenic animals. These observations closely mirror those previously made in HCV-

infected individuals.  

Conclusions: Together, these results demonstrate that expression of the HCV 

proteins in hepatocytes contributes to the development of hepatic fibrosis in the 

presence of other fibrogenic agents. In the presence of CCl4, HCV transgenic mice 

display an intra-hepatic re-organization of several key cellular actors in the fibrogenic 

process.   
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Keywords: hepatitis C virus; fibrosis; hepatocyte proliferation; reactive oxygen species; 

ductular reaction; hepatic progenitor cells 
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INTRODUCTION 

 

Hepatic fibrosis, a result of active fibrogenesis, is a frequent feature of chronic 

hepatitis C virus (HCV) infection. Fibrogenesis is classically thought to be triggered 

principally by the local immune response. The role of HCV infection in fibrogenesis, in 

particular HCV protein expression in the liver, is unknown. Mice of the FL-N/35 lineage 

express the entire open reading frame (ORF) of a genotype 1b isolate of HCV in a liver-

specific fashion [1]. In this model, the HCV proteins are expressed within hepatocytes at 

levels close to those observed in human infection, without infectious virus production or 

an antiviral immune response. These mice develop lesions similar to those observed 

during natural infection, including hepatic steatosis and hepatocellular carcinoma [2-6]. 

Preliminary observations suggested that FL-N/35 mice may be of interest in the study of 

liver fibrosis [1]. However, this model lacks the concomitant fibrogenesis triggers (such 

as liver inflammation) observed in HCV-infected individuals. Therefore, the effect of HCV 

protein expression on hepatic fibrosis in this model must be studied in the context of a 

 

The conventional paradigm of fibrogenesis in the liver is largely based on 

activation of fibrogenic processes associated with transformation of hepatic stellate cells 

(HSCs) into myofibroblast-like cells [7-10]. However, it remains paradoxical that, 

whereas HCV infection is present largely within hepatic lobules [11], fibrosis 

predominates in portal areas in chronically infected patients. Currently, there are no 

explanations for this observation, and the surrounding mechanisms remain 
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uninvestigated. One possible explanation is that viral particles produced within 

intralobular hepatocytes might directly activate periportal HSCs. Another non-exclusive 

explanation is that HCV infection may be accompanied by ductular proliferation [12].  

In the normal liver, the replacement of necrotic and apoptotic hepatocytes occurs 

through replication of adjacent hepatocytes within the lobules. However, this primary 

pathway is impaired by a variety of insults, including viral infections [13, 14]. These 

situations have been shown to lead to proliferation of hepatic progenitor cells (HPCs) 

[15-17]. Such cells reside primarily in the periportal region and become the source of 

regenerating hepatocytes, as well as cholangiocytes and draining ductules [15, 18]. A 

by-product of the activation of this secondary proliferative pathway is a ductular reaction 

[15], which has been linked to fibrogenesis [19-28].  

A strong correlation has been reported between HCV-related portal fibrosis and a 

periportal ductular reaction, with a relationship between the number of proliferating 

HPCs and the number of hepatocytes in replication arrest [29]. These observations 

support the hypothesis that portal fibrosis during chronic HCV infection may result from 

a periportal ductular reaction, possibly as a consequence of altered hepatocyte 

proliferation.  

We illustrate below, using the FL-N/35 HCV transgenic mouse model in 

conjunction with an exogenous chemical fibrogenic agent, that the expression of HCV 

proteins in vivo plays a contributory role in the fibrogenic process, and is accompanied 

by a ductular reaction and a replicative arrest of intra-lobular hepatocytes concomitant 

with enhanced reactive oxygen species (ROS) production, in the absence of enhanced 

inflammation. 
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MATERIALS AND METHODS 

 

Chemicals and antibodies 

 

Carbon tetrachloride (CCl4) and olive oil were purchased from Sigma-Aldrich (St. 

Louis, MO). Primary antibodies are described in more details in Supplementary 

Materials and Methods. 

 

Animals 

 

Wild-type mice (wt) and those transgenic for the entire HCV ORF (FL-N/35 

lineage) were from the same genetic background (C57/Bl6) [1]. They were used in 

conformation with the European Community Council directive. Animals were bred and 

housed as previously described [2]. Studies were performed on age-matched 7- to 10-

month old males. 

 

Chronic CCl4 treatment 

 

Animals were injected intraperitoneally twice a week for 4 weeks with CCl4 (0.5 

g/g of body weight) diluted in 5% olive oil, obtained the day of injection. Control mice 

were injected with an equal volume of olive oil. Twenty-four hours after the final 

injection, animals were sacrificed by CO2 inhalation, and body and liver weights were 

measured. Sera (100 L/mouse) and livers were immediately processed for enzymatic 
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assays and histological determination, or kept at -80 °C until processing. 

 

Experimental acute liver injury and measurement of hepatocyte DNA 

synthesis  

 

Mice were treated with a single intraperitoneal injection of CCl4 (795 mg/kg body 

weight diluted in 5% olive oil). They were sacrificed at different time points after the 

injection. Bromodeoxyuridine (BrdU) was injected intraperitoneally (150 mg/kg of body 

weight) two hours prior to sacrifice. Hepatocyte DNA synthesis was measured by means 

of immunodetection of BrdU incorporation as described in Supplementary Materials and 

Methods. 

 

 Western blotting 

 

Frozen liver tissues were processed as previously described [6]. The detailed 

procedure is described in Supplementary Materials and Methods.  

 

Serum alanine aminotransferase and aspartate aminotransferase level 

measurements 

 

 Levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) 

in the serum of mice were measured on a Cobas®.6000 analyzer (Roche, Diagnostics, 
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Liver histology and immunohistochemistry 

 

Fresh liver tissues were fixed in 10% buffered formalin, paraffin-embedded, and 5 

m sections were prepared. Standard histology and immunostainings are described in 

Supplementary Materials and Methods.  

 

Quantification of hepatocyte reactive oxygen species (ROS) 
 

 
Frozen liver sections (10 m) from wt and FL-N/35 mice were assessed for the 

presence of ROS, as previously described [4]. The percentage of ROS-specific 

hepatocytes was calculated, and normalized to that in wt controls. In all cases (CCl4-

treated and untreated mice), only large cells with round nuclei present within the 

parenchyma were considered as hepatocytes. 

 

RNA isolation and quantitative real-time PCR analysis 

 

Total RNA and complementary DNA were purified and synthesized, respectively, 

as previously described [6]. Quantitative PCR was performed with an Applied 

Biosystems 7300 Thermal Cycler using Taqman reagents (Applied Biosystems), as 

described in Supplementary Materials and Methods.  

 

Measurement of CCL5 protein in liver tissues 
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CCL5 protein was quantified in frozen liver tissues according to the procedure 

described in Supplementary Materials and Methods.  

 

Image analysis 

 

Tissue sections were photographed using a Zeiss Axioskop 40 microscope in 

conjunction with a Zeiss MRc5 Axiocam and Axiovision LE software (Zeiss, Jena, 

Germany). Image analyses were performed as described in Supplementary Materials 

and Methods.  

 

Statistical analyses 

 

Statistical analyses were performed using Prism software (GraphPad Software 

Inc., La Jolla, CA). Results are expressed as mean±standard error of the mean (SEM). 

Box-and-whisker graphs are used; the line in the middle is the median, the box extends 

from the 25th to the 75th percentile, and the whiskers extend to the lowest and highest 

values. To determine the statistical significance of the data, Mann-Whitney non-

determine correlations between continuous normally distributed variables. All P values 

were two-tailed, with P values less than 0.05 considered as significant. 
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RESULTS 

 

Hepatic expression of the full-length HCV ORF enhances liver fibrosis 

induced by CCl4 in HCV transgenic mice 

 

The extent of extracellular matrix (ECM) deposition occurring within the liver of wt 

and FL-N/35 mice chronically exposed to CCl4 was determined by picrosirius red 

staining of formalin-fixed, paraffin-embedded liver sections. As shown in Fig. 1A and 1B, 

ECM deposition was observed only in normal anatomical structures such as portal tracts 

in untreated FL-N/35 and wt mice. Thus, in the absence of an exogenous fibrogenic 

stimulus, expression of the HCV proteins does not per se stimulate ECM deposition at a 

level detectable using picrosirius staining. 

 In CCl4-treated wt and FL-N/35 animals, picrosirius red staining demonstrated 

established fibrosis with distinctive septa-like morphologies (Fig. 1A and 1B). In both 

transgenic and nontransgenic animals, the quantity of ECM was significantly greater 

than in the corresponding untreated animals (Fig. 1B). In CCl4-treated mice, the quantity 

of ECM was significantly greater in FL-N/35 than in wt animals (median collagen 

deposition: 1.7, range 1.0-2.8 vs 1.2, range, 0.9-2.4; P=0.0039) (Fig. 1B). 

As differences in the expression of cytochrome P450 2E1 (CYP2E1), the enzyme 

responsible for bioactivation of CCl4, could be responsible for the observed difference 

[30], we quantified CYP2E1 expression by western blotting in HCV transgenic and wt 

animals. No difference was found between the two groups (Supplementary Fig. S1). 

Overall, these results suggest that intrahepatic expression of the HCV proteins in 

vivo potentiates the fibrogenic effect of the exogenous agent CCl4. 
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Increased liver fibrosis induced by CCl4 in transgenic mice is not due to a 

higher degree of necroinflammation in the presence of HCV proteins  

 

We examined the role of HCV protein expression in liver necroinflammation in the 

presence and absence of CCl4. Hematoxylin-eosin staining of liver tissues showed 

normal hepatic architecture in wt and FL-N/35 mice that did not receive CCl4 

(Supplementary Fig. S2). In contrast, CCl4-treated animals showed remnants of 

degenerated and ballooned/necrotic hepatocytes, equivalently present in wt and FL-

N/35 mice. Mild mononuclear cell infiltration in the same areas was also evenly present 

in these animals. 

Expression of F4/80 mRNA, a marker of resident and recruited macrophages, did 

not differ between untreated wt and FL-N/35 animals. F4/80 mRNA expression was 

induced to the same degree in both transgenic and non-transgenic mice after chronic 

CCl4 administration (Supplementary Fig. S3). Immunostaining of liver tissues with the 

pan-T lymphocyte marker CD3 revealed similar degrees of T lymphocyte infiltration in wt 

and FL-N/35 mice exposed to CCl4, with CD3-positive cells present along hepatic septa 

(Supplementary Fig. S4).  

The chemokine CCL5 is secreted by T-cells and macrophages and could play a 

role in fibrosis by stimulating hepatic stellate cells [31]. CCL5 expression did not differ 

between wt and FL-N/35 animals, both in the presence and absence of CCl4 

(Supplementary Figs. S5 and S6). 

Taken together, these results suggest that enhanced fibrosis in HCV-transgenic 

mice exposed to CCl4 is not mediated by an increased necroinflammation. 
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Increased liver fibrosis induced by CCl4 in transgenic mice is associated 

with alterations in the expression of genes involved in ECM remodeling 

 

We measured the hepatic expression of a number of ECM remodeling genes, 

including genes coding for ECM components (collagens), proteins involved in ECM 

production/degradation (matrix metalloproteinases [MMP]) and regulators of MMPs 

(tissue inhibitors of metalloproteinase [TIMP]) in the different groups of mice. As shown 

in Fig. 2, in the absence of an exogenous fibrogenic stimulus, the expression of HCV 

proteins in hepatocytes was not associated with higher levels of expression of these 

genes. In CCl4-treated wt animals, expression of all of the tested mRNA levels was 

significantly modified compared to the untreated mice, but in various directions (Fig. 2). 

Among the different collagen genes tested, only collagen 1 1 expression was notably 

enhanced in FL-N/35 compared to wt CCl4-treated mice, although the results did not 

reach statistical significance (p = 0,055). The expression of the other collagens showed 

no difference (Fig. 2A). MMP7 mRNA levels were significantly lower in HCV transgenic 

than in non-transgenic CCl4-treated animals, whereas the expression of MMP13, MMP3 

and TIMP1 was notably but not significantly lower (p values between 0.052 and 0.055, 

Fig. 2B and 2C). These results were in keeping with the increase in ECM deposition 

observed in HCV transgenic animals treated with CCl4.  

 

Liver fibrosis is associated with decreased hepatocyte proliferation in HCV 

transgenic mice chronically exposed to CCl4 
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Since hepatic fibrosis in HCV-infected patients has been associated with 

increased hepatocyte replicative arrest [29], we next examined the extent of hepatocyte 

proliferation in wt and FL-N/35 mice in the presence and absence of CCl4. Hepatocyte 

proliferation was evaluated by immunohistochemistry for Ki67, a nuclear antigen that is 

expressed in G1, S, G2 and M phases of the cell cycle, but absent in G0 or quiescent 

phase. In the absence of chronic CCl4 exposure, a very low proportion of proliferative 

hepatocytes was observed in both wt and FL-N/35 mice, with no differences between 

these two groups, suggesting low-level basal renewal of the mature hepatocyte pool in 

the parenchyma (Fig. 3A and 3B). 

As a consequence of chronic exposure to CCl4, hepatocyte proliferation was 

significantly increased in both wt and FL-N/35 mice compared to non-exposed animals 

(Fig. 3A and 3B). As shown in Fig. 3B, hepatocyte proliferation was significantly lower in 

CCl4-exposed FL-N/35 than in wt mice (median positive hepatocytes, 25.1 %, range 7.1-

65.7 %, vs 30.3 %, range 5.9-49.2 %, respectively; P=0.002). No difference in the 

distribution of proliferating hepatocytes within the parenchyma was observed between 

treated wt and FL-N/35 animals.  

In HCV-transgenic mice exposed to CCl4, a significant inverse relationship 

between the number of Ki67 positive hepatocytes and the extent of ECM deposition was 

observed (r=0.893, P=0.012; Fig. 3C). In contrast, no correlation was found in CCl4-

exposed wt mice (r=0.1022, P=0.81; Fig. 3D).  

In concert, these results suggest that fibrosis induced by CCl4 exposure in the 

context of HCV protein expression is concomitant with a lowered capability of 

hepatocytes to regenerate. 
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A prominent ductular reaction is present in HCV transgenic mice 

chronically exposed to CCl4 

 

Since decreased hepatocyte proliferation has been linked with the development 

of a ductular reaction in several hepatic disorders, in particular in HCV infection [29, 32], 

we next studied the ductular reaction in both wt and FL-N/35 mice by immunochemistry 

for cytokeratin 19 (CK19), a common bile duct, ductular epithelium and HPC marker in 

murine tissues. CK19-positive staining was limited to bile duct cholangiocytes in 

untreated wt and FL-N/35 mice, with no differences between the two groups (Fig. 4A 

and 4B).  

Exposure of wt animals to CCl4 did not modify the quantity and distribution of 

CK19-positive biliary epithelium (Fig. 4A and 4B). In contrast, HCV transgenic animals 

chronically exposed to CCl4 presented a prominent positive staining for CK19, 

distributed at the periphery of the portal areas, in chords, clumps and rings, quite distinct 

from the anatomical bile ducts (Fig. 4A). The area occupied by CK19-positive biliary 

epithelium, comprising both anatomical bile ducts and the ductular reaction, was 

increased nearly 3-fold compared with CCl4-exposed wt mice (0.59% and 0.18% 

respectively, P=0.0016; Fig. 4B).  

Altogether, these results suggest that fibrosis induced by CCl4 exposure in the 

context of HCV protein expression is concomitant with a ductular reaction, which is 

absent in similarly treated wt animals.  
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The ductular reaction is associated with expansion of the HPC population in 

HCV transgenic mice chronically exposed to CCl4 

 

Since hepatic fibrosis in HCV-infected patients has been associated with 

increased HPC expansion [29], we assessed whether the increased ductular reaction 

was associated with expansion of the HPC population in HCV transgenic animals 

exposed to CCl4. HPCs were distinguished from cholangiocytes as being CK19-positive 

cells distal to sites of ductular reaction and isolated within the parenchyma, without the 

cord-like arrangement of the ductules. In the absence of CCl4, a few HPCs were visible 

in the livers from either wt or FL-N/35 mice (Fig. 4A and 4C). After chronic CCl4 

treatment, a non-significant trend towards a higher number of isolated CK19-positive 

cells than in the untreated animals was observed in wt mice (Fig. 4A and 4C). In CCl4-

treated FL-N/35 mice, a statistically significant increase in CK19-positive cells was 

observed when compared to CCl4-treated wt mice (P=0.0016; Fig. 4C).  

We observed significant correlations between the number of HPCs per portal tract 

and the extent of ECM deposition (r=0.71, P=0.0062; Fig. 4D), and between the number 

of HPCs and the surface of the ductular reaction (r=0.7984, P=0.0011; Fig. 4E), which 

were independent of HCV protein expression. However, FL-N/35 animals displayed 

increased ECM deposition, an increased number of HPCs per portal tract, and a larger 

ductular reaction when compared with wt animals, suggesting that the viral proteins may 

exacerbate these phenomena. 

Together, these data indicate that the increased ductular reaction observed in 

HCV transgenic mice is associated with expansion of the HPC population. 
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The expansion of the HPC population leads to normal liver reconstitution in 

HCV transgenic mice chronically exposed to CCl4 

 

As shown in Table 1, despite the decreased hepatocyte proliferation in FL-N/35 

transgenic mice chronically exposed to CCl4 shown in Figs. 3A and 3B, no difference 

was observed in body or liver weights between olive oil- and CCl4-treated animals in 

both wt and FL-N/35 groups, suggesting that liver tissue reconstitution is not 

substantially impaired in HCV transgenic mice. 

 

 Hepatocyte cell cycle progression is impaired after acute liver injury in HCV 

transgenic mice 

 

In order to assess whether HCV protein expression impairs liver regeneration, 

hepatocyte proliferation was measured in both wt and FL-N/35 mice during the course of 

acute CCl4-induced liver injury (Fig. 5A). Analysis of BrdU incorporation showed no or 

very few BrdU-positive cells in wt and HCV transgenic mouse livers before CCl4 injection 

(0h), indicating that the majority of liver cells were quiescent in G0. As shown in Fig. 5A 

and 5B, both wt and HCV transgenic animals showed a significant increase of BrdU-

positive hepatocytes after CCl4 injection, suggesting entry into the S-phase of the cell 

cycle. However, this phenomenon was delayed in HCV transgenic animals, with a peak 

of BrdU incorporation reached at 48 hours post-injection, compared to 40 hours post-

injection in wt animals (Fig. 5B). These findings indicate that HCV protein expression is 

associated with a delay in early cell cycle progression after acute liver injury. 
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ROS production is enhanced in HCV transgenic mice treated or not with 

CCl4 

 

Since oxidative stress has been reported to modulate the fibrogenic response and 

elevated ROS production is frequently observed in HCV infected cells [33, 34], we 

measured ROS levels in the livers of wt and FL-N/35 mice. Using dihydroethidium (DHE) 

as a marker for intracellular ROS, we found that hepatocyte-specific ROS levels were 

significantly higher in frozen liver sections from HCV transgenic mice compared to their 

wt littermates in the absence of CCl4 treatment (Fig. 6A, upper panels and Fig. 6B), In 

CCl4-treated animals, ROS levels were significantly higher than in untreated animals in 

both the wt and FL-N/35 groups (Fig. 6A, lower panels), principally due to infiltrating 

cells. However, when ROS production was measured only in hepatocytes, the levels 

were significantly higher in CCl4-exposed FL-N/35 mice than in their wt counterpart 

animals (Fig. 6A, lower panels and Fig. 6B). These results show that intrahepatic 

expression of the HCV proteins is associated with enhanced baseline ROS levels and 

that this phenomenon is amplified by CCl4 treatment. 

 

DISCUSSION 

 

Several in vitro reports have suggested that HCV proteins can directly induce 

fibrogenetic processes. For example, it has been shown that the culture medium of 

Huh7 cells harboring the HCV subgenomic replicon is able to activate in vitro-cultured 

HSCs, demonstrating that virus production is not a pre-requisite for such activation [35]. 

Moreover, the core and nonstructural 5A (NS5A) proteins have been suggested to play 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

 

19 

a direct role in the alteration of the hepatocyte metabolism, partly via mitochondrial 

deregulation which generates ROS, strong inducers of pro-fibrogenic cytokines within 

the liver [1, 36, 37]. 

The mouse model used in this study is ideal to assess the effect of HCV protein 

expression on a liver phenomenon. Indeed, these mice specifically express the different 

HCV proteins in the liver; however, they are unable to reproduce the complete HCV life 

cycle, because the transgene is composed of a cDNA corresponding to the full-length 

genome necessary for replication of viral RNA are lacking [1].  

Our findings suggest that HCV protein expression per se is not able to induce 

fibrosis at a level detectable by common histological and molecular techniques. 

Nevertheless, we demonstrate for the first time that hepatic expression of the full-length 

HCV ORF in vivo is able to enhance fibrosis induced by another fibrogenic agent, a 

context similar to chronic human infection where a number of fibrogenic triggers are 

present in the liver. Importantly, this effect is independent of the degree of local 

inflammation. Our finding that ROS production is significantly increased in HCV 

transgenic hepatocytes, both in the absence and presence of CCl4 treatment, could at 

least partly explain that HCV transgenic mice are more susceptible to the development 

 

We show that enhanced liver fibrosis in HCV transgenic animals is associated 

with a deregulation of the expression of several matrix remodeling genes. This includes 

down-regulation of the expression of MMP13, a protease that specifically degrades 

collagen 1, TIMP1, a protein that inhibits MMPs active forms [38], and MMP3, an 

activator of pro-MMPs. Thus, HCV transgenic animals seem to be less able to degrade 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

 

20 

collagen 1, thereby favoring ECM deposition. In addition, the expression of MMP7, a 

protease implicated in nerve growth factor-dependent myofibroblast survival [39], was 

reduced in CCl4-treated HCV mice, whereas a similar trend was found in untreated 

transgenic animals, suggesting that HCV protein expression could protect hepatic 

myofibroblasts from apoptosis, thus prolonging fibrosis signals. 

In our study, the enhancement of fibrosis induced by another fibrogenic agent in 

transgenic mice expressing the full-length HCV ORF is accompanied by reduced 

hepatocyte proliferation, which correlates with the stage of fibrosis. The replacement of 

hepatocytes lost from normal hepatic parenchyma is known to occur through replication 

of mature hepatocytes [16]. Inhibition of hepatocyte replication by drugs [16], alcohol 

[40], steatosis [15] or viral infection [14, 29] promotes the activation of a secondary 

replicative pathway involving bipotential HPCs [16]. The activation of HPCs 

subsequently leads to the production of both hepatocytes and cholangiocytes, and the 

onset of a ductular reaction. The results presented here show that hepatocytes 

expressing the full HCV ORF exhibit defective replication after treatment with CCl4. Our 

acute liver injury experiments suggest that this effect is, at least in part, due to a delayed 

entry of hepatocytes into the S-phase of the cell cycle. 

The defective replication of HCV-expressing hepatocytes leads to the activation 

of the HPC pathway and subsequent amplification of the HPC population. In keeping 

with this hypothesis, we observed reduced proliferation of mature hepatocytes together 

with a marked increase in the number of activated HPCs and a prominent ductular 

reaction in CCl4-treated FL-N/35 mice. A strong relationship between hepatic fibrosis 

severity and the intensity of the ductular reaction has been reported in both rodents and 
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humans [29, 32, 41, 42]. A similar relationship is shown here in the FL-N/35 mouse 

strain in the context of HCV protein-induced liver fibrosis [29]. 

In summary, we have shown that transgenic mice expressing the full-length HCV 

ORF develop more severe hepatic fibrosis after chronic CCl4 exposure than 

nontransgenic animals. This effect is not linked to local inflammation alterations induced 

by HCV proteins. Like during chronic HCV infection in humans, enhanced fibrosis in 

HCV transgenic mice is associated with a pronounced ductular reaction, HPC activation 

and a concomitant reduction in hepatocyte proliferation that appears to be in part due to 

a delayed entry of hepatocytes into the S-phase of the cell cycle. In addition, HCV-

related fibrosis is associated with deregulation of the expression of several matrix 

remodeling genes and enhanced ROS production that likely participate in the fibrogenic 

process. Overall, our findings in HCV transgenic mice show that expression of the HCV 

proteins in hepatocytes contributes to the development of hepatic fibrosis in the 

presence of other fibrogenic agents, a situation close to human infection. 
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FIGURE LEGENDS 

 

Fig 1. Histological analysis of liver fibrosis in wt and FL-N/35 mice in the absence 

or presence of chronic CCl4 exposure. (A) Representative images of picrosirius red-

staining of liver sections from olive-oil and CCl4-injected wt and FL-N/35 animals. Scale 

bars: 100 µm. (B) Quantification of picrosirius red-staining from images from various 

lobes of each liver (6 to 10 images per liver). NS: not significant.  

 

Fig. 2. mRNA level quantification of genes involved in ECM remodeling in the 

livers of wt and FL-N/35 mice in the absence or presence of chronic CCl4 

exposure. mRNA levels of collagens (A), MMPs (B) and TIMPs (C) were measured by 

means of qRT-PCR. mRNA levels were normalized to the expression of actin; values 

are expressed as the percentage of wt animals treated with olive oil (OO). 

 

Fig. 3. Hepatocyte proliferation in wt and FL-N/35 mice in the absence or presence 

of chronic CCl4 exposure. (A) Representative images of Ki67 immunostaining of liver 

sections from olive-oil and CCl4-treated wt and FL-N/35 animals. Positive Ki67 nuclei are 

indicated with arrows. Scale bars: 100 µm. (B) Quantification of Ki67-positive 

hepatocytes from various lobes of each liver. Data are expressed as a percentage of 

total hepatocytes per field. NS: not significant. (C) Relationship between hepatocyte 

proliferation and the extent of CCl4-induced ECM deposition in HCV-transgenic mice 

treated with CCl4. Data points represent individual animals. Analysis was performed with 

9 animals from 2 independent experiments. (D) Relationship between hepatocyte 
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proliferation and the extent of CCl4-induced ECM deposition in wt mice treated with 

CCl4. Data represents 8 animals from 2 independent experiments. 

 

Fig. 4. Ductular reaction in the livers of wt and FL-N/35 mice in the absence or 

presence of chronic CCl4 exposure. (A) CK19-immunostaining of liver sections from 

olive oil- and CCl4-treated wt and FL-N/35 animals. Open arrows indicate CK19-positive 

bile ducts. Black arrows indicate prominent ductules. Arrowheads indicate hepatic 

progenitor cells (HPCs). The two lower images show higher magnifications. (B) 

Quantification of the ductular reaction (CK19-positive bile ducts) in images of CK19 

immunostaining of olive oil- and CCl4-treated animals. (C) Quantification of isolated 

HPCs (isolated CK19-positive cells nearby portal tracts) in images of CK19 

immunostaining of olive oil- and CCl4-treated animals. (D) Relationship between the 

number of HPCs and the extent of CCl4-induced ECM deposition. (E) Relationship 

between the extent of the ductular reaction and the number of HPCs. 

 

Fig. 5. Hepatocyte DNA synthesis in wt and FL-N/35 mice after acute liver injury 

caused by high-dose CCl4 Injection. (A) Representative photomicrographs of BrdU 

immuno-histochemical staining in acutely injured livers from wt and FL-N/35 mice at 0h, 

24h, 40h, 48h and 60h post CCl4 injection. BrdU-positive nuclei are stained in red. Scale 

bars = 100 µm. (B) BrdU incorporation at 0h, 24h, 40h, 48h and 60h post CCl4 injection 

in wt and FL-N/35 animals. The number of BrdU-positive hepatocytes was expressed 

per µm2 of tissue area. 
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Fig. 6. Quantification of ROS levels in the livers of wt and FL-N/35 mice in the 

absence or presence of chronic CCl4 exposure. (A) Frozen 10 µm liver sections of 

olive oil and CCl4-treated wt and FL-N/35 mice were stained with DHE and DAPI (insert), 

and analyzed by fluorescence microscopy. Representative examples are shown. Scale 

bars = 50 µm. (B) The number of ROS-positive hepatocytes was measured, and is 

shown as the percentage of ROS-positive cells as described in the Material and 

Methods section. 
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Table 1. Age, body and liver weights and ALT/AST levels in wt and FL-N/35 mice 

chronically exposed or not to CCl4. Mean±SEM values are shown. NS: not significant. 

 
 Olive oil 

p 
CCl4 

p 
 wt 

(n=15) 
FL-N/35 
(n=15) 

wt 
(n=13) 

FL-N/35 
(n=17) 

 
Age 

(month) 
 

Body 
weight (g) 

 
Liver 

weight (g) 
 

ALT 
(IU/mL) 

 
AST 

(IU/mL) 
 

8-10 
 
 

33.7±0.8 
 
 

1.5±0.04 
 
 

42±12.6 
 
 

63.2±20.7 
 

8-10 
 
 

33.9±1.2 
 
 

1.5±0.09 
 
 

46±22.8 
 
 

81.6±32.8 
 

 
 
 

NS 
 
 

NS 
 
 

NS 
 
 

NS 
 

8-10 
 
 

30.0±3.5 
 
 

1.5±0.3 
 
 

2570.5±479.5 
 
 

1532.5±319.7 
 

8-10 
 
 

31.3±3.9 
 
 

1.4±0.4 
 
 

1654.8±316.9 
 
 

921±170 
 

 
 
 

NS 
 
 

NS 
 
 

NS 
 
 

NS 
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