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ABSTRACT 

Gray matter atrophy, glucose hypometabolism and β-amyloid deposition are well-described 

hallmarks of Alzheimer‟s disease but their relationships are poorly understood. The present 

study aims at comparing the local levels of these three alterations in humans with Alzheimer‟s 

disease. Structural magnetic resonance imaging, 18F-fluorodeoxyglucose positron emission 

tomography and 18F-Florbetapir positron emission tomography data from 34 amyloid-

negative healthy controls and 20 demented patients with a high probability of Alzheimer‟s 

disease etiology (attested using neuroimaging biomarkers as recently recommanded) were 

analyzed. For each patient and imaging modality, age-adjusted z-score maps were computed 

and direct between-modality voxel-wise comparison and correlation analyses were performed. 

Significant differences in the levels of atrophy, hypometabolism and β-amyloid deposition 

were found in most brain areas but the hierarchy differed across regions. A cluster analysis 

revealed distinct subsets of regions: i) in the hippocampus, atrophy exceeded hypometabolism 

while β-amyloid load was minimal; ii) in posterior association areas, Aβ deposition was 

predominant, together with high hypometabolism and lower but still significant atrophy; iii) 

in frontal regions, β-amyloid deposition was maximal while structural and metabolic 

alterations were low. Atrophy and hypometabolism significantly correlated in the 

hippocampus and temporo-parietal cortex while β-amyloid load was not significantly related 

to either atrophy or hypometabolism. These findings provide direct evidence for regional 

variations in the hierarchy and relationships between β-amyloid load, hypometabolism and 

atrophy. Altogether, these variations probably reflect the differential involvement of region-

specific pathological or protective mechanisms such as the presence of neurofibrillary tangles, 

disconnection as well as compensation processes.  
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INTRODUCTION 

Alzheimer‟s disease is characterised by major brain changes including gray matter atrophy, 

hypometabolism and β-amyloid (Aβ) deposition. These changes have been extensively 

described using neuroimaging techniques, i.e. magnetic resonance imaging (MRI) and 

positron emission tomography (PET) combined with specific radiotracers: 18F-

fluorodeoxyglucose (FDG) for glucose metabolism; 11C-Pittsburgh compound B, 18F-

Florbetapir or others for Aβ  deposition (Herholz and Ebmeier, 2011). These techniques have 

proved to be useful for early diagnosis of Alzheimer‟s disease, but also for further 

understanding the pathological mechanism(s) underlying the disease (Rabinovici and 

Roberson, 2010).  

Dynamic models of changes in these neuroimaging biomarkers over the course of the disease 

have recently been proposed (Perrin et al., 2009; Jack et al., 2010; Ewers et al., 2011).  

According to the amyloid cascade hypothesis (Hardy and Selkoe, 2002), the sequence of 

events would start with Aβ deposition in a very early, presymptomatic stage. Then, Aβ is 

thought to trigger functional and structural changes that would appear latter, closer to clinical 

symptom onset. Yet, in spite of experimental studies showing that Aβ impairs synaptic 

functioning (Palop and Mucke, 2010; Parihar and Brewer, 2010), results from the human 

neuroimaging literature are ambiguous. Correlations between increased Aβ and decreased 

metabolism in Alzheimer‟s disease patients have been found in some studies (Engler et al., 

2006; Edison et al., 2007; Cohen et al., 2009) but not in others (Li et al., 2008; Rabinovici et 

al., 2010; Furst et al., 2012). Previous works showed that the relationship between Aβ load 

and hypometabolism (Cohen et al., 2009), or atrophy (Chételat et al., 2010) varies throughout 

the evolution of the disease, suggesting that neurodegeneration could be independent of Aβ 

pathology in later stages (Hyman, 2011).  
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Moreover, there may also be differences in the sequence of events according to brain regions, 

as suggested by discrepancies in the regional pattern of atrophy, hypometabolism and Aβ 

deposition. More specifically, while all three alterations are found in some regions such as the 

posterior cingulate, precuneus and temporo-parietal areas (Buckner et al., 2005; Jack et al., 

2008), regional discrepancies have been highlighted when comparing modalities two by two. 

Thus, differential degrees of atrophy and hypometabolism are found in the posterior cingulate 

cortex versus the hippocampus for example (Alsop et al., 2008; Chételat et al., 2008), and 

both atrophy and hypometabolism can be found in regions with low Aβ load, or can be absent 

in regions with high Aβ deposition (Edison et al., 2007; Jack et al., 2008; Li et al., 2008). 

The main objective of this study was therefore to characterise and compare the regional 

degrees of gray matter atrophy, hypometabolism and Aβ deposition as measured in the same 

patients with Alzheimer‟s disease. In addition we aimed at assessing for the first time the 

local correlations between these three alterations using a voxel-based method. For these 

purposes, we thoroughly selected patients as having a high probability of Alzheimer‟s disease 

etiology according to recent recommendations (McKhann et al., 2011) and used a 

methodology especially designed to compare data from different imaging modalities (Chételat 

et al., 2008). 

 

MATERIALS AND METHODS 

Participants 

Twenty two patients diagnosed with probable Alzheimer‟s disease were first selected 

according to NINCDS-ADRDA clinical criteria (McKhann et al., 1984). Following the recent 

recommendations from the National Institute on Aging and Alzheimer‟s Association 

workgroup (McKhann et al., 2011) for research studies, only those 20 patients with a high 
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probability of Alzheimer‟s disease etiology (i.e. who have positive neuroimaging biomarkers 

for both Aβ deposition and neurodegeneration) were selected for further analyses (see below).  

Thirty-seven healthy controls were also enrolled in this study following clinical and 

neuropsychological examination. They had no history or clinical evidence of major 

neurological or psychiatric disorder and performed in the normal range in all 

neuropsychological tests (including tests of episodic memory, working memory, language 

skills, executive functions and visuospatial abilities). 

The study was approved by the local ethics committee and all participants gave written 

consent for participation prior to the scans. 

Neuroimaging data acquisition 

All participants were scanned on the same MRI and PET cameras at the CYCERON center 

(Caen, France). The median time lapse between the first and last examination was 16.5 days 

(min= 1; max =60) for patients and 28 days (min= 8; max =215) for controls. 

MRI data.  

For each participant, a high-resolution T1-weighted anatomical image was acquired on a 

Philips (Eindhoven, The Netherlands) Achieva 3T scanner using a 3D fast field echo 

sequence (3D-T1-FFE sagittal; repetition time = 20 ms; echo time = 4.6 ms; flip angle = 20°; 

170 slices; slice thickness = 1 mm; field of view = 256 x 256 mm2; matrix = 256 x 256). 

PET data.  

Both FDG and Florbetapir PET scans were acquired on a Discovery RX VCT 64 PET-CT 

device (General Electric Healthcare) with a resolution of 3.76 x 3.76 x 4.9 mm (field of view 

= 157 mm). Forty-seven planes were obtained with a voxel size of 2.7 x 2.7 x 3.27 mm. A 

transmission scan was performed for attenuation correction before the PET acquisition. 



 5 

FDG-PET. Participants were fasted for at least 6h before scanning. After a 30-min resting 

period in a quiet and dark environment, ≈ 180 MBq of FDG were intravenously injected as a 

bolus. A 10-min PET acquisition scan began 50 min post-injection. 

Florbetapir-PET. Each participant underwent a 20-min PET scan, beginning 50 min after the 

intravenous injection of ≈ 4MBq/kg of Florbetapir.  

Neuroimaging Data Handling and Transformation 

Preprocessing 

MRI data were segmented, normalized and modulated using the VBM5.1 toolbox 

(http://dbm.neuro.uni-jena.de), implemented in the Statistical Parametric Mapping 5 (SPM) 

software (Wellcome Trust Centre for Neuroimaging, London, UK) to obtain maps of local 

gray matter volume corrected for brain size. PET data (both FDG and Florbetapir) were 

corrected for partial volume effects (PMOD Technologies Ltd., Adliswil, Switzerland), 

coregistered onto their corresponding MRI and normalized using the deformation parameters 

defined from the MRI procedure. Resultant images underwent quantitative scaling using the 

cerebellar gray matter as a reference to obtain standardized uptake value ratio (SUVr) images.  

Since MRI and PET data have different original spatial resolutions, a differential smoothing 

was applied to equalize the effective smoothness (Richardson et al., 1997; Chételat et al., 

2008; Villain et al., 2008): a Gaussian kernel of 10 x 10 x 10 (x, y, z) mm was used for the 

MRI and 9.3 x 9.3 x 8.8 mm for the PET data. Finally, images were masked to exclude non-

gray matter voxels from the analyses. 

Creation of W-score maps 

In order to obtain measurements of atrophy, hypometabolism and amyloid load expressed in 

the same unit, therefore enabling a direct comparison of different imaging modalities, W-

score maps were computed for each patient and each imaging modality using the healthy 
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control group as a reference (see Figure 1). W-scores are analogous to Z-scores but they are 

ajusted for specific covariate(s) (Jack et al., 1997; Boccardi et al., 2003; Jack et al., 2008), age 

in the present case. Like Z-scores, W-scores have a mean value of 0 and a standard deviation 

of 1 in the control group, and values of +1.65 and -1.65 correspond to the 95th and 5th 

percentiles, respectively. To create W-score maps, voxel-wise regressions were first 

performed in the control group between age and each imaging data using the SPM software. 

Then, W-score maps was computed using the following formula: W-score = [ (patient‟s raw 

value) – (value expected in the control group for the patient‟s age) ] / standard deviation of the 

residuals in controls.  

For MRI and FDG-PET, W-scores were reversed so that positive W-scores indicate pathology 

for all modalities (i.e. less gray matter volume, less glucose metabolism, more Aβ deposition). 

For each modality, individual W-score maps were averaged across the patients to provide 

whole-brain profiles of atrophy, hypometabolism and Aβ deposition, expressed as mean W-

scores. 

Regions of interest  

Finally, to obtain quantitative and statistical information in specific brain areas, mean values 

of gray matter volume, FDG SUVr and Florbetapir SUVr were extracted from the 

corresponding images before the smoothing step in 11 regions of interest defined using the 

automated anatomical labelling atlas (Tzourio-Mazoyer et al., 2002): hippocampus, 

amygdala, parahippocampus, temporal pole, angular gyrus, precuneus/posterior cingulate, 

lateral temporal, anterior cingulate, orbitofrontal, dorsomedial prefrontal, and dorsolateral 

prefrontal cortices. The neocortical values of Florbetapir retention were also extracted from 

the Florbetapir SUVr images for the sake of classification of patients as amyloid- positive 

versus negative (see below). 
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Selection of patients and subjects using neuroimaging biomarkers. 

Patients 

As mentioned above, neuroimaging biomarkers were used to further select those Alzheimer‟s 

disease patients with a high likelihood of Alzheimer‟s disease etiology, i.e. showing positive 

biomarkers of both Aβ deposition (from Florbetapir PET) and neurodegeneration (from MRI 

or FDG-PET), as recommended (McKhann et al., 2011). First, values of Florbetapir 

neocortical SUVr were used to separate amyloid-positive from amyloid-negative patients. For 

that purpose, a Florbetapir SUVr cutoff value was determined using a cluster analysis 

performed on the whole sample (Bourgeat et al., 2010; Rowe et al., 2010), yielding to a value 

of 1.1. This value is consistent with previous studies using Florbetapir (Fleisher et al., 2011; 

Camus et al., 2012). 

Then, neurodegeneration was assessed using two specific indexes. For atrophy, the 

hippocampus, amygdala and lateral temporal cortex were combined and a global W-score was 

computed. Hypometabolism W-score included the angular gyrus, precuneus and posterior 

cingulate. These areas where chosen as the prototypical neural substrates of Alzheimer‟s 

disease, according to a recent meta-analyses of MRI and FDG-PET studies (Schroeter et al., 

2009). 

Patients were included if they had a positive Florbetapir-PET scan and at least one positive 

biomarker of neurodegeneration (W-score ≥ 1.65 for atrophy and / or hypometabolism). 

Individual values for the three biomarkers are shown in Table 1. Out of the 22 clinically-

diagnosed patients, 2 showed a negative Florbetapir PET-scan. For the 20 remaining patients, 

at least one of the two biomarkers of neuronal injury was positive. Consequently, these 20 

Alzheimer‟s disease patients were all included in the following analyses. Only three out of 

these 20 patients were treated with cholinesterase inhibitors when included while the others 
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were de novo (untreated) patients. All analyses were repeated without these three patients and 

the conclusions remained unchanged (data not shown) so that all results will be presented on 

the complete sample of 20 patients. 

Healthy controls 

In addition, to avoid the presence of healthy subjects at a preclinical stage of Alzheimer‟s 

disease in the control group that could bias our analyses, amyloid-positive subjects were 

excluded from further analysis. Indeed, the presence of cerebral amyloidosis is believed to 

indicate the first stage of preclinical Alzheimer‟s disease (Sperling et al., 2011). Therefore, 

three subjects with a Florbetapir SUVr value over 1.1 were withdrawn from the control group. 

Demographic data and mini-mental state examinations scores for the 34 controls (14 males, 

20 females) and 20 patients with highly probable Alzheimer‟s disease (10 males, 10 females)  

are displayed in Table 2. 

Statistical analyses 

Comparing local atrophy, hypometabolism and Aβ burden 

Voxel-wise analyses. Individual W-score maps of atrophy, hypometabolism and Aβ 

deposition were compared in a voxel-wise factorial analysis using the SPM software, with 

MRI, FDG-PET and Florbetapir-PET images as within-subject measurements. Results were 

considered as significant at a p (family wise error (FWE)-corrected for multiple comparisons) 

< 0.05 threshold and cluster size k  ≥ 20 (160 mm3). 

Regions of interest analyses. Using the values extracted from the 11 regions of interest, 

regional W-scores were calculated and compared using non-parametric statistical tests. To 

compare the local degrees of atrophy, hypometabolism and Aβ deposition, a Friedman 

ANOVA was performed within each region of interest. If significant (i.e. p < 0.05), post hoc 

two-by-two comparisons were conducted using Wilcoxon signed-rank test. So as to provide a 
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more global insight on the different gradients of alteration across brain regions, a Ward‟s 

hierarchical clustering method was used to group brain regions with closely similar patterns. 

Correlation between local alterations 

To assess the link between local atrophy, hypometabolism and Aβ deposition, W-score maps 

were entered two-by-two in voxel-wise correlation analyses using the Biological Parametric 

Mapping toolbox implemented in SPM and especially designed to analyze brain images from 

different modalities (Casanova et al., 2007). Three independent correlation analyses were 

performed: Wβ-amyloid vs Whypometabolism, Wβ-amyloid vs Watrophy and Watrophy vs Whypometabolism. 

Results were considered as significant at a pFWE < 0.05 threshold and cluster size k  ≥ 20 (160 

mm3). 

 

RESULTS 

Patterns of gray matter atrophy, hypometabolism and Aβ deposition in Alzheimer’s 

disease 

Averaged W-score maps for each modality are shown in Figure 2. Briefly, gray matter 

atrophy was found in the medial and lateral temporal, inferior parietal cortex and precuneus. 

Hypometabolism concerned the precuneus, posterior cingulate, lateral temporal and parietal 

cortices, and to a lesser degree the medial temporal lobe. Aβ deposition was found in most 

brain areas, with highest W-scores in the medial and orbital prefrontal cortex, precuneus and 

posterior cingulate (with W-score ≥ 9), while the primary sensori-motor cortex, occipital 

cortex, thalamus and medial temporal lobe were relatively spared.  

Voxel-wise comparisons between alterations 

The results of the direct between-modality comparison analyses are displayed in Figure 3. 

First, the comparison between atrophy and hypometabolism revealed significant differences 
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in both directions. Hypometabolism was greater than atrophy in the precuneus, posterior 

cingulate, parietal and middle / inferior temporal gyrus while atrophy significantly exceeded 

hypometabolism in the anterior part of medial temporal lobe. Second, Aβ deposition 

significantly exceeded atrophy in most brain areas, with greatest differences in frontal areas, 

precuneus and posterior cingulate, and less but still significant differences in lateral temporal 

and parietal regions. Conversely, atrophy was superior to Aβ deposition in the anterior part of 

the medial temporal lobe and in the posterior hippocampus. Third, Aβ deposition considerably 

exceeded hypometabolism in prefrontal cortex, precuneus and posterior cingulate while the 

difference was less marked, but still significant, in the lateral temporal and parietal cortices. 

Finally, hypometabolism significantly exceeded Aβ deposition in the thalamus and posterior 

hippocampus. 

Voxel-wise correlations between alterations 

The two-by-two inter-modality correlation analyses revealed significant results for the 

atrophy versus hypometabolism analysis only (Figure 4). Specifically, hypometabolism was 

correlated to local atrophy in the hippocampus, temporoparietal cortex, cuneus / precuneus 

junction as well as the dorsolateral prefrontal cortex. In contrast, correlations between Aβ 

deposition and atrophy or hypometabolism did not reach significance at the pFWE < 0.05 

threshold. Using a more permissive statistical threshold of puncorrected < 0.001, a significant 

positive correlation was found between Aβ load and hypometabolism  in a small cluster 

within the retrosplenial cortex / posterior cingulate (MNI coordinates at the peak: -4, -52, 16; 

t-value = 4.53;  cluster size =  14 voxels). 

Regions of interest analyses 

The results of the ANOVA comparing the regional W-scores of the three alterations within 

the regions of interest are displayed in Figure 5. Significant differences were found between 
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the degrees of atrophy, hypometabolism and Aβ deposition in all investigated areas, except 

for the amygdala (Friedman ANOVA did not reach significance, p = 0.55). Post-hoc 

comparisons performed with Wilcoxon signed-rank test showed clearly different gradients 

according to regions (Figure 5), with areas of predominant atrophy (such as the hippocampus) 

and areas of excessive Aβ deposition as compared to atrophy and hypometabolism (such as 

the prefrontal cortex).  

Using the three mean W-scores of each region, Ward‟s hierarchical clustering method led to 

the distinction between 4 subsets of brain areas (Figure 6, left). A repeated measures ANOVA 

was conducted on the mean W-score values from the 4 sets of regions, with two factors: brain 

region (with 4 levels) and imaging modality (with 3 levels). It revealed a highly significant 

region x modality interaction (F(6; 152) = 35.0; p < 10-5), which confirmed the differential 

hierarchy between the levels of the three markers in these 4 sets of brain regions (Figure 6, 

right). In the hippocampo-amygdala complex, atrophy was marked (median W = 2.16), and 

significantly exceeded hypometabolism (W = 1.99), and Aβ  load (W = 0.50). In the 

parahippocampus and temporal pole, Aβ load was relatively high (W = 4.5) and exceeded 

local degrees of atrophy (W = 1.45) and hypometabolism (W = 0.78). In posterior association 

areas (lateral temporal cortex, angular gyrus and precuneus/posterior cingulate), all modalities 

showed high to very high W scores, with a predominance of Aβ deposition (W = 7.36), 

exceeding local hypometabolism (W = 3.69), itself exceeding atrophy (W = 2.31). Lastly, in 

frontal areas (dorso-lateral prefrontal cortex, dorso-medial prefrontal cortex, orbito-frontal 

cortex and anterior cingulate), extreme Aβ deposition (W = 7.99) contrasted to the weakness 

of structural and metabolic defects (respectively 0.61 and 0.85).  
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DISCUSSION 

In this study, three major brain alterations in Alzheimer's disease, namely gray matter atrophy, 

hypometabolism and Aβ deposition, were measured concomitantly in the same patients with 

Alzheimer's disease dementia. Their relative expression and relationships were assessed both 

regionally and voxel-wise. We showed marked regional variability in the hierarchy between 

these different brain alterations with three main profiles: i) extreme Aβ deposition with low 

hypometabolism and atrophy (frontal areas); ii) predominance of Aβ deposition, together with 

high hypometabolism and lower but still significant atrophy (posterior association areas); and 

iii) predominance of atrophy and hypometabolism faced to low Aβ burden (in medial 

temporal areas). In addition, local correlations were found between atrophy and 

hypometabolism within a large parieto-temporal network, while Aβ deposition did not 

correlate to either atrophy or hypometabolism. 

One of the most striking results of this study is the considerable discrepancy between Aβ 

deposition on the one hand, and atrophy and hypometabolism on the other hand in patients 

with Alzheimer‟s disease dementia. First, the brain distribution of Aβ deposition clearly 

differed from that of the two other alterations (Figure 3, middle and right). Second, Aβ 

deposition did not correlate to the other alterations. Previous studies assessing the correlations 

between Aβ deposition and metabolism in patients with Alzheimer's disease reported 

conflicting results, and, when significant, correlations were only found in restricted areas, 

mostly in temporal and parietal cortices (Engler et al., 2006; Edison et al., 2007; Cohen et al., 

2009; Forsberg et al., 2010). This is consistent with our finding of a restricted correlation in 

the posterior cingulate cortex when using a more permissive threshold. As for the link 

between atrophy and Aβ deposition, while relationships have been reported in preclinical 

stages, most studies reported no significant correlations in demented patients (Fagan et al., 

2009; Chételat et al., 2010).  
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These findings are in line with the idea that, at symptomatic stages of the disease, Aβ does not 

play a prominent role in on-going neurodegeneration (Hyman, 2011). Instead, Tau pathology, 

disturbance in axonal transport, or inflammation processes, could contribute to brain atrophy 

and metabolic disruption (see below). They could also be interpreted in the light of current 

models suggesting a time decay between the appearance of Aβ plaques, more than one decade 

before the first symptoms, and hypometabolism and atrophy thought to appear years later, 

closer to cognitive decline (Jack et al., 2010). Another interesting hypothesis is the possibility 

of distant, rather than local, effects of Aβ. Notably, Cohen et al. (2009) observed that 

metabolism in the precuneus of amyloid-positive patients with Alzheimer‟s disease was 

inversely correlated to Aβ deposition in frontal areas. Bourgeat et al. (2010) also reported a 

distant relationship (between temporal neocortical Aβ deposition and hippocampal atrophy); 

yet the correlation was observed in the cognitively normal group and not in demented 

patients. 

In contrast, atrophy and hypometabolism were found in the same brain areas and were highly 

correlated (Figure 4), suggesting that both alterations share at least partly common underlying 

mechanisms. The direct comparison between both processes also revealed regional 

differences in their relative degrees (Figure 3) indicating that additional biochemical 

mechanisms may amplify or attenuate hypometabolism or atrophy in specific brain regions.  

The other notable finding is the regional variability in the hierarchy between the relative 

degrees of atrophy, hypometabolism and Aβ deposition, which suggests that these alterations 

are subtended by multiple region-specific processes. Thus, by contrast to current global 

models that propose a general chronology in the appearance of the different alterations 

(independently of brain regions), the present study rather highlights the regional discrepancy 

in this sequence, suggesting that different subtending processes may be involved in the 

different brain regions. While the absolute number of sets of brain regions is arbitrary as it 
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depends on the subjective dendograms cutoff, our findings however revealed clearly 

distinguishable patterns with three poles: the hippocampus, the posterior association areas, 

and the frontal cortex. 

In the hippocampus, the presence of abnormally phosphorylated tau proteins that aggregate to 

form neurofibrillary tangles (NFT), may be one of the processes underlying severe atrophy 

and moderate hypometabolism in spite of low Aβ burden. Indeed, neurodegeneration seems to 

be closely related to tau pathology: progression of both gray matter atrophy (Whitwell et al., 

2008) and hypoperfusion (Bradley et al., 2002) through the brain seems to follow NFT 

spreading as evaluated with Braak staging. In addition, neuronal loss has been shown to 

correlate with local counts of NFT in different brain areas such as the entorhinal cortex 

(Gómez-Isla et al., 1996) and superior temporal sulcus (Gómez-Isla et al., 1997). 

Consequently, as NFT first appear and remain predominant in medial temporal structures as 

the disease pathology progresses (Braak and Braak, 1991; Delacourte et al., 1999), it is likely 

that NFT, rather than Aβ deposition, are responsible for hippocampal atrophy and 

hypometabolism. However, the possibility of a distant effect of Aβ on the hippocampus 

cannot be ruled out, especially because the brain structures to which the hippocampus projects 

the most, i.e. the retrosplenial cortex and medial and orbital prefrontal cortex (Aggleton, 

2011) are also those showing the highest Aβ load (Figure 2, right).  

In posterior association areas, several factors have been proposed to induce neuronal 

dysfunction over and above local Aβ pathology. Notably, recent studies suggested that 

hypometabolism observed in patients with mild cognitive impairment and Alzheimer's disease 

dementia (especially in the posterior cingulate cortex) at least partly results from hippocampal 

atrophy through cingulate bundle disruption (Villain et al., 2008; Choo et al., 2010; Villain et 

al., 2010). Besides, as mentioned earlier, relationships between hypometabolism in the 

precuneus and prefrontal Aβ load have been observed (Cohen et al., 2009), possibly revealing 
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distant Aβ effects. Actually, the posterior cingulate, precuneus, angular gyrus and lateral 

temporal cortex are “cortical hubs” (Buckner et al., 2009), i.e. nodes in brain networks that 

are tightly connected to numerous brain structures. This may explain their vulnerability to 

Alzheimer‟s disease-related pathological processes in widely distributed brain regions.  

Lastly, in frontal areas, Aβ load reached its maxima while atrophy and hypometabolism were 

minimal. Although already noticed by previous authors (Edison et al., 2007; Jack et al., 2008; 

Li et al., 2008), the present study provides a quantitative evidence for this discrepancy. This 

may appear surprising considering studies in animal models showing that severe neurite 

abnormalities especially develop in the vicinity of Aβ deposits (Tsai et al., 2004) because they 

are surrounded by a halo of soluble oligomeric forms of Aβ (Koffie et al., 2009), themselves 

shown to be toxic to synapses (Lacor et al., 2007). Our findings may reflect i) a lack of 

deleterious effect of local Aβ deposits in humans; ii) a difference in the timing of the different 

biomarkers (see above); or iii) the presence of compensation processes. This later hypothesis 

is supported by previous functional MRI studies showing greater activations in patients with 

Alzheimer‟s disease relative to healthy controls (notably in the frontal cortex), positively 

associated with cognitive performances and interpreted as the reflect of compensation 

processes (see Schwindt and Black (2009) for review). It is thus also possible that, faced to 

Aβ deposition, neuronal and synaptic plasticity occurs, allowing to maintain neuronal 

integrity, glucose consumption and brain volume.   

Note that the patient sample size is relatively limited in the present study as compared to large 

multicentre studies. However, i) our patients have been thoroughly selected as having a high 

probability of Alzheimer's disease etiology based on neuroimaging biomarkers as recently 

recommended; ii) the use of multimodal data obtained in a single laboratory has clear 

advantage upon multicentre data for complex and precise voxel-wise analyses as performed 

here; iii) our findings were confirmed using non-parametric tests; iv) our results are entirely 
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consistent with previous studies when applicable. Thus, whole brain patterns of atrophy, 

hypometabolism and Aβ deposition (Figure 2) are highly similar to those reported in studies 

from different samples (Buckner et al., 2005; Edison et al., 2007; Alsop et al., 2008; Chételat 

et al., 2008; Jack et al., 2008; Caroli et al., 2010; Fleisher et al., 2011), and the map of local 

mismatch between atrophy and hypometabolism (Figure 3, left) is almost identical to previous 

studies by Alsop et al. (2008) and Caroli et al. (2010) despite the use of different 

methodologies and samples. Yet, we cannot exclude the possibility of a lack of statistical 

power in the analyses, for instance to detect subtle relationships between Aβ deposition and 

neurodegeneration.  

 

As a whole, our findings highlight the complex local relationships between atrophy, 

hypometabolism and Aβ load and the regional heterogeneity in their hierarchy, suggesting the 

involvement of different underlying processes. It would be of particular interest to assess 

these relationships in earlier stages of the disease, and to consider not only local but also 

distant phenomena to get a more comprehensive overview of these different brain alterations 

and their interactions. Finally, longitudinal studies are warranted to take into account the 

potential lapse between the different pathological processes while assessing their relationships 

and eventually propose a more complete, region-specific, model of Alzheimer‟s disease 

pathology evolution. 
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FIGURE LEGENDS 

Figure 1 (width: 1.5 columns) 

Illustration of the different steps required to create W-score maps using the SPM software. 

This figure shows the procedure for the atrophy W-score map of a 65-year-old patient with 

Alzheimer‟s disease as compared to 6 healthy controls (HC) for the sake of illustration.  

First, a simple linear regression was performed in the HC group to estimate age-related 

changes (1a), resulting in several files: the β1 map containing voxel-wise age-related 

regression coefficients, the β2 map containing intercept values, and the individual maps of 

residuals. The standard deviation of residuals was computed voxel-wise (1b). A W-score map 

was then created using the corresponding formula and previously-computed maps using 

SPM‟s „ImCalc‟ function (2a). Lastly, for MRI and FDG-PET data, W-values were reversed 

so that positive numbers represent pathological features in all three imaging modalities (2b). 

Figure 2 (width: 2 columns)  

Brain patterns of alteration in the 20 patients with Alzheimer‟s disease dementia. For each 

imaging modality, local degrees of alteration are expressed as mean W-score as compared to 

the control group (n = 34) in each gray matter voxel. Note that for all imaging modalities, a 

positive W-score indicates a pathological feature. Colors have been scaled to the range of 

each modality to fit to the regional distribution of each process. For clarity, only the left 

hemisphere is represented here, as results were mainly symmetrical. 

Figure 3 (width: 2 columns)  

Voxel-wise comparisons between the local degrees of atrophy, hypometabolism and β-

amyloid deposition in the 20 patients with Alzheimer‟s disease dementia.   

The T-value of 5.2 used as a threshold in this figure corresponds to the P (family wise error 

corrected) < 0.05 threshold described in the text. 
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Figure 4 (width: 1 column)  

 Voxel-wise correlations between local degrees of atrophy and hypometabolism in the 20 

patients with Alzheimer‟s disease dementia. The R-value of 0.89 used as a threshold in this 

figure corresponds to the P (family wise error corrected) < 0.05 threshold described in the 

text. 

Figure 5 (width: 2 columns)  

Regions of interest analyses. Local degrees of atrophy (orange), hypometabolism (green) and 

β-amyloid deposition (blue) expressed as mean W-scores were compared using Friedman 

ANOVA. When significant (p < 0.05), post-hoc analyses were performed using Wilcoxon test 

(*: p < 0.05; **: p < 0.005; ***: p < 0.0001). Histograms represent median values and bars 

refer to the interquartile range. Regions presented here are ordered by increasing amyloid W-

score. Post cingulate: posterior cingulate cortex; PFC: prefrontal cortex. 

Figure 6 (width: 1.5 columns)  

Classification of brain regions according to their degrees of atrophy, hypometabolism and Aβ 

deposition. Left: Ward‟s hierarchical clustering analysis performed on the regions of interest 

distinguished four subsets of brain areas according to their three mean W-scores. Right: for 

each subset, degrees of atrophy (orange), hypometabolism (green) and Aβ load (blue) were 

averaged and compared using Friedman‟s ANOVA and Wilcoxon test (*: p < 0.05; **: p < 

0.005; ***: p < 0.0001). Histograms represent median values and bars refer to the 

interquartile range. Post cingulate: posterior cingulate cortex; PFC: prefrontal cortex. 

 

 

 



 27 

TABLE LEGENDS 

Table 1 

Selection of patients with a high probability of Alzheimer‟s disease etiology based on 

neuroimaging biomarkers of both amyloid deposition and neuronal degeneration (McKhann et 

al., 2011). Amyloid load was assessed through neocortical Florbetapir SUVr and considered 

as positive over 1.1 (see Methods for more detail). Alzheimer‟s disease type neuronal 

degeneration was considered using two indexes: i) atrophy in the hippocampus, amygdala and 

lateral temporal lobe and ii) hypometabolism in the angular gyrus, precuneus and posterior 

cingulate. Both indexes are expressed in W-scores (i.e. age-adjusted Z-scores) as compared to 

the control group. Patients were selected for further analysis if they had a Florbetapir-positive 

PET scan together with at least one neurodegeneration degeneration W-score above 1.65. 

Indexes considered as positive are bolded. This condition was fulfilled for all patients, except 

for patients 7 and 18 that were consequently excluded from further analyses. 

Table 2 

Demography and mini mental state examination (MMSE) scores in the groups used for data 

analyses. Statistical analyses were performed using Mann-Whitney U test (for age, education 

and MMSE) and Yates's chi-squared test (sex ratio). AD: Alzheimer‟s disease patients; HC: 

healthy controls. 
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Table 1 

type of 

biomarker 
index used 

Patients with a clinical diagnosis of probable Alzheimer’s disease 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Aβ deposition 
Florbetapir 
neocortical 

 SUVr 

1.46 1.54 1.86 1.20 1.48 1.81 0.87 1.80 1.92 1.71 1.41 1.77 1.56 1.28 1.29 1.83 1.72 0.89 1.59 1.68 1.45 1.76 

neuronal 

degeneration 

Atrophy W score 3.36 1.82 5.71 1.33 3.52 4.77 6.11 3.24 2.37 2.07 1.36 2.51 0.13 1.08 2.84 1.91 4.25 2.01 1.72 2.85 3.80 1.38 

Hypometabolism  
W score 

1.39 4.44 4.88 1.75 5.51 5.83 1.96 3.26 3.26 4.33 2.97 4.42 1.73 1.89 3.05 5.52 4.83 2.30 2.40 4.84 1.62 4.30 

Presence of both biomarkers ? yes yes yes yes yes yes no yes yes yes yes yes yes yes yes yes yes no yes yes yes yes 
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Table 2 

 AD  HC P value 

n 20 34  

Age 68.9 ± 9.0 68.1 ± 7.2 0.83 

Women (%) 10 (50.0%) 20 (58.8%) 0.73 

Education 10.35 ± 3.8 11.8 ± 3.7 0.11 

MMSE 20.6 ± 4.5 29.1 ± 0.8 <0.001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 2 

Figure 1 

 

 

 

 

 

 

 

 



 1 

Figure 2 

 

 

 



 2 

Figure 3 

 

 

 



 1 

Figure 4 

 

 

 

 

 



 1 

Figure 5 

 

 

 

 



 1 

Figure 6 

 

 

 

 

 

 

 


