
HAL Id: inserm-00733072
https://inserm.hal.science/inserm-00733072

Submitted on 17 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Refining developmental coordination disorder subtyping
with multivariate statistical methods.

Christophe Lalanne, Bruno Falissard, Bernard Golse, Laurence Vaivre-Douret

To cite this version:
Christophe Lalanne, Bruno Falissard, Bernard Golse, Laurence Vaivre-Douret. Refining developmen-
tal coordination disorder subtyping with multivariate statistical methods.. BMC Medical Research
Methodology, 2012, 12 (1), pp.107. �10.1186/1471-2288-12-107�. �inserm-00733072�

https://inserm.hal.science/inserm-00733072
https://hal.archives-ouvertes.fr


Lalanne et al. BMCMedical ResearchMethodology 2012, 12:107

http://www.biomedcentral.com/1471-2288/12/107

RESEARCH ARTICLE Open Access

Refining developmental coordination disorder
subtypingwithmultivariate statistical methods
Christophe Lalanne1,2*, Bruno Falissard2,3, Bernard Golse2,4,5 and Laurence Vaivre-Douret2,4,5,6

Abstract

Background: With a large number of potentially relevant clinical indicators penalization and ensemble learning

methods are thought to provide better predictive performance than usual linear predictors. However, little is known

about how they perform in clinical studies where few cases are available. We used Random Forests and Partial Least

Squares Discriminant Analysis to select the most salient impairments in Developmental Coordination Disorder (DCD)

and assess patients similarity.

Methods: We considered a wide-range testing battery for various neuropsychological and visuo-motor impairments

which aimed at characterizing subtypes of DCD in a sample of 63 children. Classifiers were optimized on a training

sample, and they were used subsequently to rank the 49 items according to a permuted measure of variable

importance. In addition, subtyping consistency was assessed with cluster analysis on the training sample. Clustering

fitness and predictive accuracy were evaluated on the validation sample.

Results: Both classifiers yielded a relevant subset of items impairments that altogether accounted for a sharp

discrimination between three DCD subtypes: ideomotor, visual-spatial and constructional, and mixt dyspraxia. The

main impairments that were found to characterize the three subtypes were: digital perception, imitations of gestures,

digital praxia, lego blocks, visual spatial structuration, visual motor integration, coordination between upper and lower

limbs. Classification accuracy was above 90% for all classifiers, and clustering fitness was found to be satisfactory.

Conclusions: Random Forests and Partial Least Squares Discriminant Analysis are useful tools to extract salient

features from a large pool of correlated binary predictors, but also provide a way to assess individuals proximities in a

reduced factor space. Less than 15 neuro-visual, neuro-psychomotor and neuro-psychological tests might be required

to provide a sensitive and specific diagnostic of DCD on this particular sample, and isolated markers might be used to

refine our understanding of DCD in future studies.

Background
Neuropsychological and psychiatric studies often involve

a large collection of testing instruments, each aiming

to assess more or less specific facets of one’s behavo-

rial and psychological profile. The number of available

cases appears rather small (n < 60) in some cases, due

to the low prevalence of the outcome of interest and/or

costs associated to data collection. In such a situation, it

becomes critical to select the most relevant items to the

study at hand which amounts to find a good compro-

mise between screening efficacy or diagnostic accuracy,
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consulting time, and availability of dedicated testing bat-

teries. Another concern is that researchers typically want

to assess what best characterize clinical subgroups and

how homogeneous they are. The present study aims at

performing feature extraction, that is selecting the most

informative items, when diagnosing dyspraxia in children

during planned clinical examination. A second objective

is to show that there exist specific impairments that are

relevant and consistent within clinical subgroups; in other

words, we seek to build a typology of the patients.

Clinical subtyping of developemental coordination

disorder

With a prevalence up to 10% worldwide (higher in boys),

developmental coordination disorder (DCD) constitutes

© 2012 Lalanne et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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a major challenge from a public health perspective as

it may lead to learning difficulties, behavioral disor-

der, or social and emotional maladaptation. Dyspraxic

patients are usually screened based on their impairments

in motor coordination or usual visuo-motor and neu-

ropsychological tests batteries [1,2], and are often cat-

egorized as patients suffering from DCD [3]. However,

the DSM-IV-R criteria remain vague with regard to the

exact nature of those impairments and the relevance and

consistency of dyspraxia subtyping within DCD cate-

gory. Previous approaches mainly relied on cluster anal-

ysis to refine the distinction, although the number of

reported subtypes generally varied between three and six

[2,4-8]. This heterogeneous clustering is attributable in

part to the difference in the testing material (e.g., Bru-

ininksOseretsky Test of Motor Proficiency, BOTMP, or

Movement Assessment Battery for Children, M-ABC)

used in these studies, but more importantly to the fact

that they largely focused on coordination and motor

performance in relation to learning. As pointed out by

Wilson [9], a normative functional skill approach suffers

from the selection of tasks that are not necessarily rep-

resentative of the various facets of motor control and

movement skills, such that “a multi-level approach to

assessment and treatment is recommended for children

with DCD. The use of multiple and converging measures

will circumvent existing issues with diagnosis and pro-

mote a fuller appreciation of motor development at dif-

ferent levels of function–behavioural, neurocognitive, and

emotional” (p. 819).

In a recent study, Vaivre-Douret and coll. [10] pro-

vided a more detailed account of children exhibit-

ing different types of sensory-motor deficit by using

a broader testing battery. These authors systematically

assessed academic, language, cognitive, visual-spatial, and

visual-motor perception skills, while using additional

standardized neuro-developmental psychomotor tests,

including motor coordination, neuro-visual, and neuro-

muscular tone examination. It was concluded that ‘pure’

forms of developmental dyspraxia—ideomotor and visual-

spatial/visual-constructional—may be distinct from spe-

cific motor coordination disorder, and more frequently

associated to various neuropsychological disorders and

soft neurological signs. A ‘mix’ group exhibiting spe-

cific motor coordination disorders with a large number

of learning disorders was isolated from these two ‘pure’

forms. Moreover, it was suggested that motor planning

and programming appear to be the core problem under-

lying children difficulties, and not performance per se.

The implications of these findings from an etiological

standpoint goes beyond the scope of the present article,

and the interested reader is referred to the above arti-

cle for a more in-depth discussion. The above results will

be used to refine neuro-visual, neuro-psychomotor and

neuro-psychological markers that are characteristic of this

three-subtype classification.

Statistical approaches for feature extraction

A crucial aspect of explanatory statistical inference in

this context is that we need methods that allow to deal

with categorical outcomes and to weigh a large num-

ber of potentially correlated predictors while preventing

from overfitting. We will here focus on two multivariate

statistical techniques that seem to meet these two criteria.

As an extension to classification and regression trees

(CART), Leo Breiman proposed the Random Forests

(RF) algorithm which retains many benefits of decision

trees while achieving better results and competing with

penalized SVM, Neural Networks or Gradient Boosting

Machines [11,12]. The RF algorithm is built upon the gen-

eral framework of Bagging [13]: It relies on resampling via

the boostrap procedure but add an extra randomization

step at the level of the variables. As such it overcomes the

limitations of linear classifiers and yield an ensemble of

unpruned trees that achieve a good balance between bias

and variance.

Another method which might also be applied with a

low ratio of samples (n) to potentially correlated variables

(p) is Partial Least Square Discriminant Analysis (PLS-

DA). This is a regression method that seeks to sharpen

the separation between groups of observations while con-

structing maximally covarying linear combinations of the

original predictors. It has been successfully used in pro-

teomic studies [14] or microarray expression data [15].

Although PLS regression might be directly applied when

the number of variables p is greater than the number

of observations n, several methods for variable ranking

[16,17] and selection [18,19] have been proposed (for a

review, [20]), it is also possible to consider a more parci-

monious model by adding constraints during parameter

estimation. Regularization or so-called “shrinkage” meth-

ods consider a weighted variance-covariance matrix, as

in ridge regression [21]. While reducing their variance,

it also increases the bias of the parameter estimates. An

alternative penalization scheme is the elastic net criterion

proposed by Zou and Hastie [22]. Following their nota-

tions, it is defined as the argument that minimizes, over

the vector of parameters β , the following loss function:

L(λ1, λ2,β) = ‖Y − Xβ‖2 + λ2‖β‖2 + λ1‖β‖1,

where ‖β‖2 =
∑p

j=1 β2
j and ‖β‖1 =

∑p
j=1 |βj|. The λ’s

are the penalty parameters. This combination of L1 and

L2-norm penalties achieves both shrinkage and automatic

variable selection, while allowing to keep m > n variables

in the case where n ≪ p. Chun and Keleş [23] considered

this kind of penalization for sparse PLS regression, based
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on the SIMPLS algorithm [24], although by setting λ2 =
∞ there remains only two tuning parameters, the number

of hidden components K and the thresholding parameter

λ1. An alternative formulation of Lasso (L1) penalization

was proposed by Lê Cao and coll. in related work [25];

specifically, the penalization now takes the form of a soft-

thresholding rule applied on variable loadings during the

iterative steps of the NIPALS algorithm [26].

In addition to protect against increased false posi-

tive rate arising from multiple comparisons in univariate

screening of interesting predictors, such embedded meth-

ods have been proved to compete with wrapper methods

[27,28], and a recent study showed that sparse PLS and

RF provide sensible and interpretable results with gene

expression data [29].

The rest of this article is organised as follows: partici-

pants and clinical assessment are described first, together

with the estimation of model parameters and measures of

variable importance; then we present the results obtained

with RF and unpenalized or penalized PLS-DA; finally,

these results are discussed in the context of DCD subtypes

identified in [10].

Methods
Participants and testing material

The data are comprised of a set of N = 63 children (5

to 15 years old with a median age of 8.1 yrs., 83% of

males). Patients were enrolled based on DSM-IV-R cri-

teria: mild to moderate motor-coordination difficulties

interfering with the performance of daily activities (cri-

terion A), and with academic achievement (criterion B).

They were free of previous assessment, and no comorbidi-

ties (e.g., ADHD, neurological disorder, visual or auditory

deficit) were detected during first examination.

Following clinical examination detailed in [10], all

patients were classified as suffering from either ideo-

motor (IM), visual-constructional and spatial (VSC), or

mixt (MX) dyspraxia. For each subject, binary-scored

responses (0=success, 1=failure) based on percentile or SD

thresholds were available for a set of 49 items covering

visual, motor, perceptuo-motor, and general performance.

Neuro-psychological assessment consisted in adminis-

tering subtests of a standard Wechsler measure of intel-

ligence, and standardized tests of visual constructional

skills (block design), visual-spatial structuring (Rey’s geo-

metric figures and Beery’s Visual-Motor Integration test),

visual-spatial attention (bell-crossing test), mental execu-

tive functions (Porteus Labyrinth and Tower of London

test). A handwriting scale was also used to detect dysgra-

phy, visual perception was assessed with form recognition

tasks, and kinaesthetic perception (memory) was assessed

by positioning child’s arm and finger and asking him with

eyes closed to remember and repeat. A language screening

battery included tasks of reading, repetition of words

and logatoms, picture-naming speed, meta-phonological

tests, auditory memory and working memory tasks (digit

span). Neuro-psychomotor assessment was based on

the “neuro-psychomotor functions in children” battery

(NP-MOT), which allows to measure developmental mat-

uration of the following functions: neuromuscular exami-

nation, gross motor-control tasks, laterality, praxis, digital

gnosis, manual dexterity, body spatial integration, rhyth-

mic tasks, auditory-attentional task [30]. Finally, neuro-

visual examination included electro-retinogram, visually

evoked potentials and motor electro-oculogram.

For clarity purpose, the full set of items has been abbre-

viated using four-letter acronyms (see List of abbrevia-

tions used).

This study was conducted by Inserm Unit 669 in the

out-patient consultation of the Child Psychiatry Depart-

ment, Necker Hospital, Paris. Institutional review board

approval was obtained for the clinical investigations, and

this study is in compliance with the ethical principles for

medical research as presented in the Helsinki Declaration.

Written informed consent was obtained from the partici-

pant (parents and children) for publication of this report

and any accompanying images.

Statistical models

The RF algorithm can be summarized as follows. Given

ntree number of trees to grow and mtry variables used

to split each node:

1. Construct a bootstrap sample of size n < N , with

replacement, and start growing a tree for this sample.

2. When growing the tree, use mtry variables selected

at random to find the best split.

3. Repeat the preceding step until the tree reaches its

maximal extent (no pruning).

Each observation is classified using the principle of

majority voting after having collected votes from every

trees in the forest. A realistic measure of predictive

accuracy can be obtained by using so-called out-of-bag

(OOB) samples, which amounts to about one third of

the individuals not considered when growing each tree

since bootstrap with replacement is used. In addition, a

built-in permutation-based measure of variable contribu-

tion to prediction accuracy allows to rank variables by

their importance. The number of times individuals from

the training and OOB samples are found to belong to

the same terminal node can be used as a measure of

their ‘likeness’, hence the measure of pairwise proxim-

ity, appropriately normalized by the number of trees, that

can be used to cluster individuals using traditional met-

ric dimensional scaling (MDS). It is worth noting that

irrelevant descriptors will have little influence on this

proximity measure.
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The PLS-DA classifier consists in a classical PLS regres-

sion [26,31] where we seek to construct from the explana-

tory block X (of dimensions n × p) a set of K orthogonal

orthogonal factors scores or latent variables, ξ1, . . . , ξK ,

with associated loadings, u1, . . . ,uK , that maximize the

covariance between X and an univariate or multivariate

response block Y. Let Y be a single vector of outcomes,

this yields the following optimization problem:

max
||uk ||=1

cov(Xk−1uk ,Y ),

where Xk−1 is the residual matrix in the regression of Y

on ξk = Xkuk , for each component k = 1, . . . ,K . The

sign and magnitude of the uk ’s give an indication about

the contribution of each variable in the construction of the

components scores, ξk . In PLS-DA, the categorical out-

come of interest Y is recoded in a set of dummy variables

expressing individual class membership. Considering C

classes, we define an indicator matrix Z based on Y

Zc =
{

1 if Y = yc,

0 otherwise,

and construct C classification functions of the form

Ẑc = b0,c + b1,cX1 + · · · + bp,cXp, c = 1, . . . ,C,

where the bi,c’s are the regression coefficients asssociated

to the cth class.

Model calibration

The sample was divided into a training sample and a vali-

dation sample, using a split ratio of 0.7/0.3.Model building

and feature extraction were performed on the training

sample only. The validation set was used to assess the

predictive power of the models and clustering fitness.

Tuning of hyperparameters for RF (number of variables

used to build a single tree, mtry) and PLS-DA (num-

ber of dimensions, K, and/or sparsness parameter, η) was

done using a nested cross-validation scheme, comprised

of stratified and repeated 10 × 5-fold resampling (inner

loop) combined to a search grid of length 10 for the hyper-

parameters (outer loop). The number of trees considered

in RF was kept constant (ntree=500). For sparse PLS-

DA, we used a custom grid of tuning parameters with 10

uniformly spaced 0.3 < η < 0.9, for K ranging from

1 to 10. The criterion to select model parameter(s) was

the average classification accuracy computed on hold-

out samples across resampling results. Accuracies were

compared between models using the method proposed

in [32].

Variables scoring

For RF, we considered the mean decrease in accuracy to

assess variable importance. For PLS-DA, items loadings

were used as overall (i.e., not class-specific) measures of

variable importance for each of the extracted compo-

nent. In both cases, the significance of all measures of

variable importance was tested using a permutation strat-

egy, whereby class labels were randomly exchanged and

variable importance was recomputed on a total of 999

samples. For sparse PLS-DA, only 95% bootstrap confi-

dence intervals associated to regression coefficients were

computed.

Predictive accuracy

For the training sample, prediction of class membership

was based on the internal voting scheme for RF, whereas

for PLS-DA a softmax method was used, whereby the pre-

dicted class, c∗, is the largest class probability after model

predictions have been transformed on a [0,1] interval

(with unit sum), that is

Y = yc where c∗ = argmax
0≤Zc≤1,

∑

Zc=1

(Ẑc).

For the validation sample, we computed classification

accuracy based on the optimized model parameters.

Clustering fitness

The PAM algorithm[33] was used to identify one rep-

resentative sample (“medoid”) for each cluster, based on

the PLS components scores in the training sample. The

number of clusters was determined by maximizing the

overall average silhouette width (ASW). The stability of

the resulting partition was assessed using the bootstrap

procedure described in [34]: For each bootstrap sam-

ple, Jaccard similarities between the original three-cluster

solution and the one found on resampled data were aver-

aged clusterwise. In addition, we verified whether cluster

might be considered as isolated clusters (L- or L∗-cluster)
or not. According to [33], a cluster is an L∗-cluster if and
only if its diameter is smaller than its separation. A clus-

ter is an L-cluster if and only if for each observation i the

maximal dissimilarity between i and any other observa-

tion of the cluster is smaller than theminimal dissimilarity

between i and any observation of another cluster.

Cluster affinity was defined as the euclidean distance

between each observation in the validation sample and its

expected cluster medoid. This mimic the isolation mea-

sure described above, though it is based on a distance and

not a similarity measure.

Statistical software

All analyses were performed with the open-source R soft-

ware, version 2.12 [35], the randomForest, pls and

spls packages, and the caret interface for machine

learning [36]. Group comparisons were performed at a

fixed 5% Type I risk level, with correction for multiple

comparisons (Bonferroni method) when justified.
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Table 1 Descriptive statistics for the training and validation samples

Training Validation Combined

N N = 46 N = 17 N = 63

Diagnosis: IM 63 9% ( 4) 6% ( 1) 8% ( 5)

VSC 52% (24) 53% ( 9) 52% (33)

MX 39% (18) 41% ( 7) 40% (25)

Gender: Male 63 78% (36) 94% (16) 83% (52)

Age (years) 63 6.8 8.0 9.7 6.6 8.7 12.3 6.8 8.1 10.4

Term: Yes 63 96% (44) 88% (15) 94% (59)

FIQ 62 85 98 114 92 108 121 86 100 115

PIQ 62 73 87 102 75 93 107 74 90 105

VIQ 62 92 107 122 100 119 130 92 110 124

Three-number summaries are lower quartile, median, and upper quartile.

N is the number of non–missing values.

Results
Patients characteristics

The main patients’ characteristics, including clinical diag-

nosis, for the training (n = 46) and test (n = 17) samples are

shown in Table 1. As described in the original article [10],

patients were mostly 8 years old males, with full IQ in the

expected range. Nine cases out of ten were diagnosed as

suffering from either VSC or MX dyspraxia, whereas only

five subjects were classified as IM-dyspraxic.

Interitem Pearson correlations were in the range

[−0.411; 0.831] (median, 0.087). The marginal propor-

tions of item failure were between 7.9% (Sitting alone) and

92.1% (Visual motor integration).

Item failures for the whole cohort are summarized in

Figure 1 as a heatmap where higher relative frequencies

of failure are indicated in red. As can be seen, there are

systematic patterns of failure that are clearly visible for

some groups, for example digital praxia (DIPR) in MX

and IM patients, arithmetic (ARTH) in MX patients only,

visual-motor integration (VIMI) in MX and VSC patients,

or digital perception (DIPE) in IM patients only. Also,

there are some evidence for covarying items scores: IM

patients were not impaired on lego (LEBL) and puzzles

(PUZL) tasks, nor any visuo-motor tasks (VIMI, VISS,

VISC), whereas VSC patients show systematic failures on

the latter.

The average level of success did not differ between the

training and test samples on any of the studied variables

(all p > 0.05, with p-values computed from Monte Carlo

χ2 significance tests).

Model calibration

Random forest

The number of variables retained for growing trees was

estimated at mtry = 12, yielding an optimal classification

accuracy of 0.924 (SD 0.055). Of note, this value is near the

recommended default value for this parameter (
√
49 = 7).

For the final model, the OOB estimate highlighted an

error rate of 8.7%, with 2 VSC (8.3%) and 2 MX (11.1%)

missclassified patients on the training sample. An infor-

mal look at the evolution of error rates as a function of

the number of trees indicated that the OOB error was

stabilized after 225 trees were grown.

PLS-DA

For standard PLS-DA, six components were selected for

an average classification accuracy of 0.917 (SD 0.088). For

penalized PLS-DA, the optimal parameters were found to

be K = 2 components and η = 0.7 for sparseness. This

resulted in a classification accuracy of 0.942 (SD 0.076),

with only one missclassified VSC patient (4.2%). It should

be noted that these two classification accuracies do not
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differ one from the other (p = 0.346, with Bonferroni cor-

rection), nor with classification accuracy estimated for RF

(p = 0.491, for sPLS-DA).

Variable importance

Random forest

The importance of variables in RF, as measured by the

mean decrease accuracy, are shown in Figure 2. The

original estimates from the retained model during param-

eters tuning are shown as black circles, and the impor-

tance computed through re-randomization are shown as

Tukey’s boxplots in grey color. Filled symbols indicate

a significant permutation test at the 5% level. In this

case, eight variables showed a consistent and significant

contribution to overall accuracy on the training sample.

These are, in decreasing order of magnitude: digital praxia

(DIPR), imitation of gestures (IMOG), digital perception

(DIPE), visual motor integration (VIMI), manual dexterity

(MAND), visual spatial structuration (VISS), coordination

between upper and lower limbs (CULL), and lego blocks

(LEBL). Class-specific measures of variable importance

are also provided in Table 2.

PLS-DA

For PLS-DA, the following important variables were

found, in decreasing order of magnitude (items found

on more than one component are emphasized in italic

letters): (Component 2) visual spatial memory (VISM),

puzzles (PUZL), visual spatial constructional (VISC),

visual spatial structuration (VISS), lego blocks (LEBL),

visual motor integration (VIMI); (Component 3) pos-

tural control (POSC), dynamic balance (DYNB), stand-

ing tone (STDT), kinaesthetic memory (KINM); (Com-

ponent 4) work memory (WRKM), auditivo mem-

ory (AUDM), first sentences (FISE), dysgraphia (DYGR);

(Component 5) postural control (POSC), hand writing

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Mean Decrease Accuracy
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Figure 2 Scree plot of the measures of variable importance in RF.
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Table 2 Class-specific measures of variable importance for RF, PLS-DA and sPLS-DA

RF PLS sPLS

IM VSC MX IM VSC MX IM VSC MX

SITA 0.17 0.14 0.15 0.01 0.10 0.16 — — —

CRAW 0.17 0.12 0.18 0.04 0.06 0.19 — — —

WALK 0.11 0.18 0.10 0.03 0.06 0.18 — — —

FISE 0.12 0.20 0.12 0.04 0.18 0.174,6 — — —

OTRH 0.15 0.13 0.27 0.07 0.06 0.173,6 — — —

VISR 0.31 0.13 0.09 0.20 0.24 0.19 — — —

LEBL 0.72 0.23 0.26⋆ 0.35 0.16 0.20 0.96 0.03 0.03 —

PUZL 0.64 0.16 0.10 0.36 0.21 0.182 0.96 0.09 0.09 —

ARTH 0.18 0.14 0.34 0.11 0.20 0.24 — — —

READ 0.16 0.16 0.09 0.13 0.22 0.216 — — —

HAWR 0.31 0.20 0.16 0.02 0.04 0.125 — — —

DYGR 0.17 0.20 0.12 0.02 0.02 0.044 — — —

HYPT 0.08 0.24 0.14 0.01 0.31 0.32 — — —

MOPA 0.17 0.12 0.14 0.32 0.32 0.40 — — —

SYNK 0.54 0.13 0.28 0.25 0.18 0.23 0.81 0.16 0.16 —

DYSD 0.30 0.22 0.22 0.30 0.37 0.39 — — —

STDT 0.06 0.15 0.15 0.16 0.04 0.153 — — —

DIPR 0.75 0.58 0.67⋆ 0.45 0.98 0.96 0.91 0.00 0.91 —

BIDX 0.09 0.16 0.25 0.07 0.42 0.39 — — —

PRSL 0.11 0.18 0.16 0.18 0.18 0.28 — — —

IMOG 0.79 0.60 0.65⋆ 0.55 0.99 1.00 1.00 0.88 0.88 —

OROP 0.36 0.22 0.28 0.03 0.27 0.33 — — —

DRES 0.28 0.23 0.19 0.21 0.09 0.06 — — —

DIPE 0.69 0.48 0.39 0.35 0.72 0.59 0.96 0.67 0.67 —

VISP 0.14 0.20 0.16 0.00 0.13 0.16 — — —

STAB 0.30 0.17 0.16 0.14 0.25 0.20 — — —

DYNB 0.18 0.20 0.20 0.11 0.25 0.473 — — —

CULL 0.50 0.29 0.27⋆ 0.11 0.53 0.61 0.81 0.59 0.59 —

POSC 0.08 0.12 0.07 0.11 0.04 0.213,5 — — —

HLUL 0.00 0.17 0.16 0.14 0.06 0.09 — — —

HMLS 0.09 0.15 0.19 0.08 0.10 0.06 — — —

HULU 0.11 0.19 0.17 0.09 0.04 0.04 — — —

MAND 0.56 0.31 0.41⋆ 0.10 0.57 0.66 0.81 0.64 0.64 —

BSPI 0.17 0.22 0.22 0.10 0.08 0.11 — — —

RHYA 0.13 0.10 0.17 0.13 0.26 0.30 — — —

VIMI 1.00 0.30 0.42⋆ 0.39 0.15 0.272 0.00 0.00 0.00 —

VISS 0.94 0.34 0.17⋆ 0.39 0.20 0.272 0.99 0.06 0.00 —

VISC 0.52 0.22 0.17⋆ 0.31 0.14 0.142 0.87 0.09 0.09 —

EXEF 0.24 0.25 0.16 0.07 0.27 0.26 — — —

AUDM 0.10 0.15 0.18 0.19 0.05 0.184 — — —

WRKM 0.24 0.14 0.17 0.23 0.10 0.124 — — —

KINM 0.17 0.12 0.15 0.10 0.03 0.083,6 — — —
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Table 2 Class-specific measures of variable importance for RF, PLS-DA and sPLS-DA Continued

VISM 0.38 0.24 0.18 0.34 0.14 0.082 — — —

AUDA 0.17 0.24 0.15 0.17 0.27 0.34 — — —

VISA 0.24 0.16 0.19 0.16 0.21 0.23 — — —

HYPK 0.17 0.14 0.10 0.13 0.10 0.145 — — —

HORP 0.08 0.26 0.14 0.09 0.23 0.29 — — —

VERP 0.11 0.20 0.19 0.09 0.16 0.21 — — —

VEPN 0.17 0.23 0.17 0.00 0.14 0.21 — — —

⋆denote significant measure of variable importance in the PLS case, and upper script numbers indicate on which PLS component a variable was found significant at

the 5% level.

(HAWR), hyperkinesia (HYPK) (Component 6) read-

ing/spelling (READ), kinaesthetic memory (KINM), first

sentences (FISE), otorhinolaryngologia (OTRH). It should

be noted that none of the variables reach the 5% signifi-

cance level on the first component. Class-specific loadings

are summarized in Table 2.

On the contrary, eleven variables were selected by

sPLS-DA: lego blocks (LEBL), puzzles (PUZL), synki-

nesia (SYNK), digital praxia (DIPR), imitation of ges-

tures (IMOG), digital perception (DIPE), coordination

between upper and lower limbs (CULL), manual dexterity

(MAND), visual motor integration (VIMI), visual spa-

tial structuration (VISS), and visual spatial constructional

(VISC). This set of variables closely matched the one out-

lined with RF method, and is a subset of the variables with

highest loadings for the unpenalized PLS-DA approach.

Variables loadings are given in Table 2 and regression

coefficients with their associated 95% confidence intervals

are displayed in Figure 3.

Predictive classification accuracy

Classification accuracy on the validation sample was per-

fect in the case of RF, and identical for PLS and sPLS

(0.941, 95% CI [0.713;0.999]), with only one VSC patient

missclassified.

Projection of individuals in the feature space

Figure 4 shows individual locations in a reduced facto-

rial space defined by multidimensional scaling applied to

individual proximities computed from RF (Figure 4a), and

projection of factor scores in the first three dimensions of

PLS-DA (Figure 4b).

In the case of PLS-DA, the first component is deter-

mined by an opposition between hypotonia (high negative

loading) and manual tasks (imitation of gestures, digital

praxia, digital perception, manual dexterity). The second

axis is mainly driven by the same manual tasks, except

manual dexterity, vs. visuo-spatial tasks (puzzles, visual

spatial structuration, visual spatial memory). On the third

axis, the same visuo-spatial and manual tasks have high

negative loadings while dynamic balance, motor pathways

and auditivo memory have high positive values.

Patients typology

With component scores computed from the PLS-DA

model, the optimal number of clusters was estimated at

three, with an average silhouette width of 0.348. Although

this is indicative of a weak clustering structure, the cross-

classification of cluster and diagnosis classes was satis-

factory: Two VSC patients were considered as belonging

to the cluster composed of MX patients only (n = 18).

When using bootstrap (500 samples), the clusterwise Jac-

card similarity values were all above 0.5, except for the

smaller cluster (Table 3).

For the penalized PLS-DA model, three clusters were

identified by optimizing the average sihouette width

(0.625). The clusterwise Jaccard bootstrap measures were

all in the acceptable range (≥ 0.8), and 4 VSC patients

were found in the cluster composed of MX patients.

Except for the minority cluster (IM), the representative

individuals were different in the two PLS models.

Clustering fitness

As can be seen in Table 3, the average euclidean distance

of patients from the validation sample to their expected

medoids (C1 to C3) was always less than the average dis-

tance to other medoids, except for IM patients with PLS-

DA. When considering sPLS-DA, the MX group appears

to exhibit more compactness since it has the lowest aver-

age distancemeasure. This is further illustrated in Figure 5

which shows patients’ location in the factor space defined

by the two components of the sPLS-DA model. The mis-

classified individual has been highlighted using a double

circle.

Pattern of association between selected variables and

clinical diagnosis

The conditional and marginal distributions of item failure

by clinical subgroup is summarized using a circular tabu-

lar display (Circos, http://mkweb.bcgsc.ca/tableviewer) in

http://mkweb.bcgsc.ca/tableviewer
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Figure 3 Sparse PLS-DA regression coefficients with associated 95% confidence intervals computed using B = 1, 000 bootstrap samples.
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Figure 4 Plots of individual factor scores computed from (a) the RF proximities matrix and (b) PLS loadings.
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Table 3 Measures of predictive accuracy and clustering fitness

Classifier Class Sensitivity Specificity ASW Isolation Jaccard C1 C2 C3

PLS-DA IM 1.00 1.00 0.625 L∗ 0.462 1.587 2.784 1.206

VSC 0.89 1.00 0.369 No 0.665 3.106 0.838 2.315

MX 1.00 0.90 0.270 No 0.605 2.811 2.416 0.587

sPLS-DA IM 1.00 1.00 1.000 L∗ 0.792 0.129 0.437 0.386

VSC 0.89 1.00 0.712 No 0.928 0.468 0.103 0.282

MX 1.00 0.90 0.479 No 0.854 0.487 0.330 0.073

L or L∗ denotes isolated cluster (See text for details).

Figure 6, considering variables selected by RF and sPLS-

DA on the training sample. The size of each ribbon reflects

the strength of the association (i.e., cell counts in the cor-

responding 7 or 11 × 3 table), while the outer segments

indicate marginal frequencies. Such a picture offers an

intuitive visualization of the following three main charac-

teristics of task failure due to specific dyspraxia: (a) IM

patients are equally impaired on digital perception (DIPE),

imitations of gestures (IMOG), and digital praxia (DIPR),

(b) some items are commonly found in both VSC and

MX patients, that is lego blocks (LEBL), visual spatial

structuration (VSS), and visual motor integration (VIMI),

whereas (c) some items remain mostly specific of MX, and

to a lesser extent VSC dyspraxia, namely digital praxia,

imitation of gestures, and more importantly coordination

between upper and lower limbs (CULL) and digital per-

ception (DIPE).

Of the 11 items isolated with sPLS-DA, IMOG andDIPE

were found significantly associated with clinical diagnosis

in the validation sample at a 5% Bonferroni-corrected level

(0.05/11 = 0.0045). The p-values for digital praxia and

synkinesis were below 10%.

Discussion
The primary aims of this article were to determine the

most relevant items for distinguinshing between three

DCD subtypes, and to quantify the homogeneity of

patients within each subtype. Two multivariate methods,
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Figure 5 Individual coordinates from sPLS-DA for the training (open circles) and validation (filled circles) sample. The medoids for each

cluster are shown using a cross.
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Figure 6 Association between clinical group and variables ranked or selected as most important in RF and sPLS-DA.

RF and PLS-DA, were shown to be useful to select the

most informative items from a large set of testing instru-

ments with high sensitivity and specificity, while allowing

to characterize a set of 63 patients from a multivariate

perspective. Imposing sparsity when building PLS compo-

nents led to more direct and interpretable results.

Interest of multivariate classification

Feature selection based on RF has been proposed in the

past, including the use of permutation techniques. For

example, Diaz-Uriarte and Alvarez de Andrés [37] pro-

posed a backward elimination algorithm to select relevant

subset of genes based on variable importance. Using this

method, as implemented in the varSelFR R package,

with a slight different configuration for RF (500 trees, but

with the mtry parameter set at its default value of
√
p),

five variables were selected: digital perception (DIPE), dig-

ital praxia (DIPR), imitation of gestures (IMOG), manual

dexterity (MAND), and visual motor integration (VIMI).

The .632+ Bootstrap estimate of prediction error was

found to be 0.0713 (using 500 replicates), which is in

close agreement with the prediction error observed on our

training sample. It should be noted, however, that permut-

ing clinical labels allows to verify the existence of a class

structure in the dataset, not whether the classifier truly

exploits items dependency [38].

Contrary to Robert-Granié et al.’s study [29], our results

didn’t show a clear improvement of sparse PLS over

unpenalized PLS when predicting diagnostic classes,

although they both yielded a consensual subset of impor-

tant variables. This might be explained by the high signal-

to-noise ratio for some of the neuro-psychological tests

used in this study.

Another point that deserves some discussion con-

cerns the choice of the metric used to quantify variable

importance in PLS-DA. In this study, variable loadings

were used as they reflect the “weight” of the variables

when building component scores that maximize the dis-

crimination among classes. Other measures of variable

importance have been proposed, for example Variable

Importance in Projection (VIP), but see [20] for a review.

We found, however, that using VIP-based measures of

variable importance yielded results in close agreement

with the one reported in this study.

Also, random forests is a nonparametric approach that

supports multivariate and nonlinear associations whereas

PLS regression models linear dependencies only, which

may yield different variable importance measures espe-

cially in the case where highly nonlinear associations

between predictors of interest are present. A combina-

tion of the two approaches, where either RFs [39] or

PLS [40] is used to perform dimensionality reduction, has

been successfully applied in some domains. Menze et al.

[41] demonstrated that on spectral data univariate fea-

ture screening will perform poorer than multivariate Gini

importance computed from RFs which in turn is able to
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highlight higher-order interaction effects. However, PLS-

DA was found to perform better overall for classification,

as compared to RFs. The superiority of PLS-based clas-

sifiers was also confirmed in presence of additive global

noise on synthetic datasets, but its performance decreased

when irrelevant features were added. Nevertheless, recur-

sive feature elimination based on Gini importance can be

used to remove features with non-discriminatory variance

before applying a PLS-DA classifier. This suggests that

depending on the structure of the data under considera-

tion, a combined approach where RFs are used to perform

dimensionality reduction and some form of regularization

on input data before they enter a linear classifier or pro-

jection to latent structures might a be viable alternative.

Other interesting approaches have been proposed as well,

for example Logic Regression [42] which also relies on the

idea of bagging boolean trees to identify significant inter-

actions among a set of descriptive binary variables, see

also [43,44].

Finally, RF and PLS-DA provide efficient ways for visu-

alizing how patients and variables cluster together when

considering all variables at the same time (unlike uni-

variate screening approaches), which has already been

discussed by [45]. They both appear to nicely comple-

ment each other. Looking at patients’ locations in the

PLS factorial space leads to a more direct interpreta-

tion of the relationships between subjects and variables,

or between variables themselves, since the latent dimen-

sions extracted from PLS-DA are just linear combinations

of the original variables. On the other hand, screening

variables of interest through RF is relatively straightfor-

ward, whereas relying on PLS-DA often means “reading”

beyond the first dimension. For example, RF considered

digital praxia and imitation of gesture as the two most

important variables, whereas they were found on separate

dimensions when using PLS-DA.

Clinical implications

The present findings are consistent with the previous

observation that difficulties in planning and programming

movement, rather than executive disorders, might partly

be responsible for the observed typology in this sample of

63 children.

Indeed, our results confirmed the importance of some

aspects of visual processing of spatial information and

motor control in developmental coordination disorder

and their subtle association in delineating DCD subtypes,

as discussed in [10]. Digital praxia and imitation of ges-

tures help distinguishing between visuo-constructional

and spatial dyspraxia (no impairment) and ideomotor

or mixt dypraxia, whereas visual motor integration and

visual spatial structuration are more characteristic of

the opposition between ideomotor dyspraxia (no impair-

ment) and the two other subtypes. Hence, mixt dyspraxia

is characterized by the presence of disorders specific

of VSC or IM dyspraxia, but further includes unique

comorbidities such as problem in coordinating upper and

lower limbs, poorer manual dexterity or synkinesia which

could be specific markers of developmental coordination

disorder.

When assessing only performance on motor coordina-

tion in relation to learning development, it is likely that

we would fail to identify associated non-verbal learn-

ing disorders, as well as language or mathematics-related

skills. Furthermore, as few or no gross motor skill dis-

orders were found to be characteristic of VSC dyspraxia,

this means that gross motor disorders are not necessar-

ily associated with dyspraxia. The dissociation of such

comorbid disorders was made possible because of the sys-

tematic investigation of different cerebral functions from

a neuro-psychological, neuro-psychomotor and neuro-

visual viewpoint on a sample of children enrolled with

strict inclusion criteria, hence the need for a multi-

dimensional or multi-level assessment of these children

[9,10].

Ideomotor patients appear more alike compared to VSC

or MX patients, and they are impaired on fewer tasks

overall. From a clinical perspective, it is interesting to

note that misclassification was only observed for a VSC

patient (considered as MX by the PLS classifier). A closer

inspection of his medical record further indicated that he

suffered from a discrete hemiplegia implying left dysadi-

adochokinesis, impaired digital praxia, but with normal

visual perception.

Hopefully, isolating relevant items among a large set

of critical indicators of impaired visuo-motor and cogni-

tive performance might further help to circumvent the

lack of consensus around the characterization of dyspraxia

subtypes, whether we rely on DSM-IV-R criteria or on

the existing literature, see [10] for a review. This will

also prove useful for the practician as short and targeted

assessment is needed, due to limited resources and time in

applied clinical settings. In this regard, the present study

suggests that less than 15 skills need to be assessed in

order to provide a specific and sensitive diagnostic of DCD

subtypes, although the data-driven approaches used here

might not fully account for the complexity of skill acquisi-

tion or learning process in the target population. Random

forests and PLS discriminant analysis were used to reduce

the number of relevant features while maximizing the

discrimination between given DCD subtypes. As such,

they were shown to perform correctly on this particular

dataset, and results were consistent with earlier inferen-

tial clinical analysis. Whenever more fine hypotheses are

to be tested, it makes more sense to turn to methods that

allow more flexible modeling of the covariance structure

and provide associated tests of hypothesis or pointwise

estimation. Of course, the extent to which those results
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might generalize beyond the sample enrolled in this study

is a critical issue. While our methodology was devised so

as to limit the risk of overfitting during model selection,

our low sample size offers only a limited way to investigate

model performance and cluster stability. An external val-

idation study with a larger sample of children, free of any

comorbidities, would be needed to confirm the relevance

of the highlighted markers.

However, such results could be used to drive more

focused investigations of motor control and sensorimotor

integration in DCD children; this potentially includes the

collection of physiological and cognitive measures when

children perform controlled motor tasks, analysis of eye

movements dynamics and eye-hand coordination, longi-

tudinal follow-up, etc. As pointed out in the introduction,

there is a need for a fairly extensive assessment of dif-

ferent cerebral functions, or a multi-level approach of

assessment as suggested by Wilson [9].

Conclusions
Multidimensional assessment of learning disabilities

appears of great interest for the medical community.

The statistical analysis of such multivariate and possibly

irregular (i.e., few observations, high number of vari-

ables) datasets is challenging, but ensemble methods and

dimension-reduction techniques can be successfully used

to screen variables of interest and assess groupwise clus-

tering profile.

In a sample of 63 children diagnosed as suffering

from developmental dyspraxia, these methods provide

a concise depiction of two types of pure dyspraxia

(ideomotor and visual-spatial/visual-constructional) that

are well characterized in the visual-spatial and visual-

motor domain, and a third type of dyspraxia (mixt dys-

praxia) which features specific comorbidities in addition

to impairments shared with the two other types.
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