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Abstract

Background: Simon’s two-stage designs are widely used for cancer phase II trials. These methods rely on statistical

testing and thus allow controlling the type I and II error rates, while accounting for the interim analysis. Estimation

after such trials is however not straightforward, and several different approaches have been proposed.

Methods: Different approaches for point and confidence intervals estimation, as well as computation of p-values are

reviewed and compared for a range of plausible trials. Cases where the actual number of patients recruited in the trial

differs from the preplanned sample size are also considered.

Results: For point estimation, the uniformly minimum variance unbiased estimator (UMVUE) and the bias corrected

estimator had better performance than the others when the actual sample size was as planned. For confidence

intervals, using a mid-p approach yielded coverage probabilities closer to the nominal level as compared to so-called

’exact’ confidence intervals. When the actual sample size differed from the preplanned sample size the UMVUE did not

perform worse than an estimator specifically developed for such a situation. Analysis conditional on having proceeded

to the second stage required adapted analysis methods, and a uniformly minimum variance conditional estimator

(UMVCUE) can be used, which also performs well when the second stage sample size is slightly different from planned.

Conclusions: The use of the UMVUE may be recommended as it exhibited good properties both when the actual

number of patients recruited was equal to or differed from the preplanned value. Restricting the analysis in cases

where the trial did not stop early for futility may be valuable, and the UMVCUE may be recommended in that case.

Background
Phase II trials primarily aim at evaluating the activity of

a new therapeutic regimen to decide if it warrants fur-

ther evaluation in a larger-scale phase III trial, where it is

usually compared to a standard treatment. The screening

purpose of phase II trials implies that they are designed to

reject a new therapeutic regimen showing low therapeu-

tic activity. In cancer phase II trials, therapeutic activity

is typically defined in terms of tumor shrinkage [1,2], and

a patient with tumor shrinkage is referred as a responder.

The endpoint of such phase II trials is thus a binary end-

point (responder / nonresponder), and a new anticancer

agent with too low a response rate should be excluded

from further consideration.

Cancer phase II trials are often designed as multi-

stage trials (two stages being most common) allowing
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early trial termination in case of a low response rate, in

order to avoid giving patients an ineffective treatment and

wasting resources. The original idea of such a strategy

with early termination was suggested by Gehan [3], and

many designs were then proposed ([4-6], among others).

Among all available multistage designs, Simon’s design [6]

is probably the most commonly used in practice. Con-

versely, early termination for high efficacy is not as impor-

tant in the phase II setting. Actually, there are less ethical

needs to stop the trial early for an effective agent, and

accumulating data on both therapeutic activity and safety

is important before setting up a large-scale randomized

phase III trial.

As phase II trials primarily lead to the decision to pro-

ceed to a next step in the evaluation of the therapeutic

regimen or not, their design essentially relies on statisti-

cal testing. Cancer phase II trials are therefore designed

to control the probabilities to continue with an ineffective

regimen or to abandon an effective one (type I and II error

rates, respectively). Further analysis, and in particular

estimation, is nevertheless useful and usually conducted,

© 2012 Porcher and Desseaux; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
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especially if the new regimen is selected for further con-

sideration [7,8]. A point estimate of the response rate,

a confidence interval and sometimes a p-value are then

computed at the termination of the trial. In particular,

the point and confidence interval estimates are useful to

design the future phase III trial, as well as other phase II

trials. Owing to the possibility of early termination, the

sample response rate, i.e. the maximum likelhood esti-

mator (MLE), is typically biased, which is known as the

optional sampling effect. Many approaches have thus been

proposed to reduce the bias or the mean squared error

(MSE) of estimators in such a setting [7,9-14].

One important point concerning inference in two-stage

phase II trials has been somewhat overlooked in the lit-

erature. As estimation is most important when the thera-

peutic regimen has been considered as effective, inference

may be more common when the phase II trial proceeded

to the second stage as compared to cases where it was

stopped for futility at the first stage. Inference may thus

be conditional on proceeding to the second stage (as e.g.

in [12,13]), or unconditional, over all possible paths as

implicitely considered in most other works.

Another issue is the actual total sample size of the trial.

Cancer phase II trials are generally of limited sample size,

and methods are derived from the ’exact’ binomial distri-

bution of data. However, the actual number of patients

recruited in the trial may be different from the planned

sample size [11,15]. Inference in a Simon’s design where

the sample size has beenmodified is however not straight-

forward, even in terms of hypothesis testing. A method

has thus been proposed in the case where drop-outs are

non-informative so that the interim analysis can always

be performed after inclusion of the planned number of

patients and the actual second stage sample size does not

depend on results observed during the first stage [11].

Although designs where the second stage sample size can

be adapted according to the first stage result exist [16,17],

this was not considered here.

In this paper, we compare the performance of the differ-

ent approaches proposed in the literature for inference in

a two-stage Simon’s phase II trial. In the next section, we

present the different point estimators, confidence inter-

vals and p-values proposed in the case where the actual

sample size is as planned and in the case where the actual

stage 2 sample size of the trial is different from the planned

one. Then, results of a numerical study comparing the

properties of the different methods in various settings are

presented. We conclude with some discussion.

Methods
Simon’s design and notations

Let us denote π as the true response rate when given some

anticancer agent. Usual methodology of cancer phase II

trials consists in testing the null hypothesis π ≤ π0 versus

π ≥ π1 = π0 + δ, where π0 is the highest probability of

response which would indicate that the agent is of no fur-

ther interest, and π1 the smallest probability of response

indicating that the agent may be promising. Simon [6]

considered two-stage designs where no stopping for effi-

cacy is possible after the first stage. Briefly, n1 subjects are

accrued during the first stage. If the number of responses

observed in the first stage X1 is lower or equal to a critical

value r1, the trial is stopped for futility. If X1 > r1, the trial

proceeds to a second stage where n2 additional patients

are accrued. Let us denote X2 the number of responses

observed in the n2 second stage patients, Xt = X1 + X2

and rt the final critical value. Then ifXt ≤ rt futility is con-

cluded at the end of the trial, whereas efficacy is concluded

if Xt > rt . Given (π0,π1) many such two-stage designs

may satisfy the prespecified type I and II error rates (α,β).

Simon proposed two criteria to choose an appropriate

design among such acceptable designs. The first one min-

imises the expected sample size under the null hypothesis

and is referred to as the ’optimal’ design. The second one

minimizes the maximal sample size nt = n1 + n2 and

is referred to as the ’minimax’ design. Jung et al. [18]

further proposed a graphical method to search for alterna-

tive compromises between Simon’s optimal and minimax

designs. For simplicity, we will however here concentrate

on the two original Simon’s designs, although all following

results may apply to any two-stage design where no early

stopping for efficacy is possible.

We suppose here that the sample size of the trial cor-

responds to the planned n1 and n2, and that the stop-

ping rules have been respected at the end of the first

stage. Then, as X1 and X2 are both sums of indepen-

dent Bernoulli trials, they follow a Binomial distribution of

parameters (n1,π) and (n2,π), respectively. Let us denote

M the stopping stage, S the total number of response

observed at the end of the trial (S = X1 if M = 1 and

S = Xt if M = 2), and N the total sample size of the trial

(N = n1 if M = 1 and N = nt if M = 2). Jung et al.

[10] showed that (M, S) is a complete and sufficient statis-

tic for π , and that the probability mass function of (M, S)

was given by

fπ (m, s) =

⎧

⎪

⎨

⎪

⎩

(n1
s

)

π s(1 − π)n1−s ifm = 1

[

∑s∧n1
x1=(r1+1)∨(s−n2)

(n1
x1

)( n2
s−x1

)

]

π s(1 − π)nt−s ifm = 2

(1)

for s = 1, . . . , r1 if m = 1 and s = r1 + 1, . . . , nt if m = 2,

and where a ∧ b = min(a, b) and a ∨ b = max(a, b).

Inference following a two-stage design

Point estimate

Although the primary goal of phase II trials is decision

making rather than inference, obtaining an estimate of

the true response rate is often of interest, particularly
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when the trial was deemed successful and the new drug

accepted for further evaluation in phase III trials [7].

The maximum likelihood estimator (MLE) is simply the

sample proportion

π̂m =
S

N
(2)

Due to the sequential nature of the trial, theMLE is biased.

Actually, in Simon’s design, when extreme small values of

X1 are observed at the first stage, the trial is terminated

without a chance to correct the downward bias, leading to

a negatively biased MLE. More precisely, the bias is given

by

b(π) =
1

n1

r1
∑

x=0

xf (1, x) +
1

nt

nt
∑

x=r1+1

xf (2, x) − π .

Building on prior work of Whitehead [19], Chang et al.

[9] proposed a bias-adjusted estimator π̂w as the numeri-

cal solution of

π̂w = π̂m − b(π̂w). (3)

Guo and Liu [7] proposed a simplified estimator moti-

vated by the same bias substraction idea, but much sim-

pler to obtain numerically by evaluating the bias at the

MLE:

π̂g = π̂m − b(π̂m). (4)

Noting that X1/n1 is unbiased for π , an unbiased esti-

mator of π can be obtained by the Rao–Blackwell theorem

as the conditional expectation of X1/n1 given (m,s), where

(m,s) is the value of (M,S) observed in the trial. This esti-

mator was first considered by Chang et al. [9] and further

studied by Jung et al. [10] who showed this estimator

was the uniformly minimum variance unbiased estimator

(UMVUE). In the case of Simon’s two-stage design, it is

given by

π̂u =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

S
n1

ifm = 1

∑S∧n1
x1=(r1+1)∨(S−n2) (

n1−1
x1−1)(

n2
S−x1

)
∑S∧n1

x1=(r1+1)∨(S−n2) (
n1
x1
)(

n2
S−x1

)
ifm = 2

(5)

A median unbiased estimator may be considered as the

value of π such that the corresponding p-value would be

0.5 (see next section). It was used by Koyama and Chen

[11] when n2 is different from its prespecified value, and

will thus be denoted by π̂k , although they used π̂w in their

article when n2 was as planned.

Another approach was used by Tsai et al. [12], who

restricted their analysis to cases where the trial proceeded

to the second stage. In these cases, they derived a (condi-

tional) maximum likelihood estimator of π accounting for

the truncated distribution of X1 (which must be at least

r1 + 1). This conditional estimator will be denoted by π̂c.

To compare all estimators on a fair basis, we assumed that

when the trial stopped at the first stage, an unconditional

MLE was used. A conditional distribution given X1 ≤ r1
may also be derived, but it makes little sense in cases

where r1 is small, in particular when r1 is 0 or 1, which is

the case for optimal and minimax designs for π0 = 0.05

and π1 = 0.2 or π1 = 0.25 with α = 0.05 and β = 0.1, for

instance. We thus preferred not to consider conditional

inference for early trial termination.

Relating to the work of Tsai et al. [12], Li recently

proposed an MSE-reduced estimator of π as a weighted

mean of the naive estimator and π̂c [14]. This estimator

showed slightly higher bias than π̂c, with a slightly lower

MSE, but no clear advantage. It was thus not further

considered here.

For inference conditional on proceeding to the sec-

ond stage, the uniformly minimum variance conditionally

unbiased estimator (UMVCUE) can also be obtained, as

proposed by Pepe et al. who proposed it and studied its

properties [13]. Noting that X2/n2 is unaffected by the

early stopping option and thus conditionally unbiased for

π , the UMVCUE is obtained similarly to the UMVUE as

the conditional expectation of X2/n2 given (m = 2, s). It

will be denoted by π̂p. To provide an estimate when the

trial stops at the first stage, several choices are possible,

and we decided to use the first stage sample proportion

X1/n1, which is equal to the UMVUE in this case. For

Simon’s design, the UMVCUE can thus be obtained by

π̂p =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

S
n1

ifm = 1

∑S∧n1
x1=(r1+1)∨(S−n2) (

n1
x1
)(

n2−1
S−x1−1)

∑S∧n1
x1=(r1+1)∨(S−n2) (

n1
x1
)(

n2
S−x1

)
ifm = 2

(6)

Numerical studies in various settings showed that the

biased-corrected estimators π̂w and π̂g had often simi-

lar performance in terms of bias and mean squared error

(MSE), with much smaller bias and slightly higher MSE

than theMLE. As compared to the UMVUE, theMLE and

the bias-corrected estimators have been shown to have

smaller MSE in many situations, but not always [7,10].

Other estimators were not extensively compared to each

other or to the previous ones, in particular in the setting

of conditional inference or when the actual sample size

differes from the preplanned one. Determining in which

situation one estimator would be preferable thus remains

unclear.



Porcher and Desseaux BMCMedical ResearchMethodology 2012, 12:117 Page 4 of 13

http://www.biomedcentral.com/1471-2288/12/117

P-value

Once (m, s) is observed, the decision rules using critical

thresholds r1 and rt are sufficient to conclude at the rejec-

tion of the null hypothesis or not. It remains however

common practice to compute a p-value at the end of the

trial [11]. The first idea that can still be found in many

applications is to compute the p-value as if the number of

responders followed a binomial distribution of parameters

(n,π0). This yields the naive p-value pn,

pn =

⎧

⎨

⎩

Prπ0(X1 ≥ s) ifm = 1

∑n1
x1=0 Prπ0(X1 = x1)Prπ0(X2 ≥ s − x1) ifm = 2

(7)

The assumption on the distribution of S is true if m =

1, but obviously wrong if m = 2. This is exemplified

on equation (7) by the summation on impossible sample

paths where X1 < r1 and X2 = s − X1.

It is therefore necessary to use the proper distribution

of observed data to compute a p-value. The p-value is the

probability under the null hypothesis to obtain a result at

least as extreme as the one observed. Owing to the multi-

stage procedure, several orderings, i.e. several definitions

of ”at least as extreme”, may however be considered even if

the proper distribution is used [20]. For instance, assume a

design with n1 = 24, n2 = 39, r1 = 8 and rt = 24 (optimal

design for π0 = 0.30, π1 = 0.50, α = 0.05 and β = 0.10).

One may consider that obtaining 18 responders out of

63 patients after proceeding to the second stage is less

extreme than obtaining 7 responders out of 24 patients

and stopping at the first stage, because 18/63 = 0.286 is

less than 7/24 = 0.292. This corresponds toMLE ordering

[20,21]. Conversely, one may also use stage-wise order-

ing, and consider that 18/63 is a more extreme result than

7/24 because it was observed after proceeding to the sec-

ond stage instead of stopping at the first stage. Indeed,

to proceed to the second stage the number of responders

in the first stage was at least 9. This is the ordering rec-

ommended in Jennison and Turnbull in the general case

of sequential clinical trials [20, chapter 18.4, p 180], and

the one they use to compute exact confidence bounds

for π [22].

The p-value based on MLE ordering is

pm =
∑

{(i,j):π̂m(i,j)≥π̂m(m,s)}

fπ0(i, j) (8)

The bias-corrected estimators have the same ordering as

theMLE [23]. They thus result in exactly the same p-value.

Jung et al. [10] showed that UMVUE ordering is equiv-

alent to stage-wise ordering and later defined a p-value

based on this ordering as [23]

ps =

⎧

⎨

⎩

1 −
∑

{(i,j):π̂u(i,j)<π̂u(m,s)} fπ0(i, j) ifm = 1

∑

{(i,j):π̂u(i,j)≥π̂u(m,s)} fπ0(i, j) ifm = 2

It can be rewritten as

ps =

⎧

⎨

⎩

Prπ0(X1 ≥ s) ifm = 1

∑n1
x1=r1+1 Prπ0(X1 = x1)Prπ0(X2 ≥ s − x1) ifm = 2

(9)

which is equivalent to the p-value given by Koyama-Chen

for designs where attained n2 is as planned [11].

When estimation is performed conditional on proceed-

ing to the second stage, a conditional p-value can also be

proposed. Let us denote fπ (s|m = 2) the probability mass

function of S conditional onm = 2,

fπ (s|m = 2) =
fπ (m, s)

∑n1
x1=r1+1 πx1(1 − π)n1−x1

, (10)

where fπ (m, s) is given in (1). When the trial proceeds to

the second stage, the conditional p-value pc is computed

by

pc =

nt
∑

i=s

fπ0(i|m = 2).

If the trial is stopped at the first stage, pc can simply be

computed by Prπ0(X1 ≥ s) and is thus equal to ps.

Confidence interval

Beside point estimates, confidence intervals are often

reported in phase II trials. Despite the one-sided nature of

Simon’s design, it is not uncommon to report two-sided

(1 − 2α) confidence intervals rather than left (1 − α)

one-sided confidence intervals. We will thus make this

choice although both approaches are consistent with the

one-sided test performed at level α. Note however that

in many applications, two-sided 95% confidence intervals

are reported, whatever the choice on the (one-sided) α

level.

The first basic idea is to use Clopper–Pearson [24] exact

confidence interval ignoring the group sequential nature

of the trial. We refer to this approach as the naive exact

confidence interval in the sequel. Another solution is to

use the Clopper–Pearson definition of an exact confi-

dence interval using the appropriate distribution of (M, S)

[20]. This defines the exact equal tail (1 − 2α) confidence
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interval as (π1,π2), where π1 and π2 are the numerical

solutions of

Prπ1

[

π̂u(M, S) ≥ π̂u(m, s)
]

= α

and

Prπ2

[

π̂u(M, S) ≤ π̂u(m, s)
]

= α.

The existence of this interval relies on the stochastic

ordering of the distribution of (M,S) with respect to π [10].

It is the same as the confidence interval used in several

other works [11,22]. As it uses the UMVUE or stage-wise

ordering, we refer to it as the exact stage-wise confidence

interval. Using MLE ordering instead of stage-wise order-

ing does not result in the same property of stochastic

ordering [10]. It was therefore not further considered.

In the simple setting of a single binomial proportion,

the Clopper–Pearson confidence interval is known to be

conservative [25]. Actually, the actual confidence level is

bounded below by (1−2α) [26]. To correct for this conser-

vative nature, it has been suggested to use so-called mid-p

confidence intervals [27].We thus extended the stage-wise

ordering confidence intervals with a mid-p approach as

(π ′
1,π

′
2), where π ′

1 and π ′
2 are the numerical solutions of

Prπ ′
1

[

π̂u(M, S) > π̂u(m, s)
]

+
1

2
Prπ ′

1

[

π̂u(M, S)= π̂u(m, s)
]

=α

and

Prπ ′
2

[

π̂u(M, S)< π̂u(m, s)
]

+
1

2
Prπ ′

2

[

π̂u(M, S)= π̂u(m, s)
]

=α.

Tsai et al. [12] considered several other intervals, both

asymptotic and exact, but focusing on cases were the

trial proceeds to the second stage, and using condi-

tional inference as stated earlier. Asymptotic confidence

intervals considered were the Wald and score intervals,

both with or without continuity correction, and based

on the conditional MLE given the trial proceeds to a

second stage (referred as MLE in their article). Exact

confidence intervals were Clopper–Pearson as explained

above, but based on the conditional distribution of (M,S)

given m = 2 (equation 10), and Sterne exact interval,

modified to obtain an interval when the original method

produces disjoint intervals as a confidence region. They

concluded upon recommendation of score confidence

intervals with continuity correction. Only the latter and

Clopper–Pearson intervals will thus be considered here,

and referred as the conditional score and conditional exact

confidence intervals. Moreover, we proposed amid-p con-

fidence interval using the conditional distribution of (M,S)

given m = 2. It is referred as the conditional mid-p con-

fidence interval. Pepe et al. used parametric and nonpara-

metric bootstrap confidence intervals for the UMVCUE in

their article [13]. They showed that both methods yielded

coverage probabilities reasonably close to the nominal

level, but lower for the parametric bootstrap than for the

nonparametric bootstrap. However, these methods do not

provide correct confidence intervals in some situations,

for instance when x2 = 0 or s = nt . They were thus not

considered here.

Extended or shortened trial

It is not uncommon that the actual sample size of a phase

II trial would be different from the planned sample size

[11,15]. This may be due to differences between antici-

pated and actual accrual and drop out rates, for instance.

For a two stage design, current practice often relies on

ignoring the over- or underaccrual or in re-computing

the decision boundaries as if the attained sample size had

been planned in a single-stage design, which leads to bias

and possible inflation of the type I error rate. Koyama

and Chen [11] recently proposed a method to calculate a

new critical value for the second stage analysis assuming

dropouts and overrun would be totally non-informative.

In this case, the interim analysis can always be performed

on the preplanned n1 subjects, and the difference in sam-

ple size only concerns the second stage sample size. They

also proposed a method for inference at the end of the

trial, thus providing a point estimate, a confidence interval

and a p-value.

Assume n′
2 = n2 + �n2 patients are accrued at the

second stage instead of the preplanned n2, and that X′
2

success are then observed, where X′
2 follows a binomial

distribution of parameters (n′
2,π). Briefly, the method

proposed consists in defining a new critical value for the

second stage as the one leading to the same decision as

when comparing the conditional p-value of the second

stage Prπ0(X
′
2 ≥ x′

2|X1 = x1) to the conditional type I

error rate given X1 = x1 in the original design with n2
patients at the second stage. The new conditional type I

error rate is thus lower or equal to the original conditional

type I error rate, allowing to control the unconditional

type I error rate.

They also proposed to compute the unconditional

p-value as

pk =
∑n1

x1=r1+1
Prπ0 (X1 = x1)A(x1, n2,π

∗), (11)

where A(x1, n2,π) =
∑n2

x2=rt−x1+1

(n2
x2

)

πx2(1 − π)(n2−x2)

is the conditional power function at the second stage,

and π∗ is the solution of A(x1, n2,π
∗) = Prπ0(X

′
2 ≥

x′
2|X1 = x1). Solving for π∗ allows to extend the condi-

tional power to all potential values of X1, whereas only

one particular value (x1) was observed. The use of the

conditional power function A(x1, n2,π
∗) allows ordering

different sample paths with different x1 and the actual

sample size for stage 2 n′
2 by comparing the π∗, smaller

π∗ indicating stronger evidence against the null hypothe-

sis. This ordering is coherent with the hypothesis testing

strategy they proposed, based on a new critical value to
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control the conditional type I error. In that respect, the

p-value pk is lower than α if and only if the null hypothesis

is rejected.

Koyama and Chen proposed the estimator π̂k as the

value of π0 yielding a p-value pk = 0.5, and a two-

sided Clopper–Pearson-like confidence interval based on

pk . The definition of pk by equation 11 should allow to

control the overall type I error rate, but the properties of

the test, estimator and confidence interval have not been

thoroughly studied.

Although Koyama and Chen used a biased-corrected

estimator when the second stage sample size was as

planned, we denoted π̂k the median estimator presented

above also in the case where n2 patients are accrued at the

second stage.

Numerical study

To examine the properties of the different methods,

numerical studies were conducted. Several design scenar-

ios were considered, that covered a range of possible phase

II trials in oncology. To help determining these scenar-

ios, a limited literature search of phase II cancer trials

using Simon’s design over the last years was performed.

As this study was informal and arbitrarily limited to some

journals, no results are reported. Twelve design scenarios

where thus considered, with response rates under the null

hypothesis of 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5. Trials with

higher values of π0 were considered as pretty rare, and

therefore not considered. For each value of π0, two dif-

ferences in response rate between the null and alternative

hypotheses were considered, namely 0.15 and 0.2. In all

cases, the type I error rate α was set to 0.05 and the type II

error rate β to 0.10 (90% power). Then, for each combina-

tion of design parameters, a choice between Simon’s opti-

mal andminimax design was made on a case by case basis,

according to the expected total sample size of the trial and

the probability of early termination under H0 and H1.

For each design scenario considered, the probability

of all possible outcomes (M, S) was computed using

equation (1) for a range of values of the response rate π
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Figure 1 Performance of the estimators: bias and root mean squared error (RMSE).
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varying from π0 to π0 + 0.20 (thus π1 when δ was 0.20

and slightly more than π1 when δ was 0.15). For each

possible outcome, the resulting estimators, p-values and

confidence intervals were also computed. As the probabil-

ity of each outcome was the probability distribution of the

estimators, p-values and confidence intervals, the bias and

root mean square error (RMSE) of estimators, the prob-

ability of rejection of the tests based on the p-values and

coverage probability of the confidence intervals could be

derived.

To investigate the impact of accrual of some more or

some fewer patients at the second stage as compared to

the planned n2 value, trials where the second stage sam-

ple size was decreased by 1 or 2 or increased by 1, 2

or 5 were considered. These settings were not symmet-

rical because it was felt that overaccrual would be more

frequent, because of the time delay to close a trial and

because investigators would more likely want to protect

the trial from patients exclusion and thus easily accrue

more patients. Main analysis was unconditional: i.e. per-

formance of the different methods was averaged over all

possible outcomes. As some methods were more specifi-

cally developed to correct the analysis of the second stage

results only, analysis restricted to cases where the trial

proceeded to a second stage was also performed, and

referred as conditional analysis.

To keep results simple and because the main findings

were close to one scenario or another, only the results

of six of the twelve scenarios are presented in detail.

Additionally, these detailed results are only presented

for situations where the second stage sample size was as

planned. For situations where the second stage sample

size was different from planned, the tables present results

averaged over the different scenarios and the different

values of �n2 (simple arithmetic average without any

weighting). However, the description of results encom-

passed the whole range of data obtained and not only

the results presented in the tables. Particular cases where
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Figure 2 Performance of the tests based on p-values and the two-sided 90% confidence intervals: probability of rejection and coverage

probability. The line denoted by ’Design’ presents the probability of rejection according to the trial’s design i.e. when Xt > rt .
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results were representative or different from the overall

message were then isolated.

All computations were performed using R 2.13.2 statis-

tical software [28].

Results
Trial accrual as planned

Results displayed in Figure 1 show that the UMVUE π̂u

has no marginal bias as expected, the bias corrected esti-

mator π̂g is almost unbiased, and if the median unbiased

estimator π̂k and the MLE π̂m are biased, the bias remains

limited, lower that 2% for the considered scenarios. In

terms of RMSE, π̂g perfoms better than π̂u for values of π

closer to π0 than to π1, while the RMSE of both estimators

become similar when π approaches π1. As already noted

in the illustrative examples of Guo and Liu [7], the MLE

has the smallest RMSE under H0. The median estimator

also perfoms well in terms of RMSE, and even exhibits the

smallest one for values of π near π0. The conditional esti-

mators have similar properties to each other, with much

higher negative bias than the MLE, especially for values of

π close to π0. They had also higher or equal RMSE than

the MLE.

In terms of statistical testing, the test sizes represented

on Figure 2 when π = π0 show that the naive binomial

test and the test based on the conditional distribution are

not adequate, these tests being too conservative in sev-

eral settings. The test based on stage-wise ordering leads

to the correct decision, with the same probability of rejec-

tion as given by design. In our numerical settings, the test

based on MLE ordering had similar characteristics as the

test based on stage-wise ordering. Actually, both only dif-

fer for a limited range of possible (M, S) outcomes, which

has no impact in terms of test conclusion in the situations

covered by the numerical study, although the nominal

p-values may be different.

Coverage probabilities of the 90% confidence intervals

are presented in the right sub-panel of Figure 2 for each

design scenario. Overall, the properties of all methods but

the mid-p approach where disappointing, in particular for

small values of π0 such as 0.05 for instance. The mid-p

confidence interval had coverage probabilities closer to

the nominal level than the other approaches in almost

all situations. It was conservative under H0 for smaller

values of π0, but the coverage probability fluctuated

around 90% when π0 was 0.20 or more, within a margin

of −1% to +2% only. On the contrary, the exact (stage-

wise ordering) confidence intervals had always a coverage

probability above 90%, but often 2 to 3% above, and even

between 7 and 8% above for smaller sample size trials.

The conservative nature of Clopper–Pearson approach

has already been reported, and the performance observed

here for such intervals was however not clearly worse as

that reported for so-called exact confidence intervals in

a one sample (one-stage) setting [25]. Note that the phe-

nomenon of oscillations in coverage probability according

to π appearing on the graphs is known, and caused by

the lattice structure of the binomial distribution [29]. The

confidence intervals based on the conditional score with

continuity correction which exhibited better conditional

performance in the work by Tsai et al. [12] and the condi-

tional mid-p confidence interval had close performance,

but for π departing from π0, their coverage probabilities

were lower than the nominal level in this unconditional

setting. This occurred less frequently and less dramatically

for the conditional exact confidence interval, which how-

ever had a coverage probability clearly above its nominal

level for π close to π0, especially for small values of π0.

Extended or shortened trial

Results obtained when the second stage sample size was

modified are presented in Tables 1 (average over all sce-

narios) and 2 for some of the situations. When the actual

Table 1 Performance of the different methods when

second stage sample size was different from planned:

average over the different design scenarios and

differences between the planned and attained second

stage sample size

Property Method π = π0 π = π0 + δ

Bias π̂m −0.015 −0.005

π̂g −0.004 0.001

π̂u 0.000 0.000

π̂c −0.029 −0.012

π̂p −0.028 −0.009

π̂k −0.009 −0.012

RMSE π̂m 0.060 0.071

π̂g 0.063 0.067

π̂u 0.071 0.067

π̂c 0.061 0.076

π̂p 0.062 0.064

π̂k 0.062 0.070

Rejection probability pn 0.033 0.882

pm 0.036 0.887

pu 0.036 0.887

pc 0.012 0.800

pk 0.035 0.885

Coverage probability Naive exact 0.940 0.916

Stage-wise 0.937 0.933

Mid-p 0.916 0.895

Conditional exact 0.952 0.906

Conditional score 0.935 0.851

Conditional mid-p 0.936 0.860

Koyama–Chen 0.937 0.931
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Table 2 Performance of the estimators when second stage sample size is modified by�n2: bias and root mean squared

error in selected situations

�n2 = −2 �n2 = −1 �n2 = +1 �n2 = +2 �n2 = +5

Settings Estimator Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Optimal design with π0 = 0.05, π1 = 0.2: n1 = 21, n2 = 20, r1 = 1, rt = 4

π = π0 π̂m -0.008 0.038 -0.009 0.037 -0.009 0.037 -0.009 0.037 -0.010 0.036

π̂g -0.002 0.041 -0.003 0.041 -0.003 0.040 -0.003 0.040 -0.003 0.040

π̂u 0.000 0.046 0.000 0.046 0.000 0.046 0.000 0.045 0.000 0.045

π̂c -0.018 0.036 -0.018 0.036 -0.018 0.036 -0.018 0.036 -0.018 0.035

π̂p -0.018 0.037 -0.018 0.037 -0.018 0.036 -0.018 0.036 -0.018 0.035

π̂k -0.006 0.039 -0.006 0.039 -0.006 0.038 -0.006 0.038 -0.006 0.038

π = π1 π̂m -0.004 0.071 -0.004 0.071 -0.005 0.069 -0.005 0.069 -0.005 0.067

π̂g 0.001 0.068 0.001 0.068 0.001 0.066 0.001 0.066 0.001 0.064

π̂u 0.000 0.068 0.000 0.067 0.000 0.066 0.000 0.065 0.000 0.064

π̂c -0.012 0.077 -0.012 0.076 -0.011 0.074 -0.011 0.073 -0.011 0.071

π̂p -0.009 0.076 -0.009 0.075 -0.009 0.074 -0.009 0.073 -0.009 0.071

π̂k -0.012 0.071 -0.013 0.070 -0.013 0.069 -0.013 0.068 -0.013 0.067

Minimax design with π0 = 0.4, π1 = 0.6: n1 = 29, n2 = 25, r1 = 12, rt = 27

π = π0 π̂m -0.015 0.078 -0.016 0.078 -0.016 0.077 -0.017 0.077 -0.018 0.076

π̂g -0.004 0.080 -0.004 0.080 -0.004 0.080 -0.004 0.079 -0.004 0.079

π̂u 0.000 0.087 0.000 0.087 0.000 0.087 0.000 0.087 0.000 0.087

π̂c -0.037 0.082 -0.037 0.082 -0.036 0.081 -0.036 0.080 -0.036 0.079

π̂p -0.035 0.083 -0.035 0.082 -0.035 0.081 -0.035 0.081 -0.035 0.080

π̂k -0.010 0.079 -0.010 0.078 -0.010 0.078 -0.010 0.078 -0.010 0.078

π = π1 π̂m -0.003 0.074 -0.003 0.074 -0.003 0.073 -0.003 0.073 -0.003 0.071

π̂g 0.001 0.070 0.001 0.070 0.002 0.069 0.002 0.068 0.002 0.067

π̂u 0.000 0.071 0.000 0.070 0.000 0.069 0.000 0.069 0.000 0.068

π̂c -0.011 0.082 -0.011 0.081 -0.010 0.080 -0.010 0.079 -0.010 0.077

π̂p -0.007 0.080 -0.007 0.079 -0.007 0.078 -0.007 0.077 -0.007 0.076

π̂k -0.012 0.073 -0.012 0.072 -0.011 0.071 -0.011 0.071 -0.011 0.070

number of patients accrued was a little smaller or larger

than planned, the UMVUE still yielded an unbiased esti-

mator of the response rate. This was expected as the

UMVUE is obtained as the conditional expectation of the

first stage proportion given (M,S), without using any infor-

mation on the decision boundaries at the second stage. If

more or less patients are accrued in stage 2, this implies

modifying this boundary to control for the type I error

rate, but it has no impact on estimation. All other esti-

mators were biased. In particular, Koyama–Chen method,

aiming at correcting for increased or decreased sample

size at the second stage also yielded an uncondition-

nally biased estimator, with bias and RMSE even superior

to Guo’s corrected estimator. Both had however smaller

RMSE than the UMVUE in most cases. The UMVCUE

estimator and the conditional estimator π̂c had larger bias

than the others under H0, but their bias under H1 was

similar to the one of Koyama–Chen estimator, with even

lower RMSE for the UMVCUE.

In terms of hypothesis testing and p-values, all methods

except the conditional test yielded very close results,

with no increase of the type I error rate in the situa-

tions studied. Actually, the possible values of (M, S) where

these methods disagreed in terms of rejection of the null

hypothesis had very small probabilities in general, thus

almost no impact on test size or power. In several sit-

uations, there were even no values of (M, S) for which

the methods disagreed. On the contrary, the test based

on the conditional p-value had a probability of rejection

markedly smaller than other methods, with both a type I

error rate and a power clearly under their nominal value.

The mid-p confidence intervals had again coverage

probabilities closer to the nominal 90% level than the

other methods, in particular than the Koyama–Chen
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method which was corrected for sample size modifica-

tions. Over all 120 situations covered, the Koyama–Chen

confidence intervals were rather conservative but always

preserved the nominal confidence level, with coverage

probabilities ranging from 90.0% to 98.5%, with an average

of 93.4%. On the contrary, coverage probabilities ranged

from 85.7% to 96.5% for the mid-p confidence intervals,

with an average of 90.1%. Coverage probabilities under the

nominal level were more frequent under H1 than under

H0 and for higher values of the probability of response π .

Analysis conditional on proceeding to stage 2

When analysis was restricted to the trials proceeding to

the second stage, the performance of the estimators was

different from previously (Figure 3). The UMVCUE of

Pepe et al. was unbiased, whereas the conditional estima-

tor of Tsai et al. had very small negative bias. All other

estimators were positively biased, with marked bias under

the null hypothesis that decreased when the true response

rate increased towards the alternative hypothesis. Overall,

the MLE estimator had less bias than Guo’s corrected esti-

mator and the UMVUE. Interestingly, the Koyama–Chen

estimator was even slightly negatively biased for π close

to π1 or above, with a bias of the same magnitude than the

bias of the conditional estimator π̂c under H1.

In terms of RMSE, the conditional estimators π̂c and

π̂p had close performance, with negligible differences in

favor of π̂c under H0 and of π̂p under H1. Despite their

bias, all unconditional estimators except the UMVUE had

generally lower RMSE than the conditional estimators.

With biases as high as 4% for response rate of 5% or as

8% for a response rate of 20%, these estimators cannot be

recommended for conditional inference, however.

Conditional inference was also the only one preserv-

ing the conditional type I error, but the test could be

rather conservative in some situations (Figure 4). As a

consequence, the power conditional on proceeding to the

second stage could be lower than 90% in some cases.

As described in Tsai et al. [12], the conditional score

performed better than the conditional exact confidence
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Figure 3 Performance of the estimators for conditional inference: bias and root mean squared error (RMSE).
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Figure 4 Performance of the tests based on p-values and the two-sided 90% confidence intervals for conditional inference: probability of

rejection and coverage probability.

interval. The conditional mid-p confidence interval had

coverage probabilities very close to the conditional score

interval.

When the sample size at the second stage n2 was dif-

ferent from its planned value, the conditional estimators

achieved similar bias reduction as when n2 was as planned

(Table 3). In particular, the UMVCUE was virtually unbi-

ased, at least in all designs scenarios considered here. The

test based on the conditional p-value pc also allowed to

control the conditional type I error. The coverage proba-

bilities of conditional score and conditional mid-p confi-

dence intervals tended to be higher under H0 than under

H1, and closer to their nominal value under H1, whereas

the reverse was observed for other methods. As compared

to the conditional estimator, Koyama–Chen estimator had

similar bias and lower RMSE under H1, but much higher

bias under H0. It should however be noted that this

estimator is constructed as a median and not a mean esti-

mator, so that some degree of bias can be expected when

estimating the response rate. In terms of hypothesis test-

ing, this method however failed to adequately control the

conditional type I error rate and confidence intervals had

too high coverage probability in most cases.

Discussion
In terms of estimation, π̂g and π̂u should be recommended

as they perform better than the other estimators, in par-

ticular when the true response rate is higher than the

one under H0, i.e. in cases when estimation is the most

important. Although our simulations did not encompass

all possible ranges of response rates and treatment effects,

they cover a wide range of plausible situations, in which

no clear advantage of the bias corrected estimator π̂g over

the UMVUE π̂u could be found.

The choice of a conditional or unconditional inference

is clearly overlooked in practical applications. Conditional

inference — and conditional bias in particular — has

attracted some interest in the setting of group sequential
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Table 3 Performance of the different methods for

conditional inference when second stage sample size was

different from planned: average over the different

scenarios

Property Method π = π0 π = π0 + δ

Bias π̂m 0.038 0.004

π̂g 0.053 0.010

π̂u 0.084 0.010

π̂c −0.003 −0.002

π̂p 0.000 0.000

π̂k 0.057 −0.003

RMSE π̂m 0.057 0.059

π̂g 0.068 0.056

π̂u 0.086 0.054

π̂c 0.060 0.065

π̂p 0.061 0.064

π̂k 0.062 0.057

Rejection probability pn 0.100 0.931

pm 0.110 0.936

pu 0.110 0.936

pc 0.035 0.844

pk 0.107 0.933

Coverage probability Naive exact 0.899 0.939

Stage-wise 0.890 0.957

Mid-p 0.852 0.941

Conditional exact 0.939 0.929

Conditional score 0.910 0.894

Conditional mid-p 0.913 0.903

Koyama–Chen 0.889 0.956

phase III trials, with concerns rather directed at the con-

ditional bias of the estimator of the treatment effect when

trials were stopped early for efficacy [30,31]. In the setting

of Simon’s two-stage phase II trials, conditional inference

would rather be favored when the trial did not stop at

the first stage, especially if the trial was deemed succes-

ful at the end [13]. Such aspects of conditional inference

have however been rarely discussed to our knowledge

[13,32]. Results show that unbiased or almost unbiased

estimation can be performed using the UMVCUE [13]

or the proper conditional distribution [12], respectively,

both with very similar RMSE. In addition, both performed

well even when the sample size at the second stage was

slightly different from its planned value. To construct an

estimator that would be both conditionally and uncondi-

tionally unbiased, one could also derive an estimator for

trials stopping at the first stage that would use the con-

ditional distribution given X1 ≤ r1. In such a case, the

estimator would be conditionally unbiased whether the

trial was stopped at the first or the second stage, and

thus would be unconditionally unbiased. Using a distri-

bution of outcomes conditional on early stopping makes

however little sense — if any — when r1 is small. For

instance, if r1 = 0, then the only potential outcome in

case of early stopping is X1 = 0, thus leading to a single

possible value for the estimator of π . It is therfore not pos-

sible to construct an unbiased estimator of any value of

π in this case. We therefore did not further develop this

point in the paper. Another solution, however, would be

to use a biased-corrected estimator such as Whitehead’s

[19] or Guo’s [7] when the trial was stopped early. This has

already been evoked by Pepe et al. [13], without further

investigations.

In this study, we have concentrated on Simon’s design

for phase II cancer trials. Other designs or adaptations

however exist. In particular, Jovic and Whitehead have

recently proposed point estimates, confidence intervals

and p-values for a modified Simon’s design with early

stopping for efficacy [33]. Other extensions of Simon’s

design could also have been considered [5,34]. In cases

where early stopping for efficacy is possible, the results

of the methods proposed by Jovic and Whitehead could

have been used. Tsai et al. also applied their conditional

method to Shuster’s design [34]. Nevertheless, a short look

at cancer literature shows that a majority of cancer phase

II trials still use Simon’s design.

In practical applications, it may occurr that the actual

number of patients recruited would be slightly different

from the preplanned value. For instance some patients

may be unevaluable for response or they may withdraw

their consent during study. On the contrary, some patients

may be included in the study before recruitment is for-

mally closed. For these cases, where the decrease or

increase of second stage sample size may be considered

as non informative, Koyama and Chen proposed infer-

ence procedures based on conditional power [11]. They

clearly state in their article that the properties of their

estimators, p-values and confidence intervals need to

be further studied. In our numerical settings, it turned

out that the UMVUE, which can still be used because

it only makes use of boundary decisions at the second

stage, performed better than the Koyama–Chen method.

The behaviour of both estimators with modified sample

size however deserve further investigations. Concern-

ing confidence intervals, the mid-p intervals performed

better than the so-called exact confidence intervals in

most settings for both unconditional and conditional

inference. Koyama and Chen however did not consider

such an approach, and their confidence intervals rely

on Clopper–Pearson method. Using a mid-p approach

with their modifed p-value (equation 11) may also have

improved the coverage probabilities of the confidence

intervals.
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Another interesting field of further research concerns

inference in adaptive phase II trials, where the sec-

ond stage sample size can be adapted according to the

first stage results [16,17]. In such cases, the decrease or

increase in sample size cannot be considered as non infor-

mative anymore, and the method of Koyama and Chen

does not apply. New developments are thus needed here.

Conclusions
For point estimation, the UMVUE π̂u was unbiased both

when the actual number of patients recruited was equal

to or differed from the preplanned value. The bias cor-

rected estimator π̂g had negligible bias and slightly lower

RMSE than the UMVUE only when the true response rate

π was close to its value under the null hypothesis. Both

estimators perfomed better than the others and can thus

be recommended. In terms of confidence intervals, mid-p

confidence intervals performed best, as compared to the

other exact confidence intervals, whether they ignore the

group sequential nature of the trial or not.

When one is more particularly interested on inference

conditional on having proceeded to the second stage, the

UMVCUE π̂p which is unbiased may be recommended.

Conditional score or conditional mid-p confidence inter-

vals should then be used.
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