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Abstract 

 

Background 

Copy number variants (CNVs) account for substantial variation between genomes and 

are a major source of normal and pathogenic phenotypic differences. The dog is an 

ideal model to investigate mutational mechanisms that generate CNVs as its genome 

lacks a functional ortholog of the PRDM9 gene implicated in recombination and CNV 

formation in humans. Here we comprehensively assay CNVs using high-density array 

comparative genomic hybridization in 50 dogs from 17 dog breeds and 3 gray wolves. 

Results 

We use a stringent new method to identify a total of 430 high-confidence CNV loci, 

that range in size from 9 kb to 1.6 Mb and span 26.4 Mb, or 1.08%, of the assayed 

dog genome, overlapping 413 annotated genes. 98% of CNVs observed in each breed 

are also observed in multiple breeds. CNVs predicted to disrupt gene function are 

significantly less common than expected by chance. We identify a significant 

overrepresentation of peaks of GC content, previously shown to be enriched in dog 

recombination hotspots, in the vicinity of CNV breakpoints. 

Conclusions 

A number of the CNVs identified by this study are candidates for generating breed-

specific phenotypes. Purifying selection seems to be a major factor shaping structural 

variation in the dog genome, suggesting that many CNVs are deleterious. Localized 

peaks of GC content appear to be novel sites of CNV formation in the dog genome by 

non-allelic homologous recombination, potentially activated by the loss of PRDM9. 

These sequence features may have driven genome instability and chromosomal 

rearrangements throughout canid evolution. 



Background 

 

The fraction of genomic variation attributable to copy number variants (CNVs) is 

larger than single nucleotide polymorphisms (SNPs) and yet the full extent of such 

structural variation is still relatively unexplored [1, 2]. CNVs involve duplications, 

deletions or insertions of DNA segments up to several megabases in length and are 

responsible for significant phenotypic variation [3]. In humans, the frequency 

distribution of CNVs shows signals of purifying selection, suggesting that a 

significant proportion of CNVs have harmful phenotypic effects [1]. CNVs are 

associated with a number of genetic disorders including Crohn’s disease [4], psoriasis 

[5], osteoporosis [6], glomerulonephritis [7] and systemic lupus erythematosus (SLE) 

[8]. However, there are also a small number of examples of CNVs that may be 

beneficial, such as adaptive variation in copy number of the amylase gene in response 

to diet [9], and variation in HIV/AIDS susceptibility [10]. 

 

A variety of mechanisms are thought to give rise to CNVs [11]. A major source of 

structural variation is non-allelic homologous recombination (NAHR), which occurs 

due to aberrant pairing of regions of extended homology. Other mechanisms involve 

re-joining of breaks in DNA but do not require extensive homology. In addition to 

this, errors in replication, such as slippage at variable number of tandem repeat 

(VNTR) loci or insertion of transposable elements also generate variation in copy 

number. CNV formation appears to occur at higher rates in certain genomic regions 

termed rearrangement hotspots. In particular, CNVs associated with NAHR tend to be 

clustered in the genome, and CNVs are enriched in the vicinity of segmental 

duplications. This suggests regions of local sequence homology are hotspots of CNV 

formation by NAHR [12-14]. In humans, the initiation of meiotic double-stranded 

breaks (DSBs) is thought to begin with the binding of the protein PRDM9 to a 

degenerate 13-bp sequence motif [15-17]. This motif is also enriched in CNV 

breakpoints [2], including several involved in disease [18], which implicates DSBs 

formed in this way in CNV formation by NAHR. 

 

Domestic dogs harbour an astonishing level of phenotypic variation, which is mostly 

apportioned into distinct breeds. The hundreds of dog breeds recognized today were 

formed by population bottlenecks accompanied by strong artificial selection, which 



has led to both their unique collections of characteristics and an increased prevalence 

of genetic disease. This makes the dog an ideal genetic model for uncovering the 

genetic basis of normal and pathogenic phenotypic variation [19]. Many traits have 

now been mapped in the dog genome using a variety of approaches [19-22], and 

structural variation is implicated in a number of these. For example, a duplication of 

three fibroblast growth factor (FGF) genes causes the dorsal hair ridge in Rhodesian 

and Thai Ridgeback dogs and predisposes to dermoid sinus [23], a duplication 

upstream of Hyaluronic Acid Synthase 2 (HAS2) is responsible for the characteristic 

wrinkled skin of Chinese Shar-Pei dogs and predisposes to periodic fever syndrome 

[24], and an insertion of an FGF4 retrogene is responsible for chondrodysplasia 

typical of certain breeds [25]. As in humans, much phenotypic variation is likely to be 

attributable to CNVs, which makes investigating them important for uncovering the 

genetic basis of phenotypic variation in dogs. 

 

There is a possibility that the genomic features that promote CNV formation in dogs 

differ from other mammals. The dog genome differs from the majority of other 

mammals in that it lacks an active copy of PRDM9, which suggests that formation of 

meiotic DSBs is controlled differently in dogs [26]. A fine scale analysis of 

recombination rate variation in the dog genome indicated that, like in humans, 

recombination is clustered into hotspots but that, unlike in humans, these regions were 

strongly enriched for short regions (~1 kb) of highly elevated GC content (GC-peaks) 

[27]. This suggests GC-peaks may be targets of meiotic DSBs. Interestingly GC rich 

regions also seem to be involved in genome rearrangements during canid genome 

evolution, where they have relocated to telomeric regions [28]. This could indicate 

that GC-peaks are important targets of NAHR and often involved in rearrangements. 

 

Three studies have identified canine CNVs using array comparative genomic 

hybridization (aCGH) [29-31]. Chen et al. [29] used a 385,000 oligo array on nine 

dogs from different breed groups. They discovered 155 high confidence CNVs in 60 

CNV regions. Nicholas et al. [30] focused on areas of segmental duplications (SDs) 

using single dogs from 17 breeds and a gray wolf and identified ~3,600 CNVs in 

~700 overlapping regions found in two or more samples. A subsequent study [31] 

used aCGH with 2.1 million probes with an average density of 1 kb in nine dogs and 

one wolf sample and identified 403 CNVs. As expected, CNVs were found to be 



enriched in SDs. It was also shown that CNVs not associated with SDs were more 

likely to be present only once or at lower frequencies in the dataset. An additional 

population genetic analysis on a set of these CNVs revealed some with divergent 

patterns of fixation in different breeds, which could be responsible for breed-specific 

traits. 

 

Despite extensive efforts to type CNVs in dogs, several questions remain about their 

mechanisms and effects. There is evidence that meiotic DSBs localize to different 

sites in dogs than other mammals [27]; does this cause a different distribution of 

CNVs in the genome? Is there evidence of fixed CNVs in certain breeds that may lead 

to breed-specific phenotypes? Can variation at CNV loci be used to delineate different 

breeds? Besides these questions, a comprehensive catalogue of dog CNVs would be 

useful to aid gene-mapping studies. Here we present the most comprehensive CNV 

discovery effort in dogs to date. We use a 2.1 million-probe array, as in Nicholas et al. 

[31], with probes spaced on average of 1 kb. We investigate the genome-wide extent 

and characteristics of CNVs in 50 dogs from 17 breeds and 3 wolves. This enables us 

to examine sequence features in breakpoints at high resolution and determine patterns 

of fixation. 

 

Results and discussion 

 

CNV discovery, genotyping and validation 

 

We performed aCGH analysis using a 2.1M probe technology platform spanning the 

assayable portion of the dog reference genome with a median spacing of 1 kb. We 

restricted our analysis to identifying high-confidence CNVs containing at least 10 

probes, which allows identification of CNVs down to ~9 kb in length. We assayed 

CNVs in 53 samples, comprising purebred dogs from 17 breeds plus 3 wolf samples. 

Two breeds were represented by 10 unrelated individuals each to enable CNVs 

segregating at lower frequencies in these breeds to be identified, whereas the other 

breeds were represented by 2 individuals to maximize coverage of different breeds. A 

male boxer was used as the reference sample. CNVs were analysed in autosomes and 

X chromosome by comparing the ratio of signal intensities between test samples and 

the reference. 



 

We identified CNVs using a three-stage procedure comprising segmentation, 

identification of CNV loci, and genotype calling. We first performed a comprehensive 

comparison of five segmentation algorithms including NimbleGen, DNAcopy, 

Ultrasome, pennCNV and cghFLasso, and selected the algorithm most robust to noise 

(see Methods and Supplementary Methods). This comparison identified cghFLasso as 

the most accurate method, while other methods resulted in excessive segmentation of 

the signal intensity ratio in samples with noisy data, large discrepancies in CNV 

numbers between samples and lack of a strong correlation between levels of variation 

in CNVs compared with SNPs (Supplementary Methods; Table S1, S2; Figures S1-

S5). We therefore used this algorithm to perform segmentation of signal intensity 

ratios compared to a reference for samples in our dataset.  

 

Identification of CNV loci was performed with a method to estimate the absolute 

copy number compared to the reference based on fixed thresholds and chromosome-

specific variance in each sample. The principle of our method is that fixed thresholds 

are used as a baseline cut-off, but samples with very high variance use a higher 

threshold whereas samples with low variance use lower thresholds (see Methods). We 

first identified segments falling above a stringent threshold, designed to exclude false 

positives, to identify CNV loci in single samples. The final set of CNV loci is the 

union of individual calls at each locus, which were merged across samples into a 

single CNV. The breakpoints were defined by the outermost boundaries of all 

individual CNV calls at each locus. After identification of loci, the genotype of each 

individual was inferred at each locus using less stringent criteria to determine the 

most likely state of each sample (described in Methods). This method allowed us to 

distinguish which samples exhibited deletions and duplications relative to the 

reference. Each change was then categorized as simple or complex based on variance 

between samples: changes where the mean value exceeds the threshold were 

considered simple, whereas changes where the mean value is less than the threshold 

but the mean deviation from zero exceeds the threshold were considered complex. 

This happens especially when the segmentation algorithm fails to discern two 

adjacent CNVs, of which one is a deletion and the other is a duplication (where mean 

value is close to zero, but mean deviation from zero is large). Loci where at least one 

sample exhibited a complex change from the reference were defined as complex. It is 



important to note that it is not possible to discern how the copies are distributed 

between alleles using aCGH on diploid samples, i.e., distinguish if a CNV is 

heterozygous or homozygous. 

 

In total this procedure detected 430 CNV loci distributed along the chromosomes 

(Figure 1). Out of these loci, 226 were classified as deletions (53%) and 104 as 

duplications (24%), meaning that the only variants identified at these loci were 

deletions or duplications respectively, relative to the reference, whereas 100 CNV loci 

exhibited both deletions and duplications (23%) among samples. In addition 77 of the 

loci exhibited a complex deviation from the reference in at least one sample (Table 1).  

Across all calls at all loci, 70.2% matched the reference, whereas 28.4% exhibited a 

deviation consistent with a single deletion or duplication (17.7% single deletions and 

10.7% single duplications). Only 1.4% of calls were of greater magnitude (Figure S6). 

The finding that deletions are more numerous than duplications is generally observed 

in studies using aCGH [1, 12, 29-32]. This may reflect the greater relative difficulty 

of identifying duplications due to the smaller relative change in copy number (3:2 vs. 

2:1) and also the fact that insertions of sequence not present in the reference will not 

be detected. Also concordant with recent studies, duplications were found to be larger 

than deletions with a median size of 30 kb vs. 19 kb (Table 1). This could suggest that 

duplications are less likely to be severely deleterious than deletions and therefore less 

likely to be purged by purifying selection. Alternatively it could reflect a bias against 

detecting small duplications. But despite deletions being smaller, their higher 

incidence indicates that deletions and duplications affect similar proportions of the 

genome. 

 

On average 130.9 loci (30%) differ from the reference per sample, and among breeds 

with two samples an average of 172.4 loci (40%) differ from the reference in one or 

both of the samples (Table 1). In total 50 (12%) CNVs were detected only once in the 

dataset. This is an average of one singleton per sample, and is consistent across 

samples from breeds with ten and two samples. We observe one CNV that differs 

from the reference in all samples, indicating that it is a singleton in the reference 

(chromosome 15, 57.86-57.88 Mb). This corresponds well with the number of 

singletons found in other samples, suggesting these numbers are accurate. However, 

this contrasts with a recent study by Nicholas et al. [31] using the same array, which 



identified 403 CNV loci in nine dogs and a wolf, of which 260 (65%) were detected 

in a single sample (an average of 26 per sample). This previous study used only one 

sample per breed, which makes identifying CNV loci as singletons more likely. 

However, the fact that we also find that most CNV loci are shared between breeds 

suggests that differences in CNV calling contribute to difference in CNVs found in 

each study. 

 

We validated our set of CNVs using two complementary methods: qPCR and analysis 

on the CanineHD high-density SNP genotyping array. Because of the high overlap 

(50%) with previously identified and confirmed CNVs (see Distribution and genomic 

effects of CNVs), we focused our validation on novel CNVs detected only in our 

study, and performed qPCR on 4 loci ranging in size from 17-80 kb. A total of 53 

sample-locus combinations were tested and 3 tests did not match the state predicted 

from aCGH (one false positive and 2 false negatives; 94% concordance).  

 

All of the samples used for aCGH were also genotyped on the Illumina CanineHD 

array, which contains >174,000 probes designed for assaying SNPs with an average 

spacing of 13 kb [33]. The probe density of this more than 10 times sparser array 

permits identification of larger CNVs (greater than ~100 kb with our filters) 

compared to the aCGH chip. In total, 13 CNV loci passed our filtering procedure and 

had enough probes on the SNP array to be used in the validation procedure (Table S3). 

These 13 CNVs, with an average size of 266 kb, included 8 singletons, 3 two-sample 

CNVs and 2 CNVs at midrange frequency. In total there were 6 mismatches between 

calling on the aCGH and CanineHD SNP array among 689 genotypes (1 false positive 

and 5 false negatives) which is a correspondence of >99% between individual 

genotypes. This suggests that the genotyping error is smaller than the 6% estimated 

from the qPCR, at least for large CNVs. 

 

Distribution and genomic effects of CNVs 

 

We compared our dataset to CNVs previously identified in dog in multiple studies 

merged and augmented by Nicholas et al. [31]. We identify 216 overlaps, which 

contain 196 (of 615) of previously identified CNVs and 213 (of 430) of ours (Figure 

2). This overlap is highly significant compared to random redistributions of CNVs in 



the genome (p<0.001). The reason that some CNVs do not overlap between studies is 

likely to be a combination of differences in breed selection, sample size, array 

resolution, genotyping algorithms and errors. Furthermore, we generated a canine 

segmental duplication map using a modified version of the method of Bailey et al. 

[34] (described in ref [35]), to which both datasets were mapped. The Venn diagram 

in Figure 2 shows that more than a third (165) of our CNVs overlap these SDs and 

more than half (319) of Nicholas’ CNVs overlap SDs, which is a highly significant 

overlap (p<0.001, random redistribution test) considering <5% of the dog genome is 

comprised of recent SDs. The high proportion of CNVs in SDs together with our non-

targeted approach indicates a large involvement of SDs in CNV formation as 

indicated by previous studies. However, it should also be noted that a small 

proportion of SDs are likely not fixed in the dog genome and may actually be CNVs. 

 

The largest CNV locus we identified in the dog genome is located at 48.5 - 50.0 Mb 

on chromosome 6. The pattern of variation in this region is consistent with a deletion 

in all samples except both Labradors and one Boxer, which match the reference 

sequence. Inspection of probe intensities in this region on the CanineHD array shows 

a pattern consistent with the presence of duplicated sequence in these Labrador and 

Boxer samples. Considering the high frequency of the deletion allele, it is most likely 

that the duplication allele is the derived state. The CNV encompasses a gene-sparse 

region downstream of the RNA-binding region gene RNPC3 and upstream of the 

collagen genes COL11A1 and COL5A1. 

 

The second largest locus is a complex CNV on chromosome 9 between 20.1 and 21.6 

Mb. There are no RefSeq annotated dog genes in this region, although it is 

orthologous to the human genes VPS13D, RDM1, ARHGAP27 and members of the 

LRRC37 family. These genes are not co-located in human, so this region must 

represent synteny to multiple loci. RDM1 is near members of the TBC1D3 family, 

which shows primate-specific expansion via SDs on chromosome 17, and is present in 

a majority of human-specific breakpoints of conserved synteny to mouse [36]. Both 

LRRC37 and ARHGAP27 are orthologous to regions flanking an inversion in the 

human genome at 17q21.31, thought to have arisen through NAHR between large 

blocks of flanking SDs, which are distributed throughout chromosome 17 and contain 

the LRRC37 gene family [37]. This region is associated with a micro-deletion leading 



to mental retardation and has undergone multiple complex rearrangements during 

primate evolution. The finding that this region is also a large and complex CNV in 

dogs suggests that it may be a region of instability across a wide range of mammalian 

evolution. Both of the two discussed loci were also present in previous dog aCGH 

reports [29-31] 

 

CNVs overlapping SDs occur at higher frequencies in the population (p<0.001), are 

more likely to be complex (p<0.001), tend to be longer (p<0.001), and are more likely 

to overlap genes (p<0.001) than CNVs not associated with SDs (bootstrapping used 

for all significance tests), which confirms previous observations [31]. Both singletons 

(80%) and breed-specific CNVs (85%) are more likely to fall in the category of CNVs 

not overlapping SDs. Non-SD CNVs have an average frequency of 0.24 (0.33 of 

breeds), whereas CNVs inside of SDs have an average frequency of 0.4 (0.56 of 

breeds), which is almost twice as high (p<0.001). Complex CNVs are preferentially 

observed in SDs, where every third CNV is complex, compared to less than 10% 

complex CNVs outside SDs. These observations may reflect a higher mutation rate of 

CNVs in SDs, with recurrent events around the same genomic location leading both 

to higher frequencies and more complexity, but could also reflect the involvement of 

SDs in more complex rearrangements. CNVs in SDs are also larger than non-SD 

CNVs; with a median size of 40 kb vs. 20 kb. The increased frequency and 

complexity of CNVs in SDs may reflect the dynamic nature of SDs, and that these 

CNVs have arisen from overlapping but distinct events. 

 

We next examined the functional effects of CNVs by identifying genes they overlap. 

In order to use a high-confidence gene set, 24,232 dog genes annotated under 

Ensembl ID were filtered with the g:Orth tool from g:Profiler website to extract only 

human-dog 1:1 orthologs. Out of 15,258 1:1 orthologous genes, 130 genes (0.85%) 

are overlapped either completely or partially by 90 CNVs (out of 430 total CNVs). 

This number is significantly less than predicted by chance (p<0.001, random 

redistributions per chromosome). A great proportion of the affected genes, 53 (41%), 

had their entire coding sequence covered by a CNV (Table 2). This could suggest that 

CNVs overlapping genes are more likely to have deleterious effects. A test of the size 

distribution of CNVs affecting genes revealed that they are larger, with median size of 



36 kb vs. 24 kb (bootstrapping, p<0.005). They also show a slight tendency towards 

lower frequencies, although the difference is not significant (bootstrapping, p<0.1). 

 

In addition to their paucity, CNVs overlapping genes are characterized by a much 

higher proportion of duplications than deletions (Table 2). In intergenic CNVs, 

deletions are more than 3 times as common as duplications, whereas within genes 

they occur at a proportion of 2/3 compared with duplications (p = 3.1 x 10-8; Fisher's 

Exact Test, FET). This pattern is even more pronounced in intragenic CNVs that are 

predicted to remove a stop codon, where deletions occur at a proportion of 0.2 relative 

to duplications, which is significantly lower than other intragenic CNVs (p = 0.009; 

FET). This tendency for duplication enrichment among stop codons has previously 

been detected in humans [1], and suggests a strong deleterious effect of removal of 

stop codons. 

 

The set of 130 1:1 orthologous genes overlapping CNVs were scanned for enrichment 

of GO categories against a background of all 15258 1:1 human-dog orthologs (Table 

3). This gene set was chosen because of the higher accuracy of annotations for human 

genes. For this purpose the g:GOSt tool from g:Profiler website was used. The most 

significantly enriched term in each domain was the biological process “homophilic 

cell adhesion” (p = 7.31 x 10-13), the cellular component “integral to membrane” (p = 

6.07 x 10-5) and the molecular function “olfactory receptor activity” (p = 6.22 x 10-6). 

Cell adhesion also appears as a strongly enriched category among human CNVs [1, 

32]. In our dataset, CNVs are also enriched for genes involved in the KEGG pathway 

“olfactory transduction” (p = 5.04 x 10-3). Analysing simple deletion and simple 

duplication loci separately reveals a difference in the kind of genes they overlap: there 

are no functional categories that are inferred to be enriched in both deletions and 

duplications. For example, the "homophilic cell adhesion" category is only enriched 

in deletions, whereas "olfactory receptor activity" is only enriched in duplications. 

The enrichment of specific GO categories could reflect changes in patterns of 

selective constraint in dogs [38], positive selection for dog-specific traits, or tolerance 

of certain gene categories to deletions or duplications. 

 

Mechanisms of CNV formation 

 



We searched for repeats that were enriched close to breakpoints of CNVs, calculating 

the observed to expected ratio to identify over-represented motifs. There is 

uncertainty in precisely defining breakpoint location because of smoothing of probe 

intensities and experimental noise. Each breakpoint location was defined as a 10 kb 

window to account for this imprecision. The list of known repeats was downloaded 

from the RepeatMasker track of UCSC genome browser. Nearly all CNV breakpoints 

overlap some repeat family, with L1, ERV[1/L], RNA and Satellite DNA being 

overrepresented (Table S4). The last two types involve fewer than ten breakpoints, 

and cannot be considered a significant contribution to CNV formation. However, 

>96% of the CNV breakpoints contain LINE elements, an excess of 36% compared 

with expected coverage, and almost 65% of the CNV breakpoints contain an LTR 

(includes ERV family) entry. We found a 1.5-fold excess of L1 elements in CNV 

breakpoints. Interestingly this excess seems to be most prominent for younger L1 

repeats (Table 4). This follows the pattern of CNVs and SDs detected in humans [32], 

where the likelihood of a SD being associated with a CNV was highly correlated to its 

sequence similarity to the duplicated copy, as younger L1 elements are likely to have 

increased levels of sequence homology with each other. 

 

The pattern of L1 enrichment together with the significant overlap between SDs and 

CNVs is consistent with a large contribution of NAHR, which is known to operate on 

highly similar copies, and supports the generation of CNVs in duplicated regions and 

regions with mobile element insertions. L1 transduction, where additional 3’-flanking 

sequence is transferred to a new genomic location together with an L1 insertion, may 

also contribute to this enrichment. We do not find any enrichment of CNV 

breakpoints around SINEs. This is in concordance with some studies in humans [39, 

40] that find associations with L1 but not Alu at CNV breakpoints. This may suggest 

that LINE elements promote structural variation through NAHR more strongly than 

SINEs in the dog genome. 

 

As GC-peaks are enriched in recombination hotspots in the dog genome and may be 

important for formation of DSBs [27], we searched for enrichment of this sequence 

feature within CNV breakpoints. We first defined GC-peaks as in Axelsson et al. [27], 

where a GC-peak is recorded when a 500-bp sliding window centred in a 10 kb 

background sliding window has a 1.5-fold increase in GC-content. We then 



performed randomization tests to analyse enrichment of GC-content in breakpoints. 

We found a more than 2x enrichment in CNV breakpoints (P < 0.001), which rapidly 

decays with increasing distance from the breakpoint, both within and outside of the 

CNV (Figure 3). We also found an enrichment of CpG islands and gaps in CNV 

breakpoints (P < 0.001; Table S5). CpG islands are usually GC-rich, and the great 

overlap with GC-peaks is somewhat expected. Gaps in the reference genome 

assembly have shown an extremely high likelihood of being associated with CNVs in 

human [32]. In dog, gaps tend to correlate with high GC-content because these 

regions are less well captured during the genome sequencing, and many of them could 

qualify as GC-peaks if they were fully characterized. The association between CNV 

breakpoints and GC peaks in dogs suggests that CNV breakpoints may often occur at 

recombination hotspots, where DSBs have a tendency to form, followed by their 

repair by NAHR. 

 

The association with GC-peaks and CNVs has not been reported in other species. In 

humans, a 13bp sequence motif targeted by the PRDM9 protein is strongly associated 

with recombination hotspots, which also associates with CNVs [18]. In dogs, the 

PRDM9 gene is inactive and recombination hotspots are strongly associated with GC 

peaks. The association between GC peaks and CNV breakpoints may therefore be an 

additional consequence of the death of PRDM9 [27]. There is a strong overlap 

between CpG islands and GC peaks, and both are enriched close to CNV breakpoints. 

This could indicate that non-methylated DNA promotes DSB formation that leads to 

structural variation. However it is also possible that it is simply GC-richness that 

promotes recombination, or that the peaks of high GC content are mainly a 

consequence of elevated recombination rate due to GC-biased gene conversion rather 

than its cause, which are detected as CpG islands regardless of methylation [41]. 

These results are particularly interesting in light of the suggestion that GC-rich 

regions have acted as novel target sites of chromosomal fissions during canid 

evolution [28]. 

 

We also searched for regions of extended perfect homology between pairs of 

breakpoints flanking CNV loci. 86 of the 430 CNV loci have runs of perfect sequence 

homology greater than 75 bp and 11 of them have stretches longer than 1 kb. The 

mean length of runs of perfect homology between breakpoints is 126.8 bp. We tested 



the significance of these stretches of homology by simulating 1,000 datasets with the 

same number of loci and distance between breakpoints, located at randomly chosen 

positions on the same chromosomes. The mean length of homology in the simulated 

dataset was 35.0 bp, with none of the simulated means exceeding the observed one (p 

< 0.001). These findings provide additional support for an important role of NAHR in 

dog CNV formation. Surprisingly, the mean length of homology between breakpoints 

of CNVs overlapping SDs is slightly shorter than those outside of SDs (133.1 bp 

compared with 116.6 bp). This suggests that NAHR is not restricted to segmental 

duplications and may be equally or more common outside of them. 

 

 

CNV distribution among breeds and samples 

 

We next analysed the distribution of CNVs among breeds (Table 5). The majority 

(341, 79%) of CNVs were found in several breeds, while 89 CNVs (21%) were breed-

specific. The breed-specific CNVs are larger (32 kb) than CNVs found in multiple 

breeds (22 kb) (p<0.005, bootstrapping). Some variation in the number of CNVs 

between samples was seen both within and between breeds. Notably, the total number 

of CNVs identified in Boxers was lower than any other breed, with an average of 64.5 

loci different from the reference per sample, largely due to the reference being a 

Boxer. Of the remaining breeds, the average number of CNVs per sample varied from 

116.5 (Swedish Elkhound) to 160 (English Springer Spaniel). On average a sample 

differs from the reference at 130.9 CNV loci of which 2.8 are specific to that breed. 

Fewer than 6% of CNVS found in any one breed are specific to that breed. These 

patterns are broadly consistent in the wolf samples, which exhibit a slightly lower 

than average number of CNVs per sample. On average 2 dogs from the same breed 

differ at 83.1 CNV loci whereas 2 dogs from different breeds differ at 103 CNV loci. 

 

A more detailed picture of polymorphism in breeds with two samples is given in 

Table 6. We find that an average of 172.4 CNV loci (40%) are observed in one or 

both of the samples in any one breed and an average of 4.2 (2.4%) are only found in 

that breed (private CNVs). Similar numbers of CNVs are found in one sample 

(polymorphic) or both samples (fixed) of these breeds. An average of one private 



CNV is fixed (found in both samples) in the breeds, although with a small sample size, 

the majority of these are likely to be polymorphic. 

 

To assess the frequency distribution of CNVs among samples, we used their presence 

in all samples to build a site frequency spectrum. Figure 4A shows the minor allele 

frequency distribution across all samples in 2-sample breeds. There is a marked drop 

in frequency above 2 samples, which can be attributed to the higher within compared 

to between breed fixations, where 2 samples are present per breed, making it less 

likely that 3 or more samples share a CNV. A broadly similar frequency distribution 

is seen within breeds. Figure 4B shows the allele frequency distribution with ten 

genotyped individuals analysed on a breed basis (identity of the minor allele is 

defined from the 2-sample breeds of the entire dataset). 

 

The two breeds for which ten individuals were analysed were selected for their large 

(Golden Retriever) and small (Irish Wolfhound) population sizes, respectively. We 

first attempted to see how many CNVs were present in all ten dogs of a breed, 

suggesting fixation (Table 7). For Golden Retrievers 20 CNVs were present in all 

dogs and for Irish Wolfhounds 38 CNVs appeared fixed, possibly reflecting the 

slightly higher degree of inbreeding in Irish Wolfhounds. A much smaller number of 

breed-specific loci were identified, and no cases of breed specific fixed CNVs were 

identified in these deeply sampled breeds. The relative lack of breed specific fixed 

CNVs suggests that instances of those involved in breed-specific phenotypes must be 

rare. Overall the CNV frequency distributions appear qualitatively similar to those 

expected for neutral polymorphisms. 

 

We scanned our dataset for CNVs that were fixed for one allele in some two-sample 

breeds and another allele in all other two-sample breeds (i.e. are not polymorphic in 

any breed). There are 24 such CNVs, of which all but one is specific to a single breed. 

This CNV is a 12.7 kb deletion (located at 55.5 Mb on chromosome 6) shared by 

Cavalier King Charles Spaniel and English Springer Spaniel, which overlaps the gene 

DPYD that encodes the enzyme dihydropyrimidine dehydrogenase (DPD) involved in 

pyrimidine catabolism. Examples of breed-specific fixations include a 32.7 kb 

deletion on chromosome 28 in German Shepherds downstream of DUSP10, which is 

involved in immune responses and mediates various physiological processes, and a 



18.1 kb deletion on chromosome 21 in Finnish Spitz immediately downstream of 

CYP2R1 (cytochrome p450, family 2, subfamily R, polypeptide 1) and overlapping 

PDE3B (phosphodiesterase 3B, cGMP-inhibited). These regions are good candidates 

for governing breed-specific characteristics, although further investigation is 

necessary to determine if they are really fixed, or have any phenotypic effect. 

 

Breed relationships 

 

We explored the extent to which patterns of CNV variation can be used to infer 

population structure between breeds. Based on the proportion of shared CNVs 

between each pair of samples, a neighbour-joining phylogeny was constructed (Figure 

5). With a few exceptions, all samples clustered together with samples from the same 

breed. This indicates that the CNVs have a strong phylogenetic signal, grouping dogs 

into breeds as shown by large-scale SNP analyses [33, 42]. Ability to construct this 

tree demonstrates high accuracy of dataset and high congruency with SNP data. 

Notably, one of the wolf samples clusters on a branch leading to Sarloos (a wolf 

hybrid) and German Shepherd, as observed in a previous SNP analysis [33]. There is 

also some evidence for clustering by breed type as demonstrated by vonHoldt et al. 

[42]. One cluster contains spaniels (English Cocker Spaniel, English Springer Spaniel, 

Cavalier King Charles Spaniel), scent hounds (Dachshund) and toy dogs (Chihuahua), 

and another contains retrievers and terriers (Golden Retriever, Labrador Retriever, 

Border Terrier). However, there are exceptions present, and in general, this analysis is 

limited by smaller number of loci and less precise calling than the studies based on 

SNP arrays.  

 

Conclusions 

 

This study provides insights into the mutational mechanisms and functional effects of 

CNVs in the dog genome. Our results suggest that many CNVs are generated by 

NAHR events directed towards peaks of GC content, which is consistent with 

observations that these sequence features are also enriched in dog, but not human, 

recombination hotspots. Hence GC peaks may represent novel sites of elevated 

recombination and genome instability in dogs. This shift in recombinational activity 

towards GC peaks in dogs is likely to be due to the lack of a functional copy of the 



PRDM9 gene, which initiates recombination at separate specific sequence motifs in 

humans. In support of a strong role of NAHR in dog CNV formation, we also identify 

associations between CNV breakpoints and L1 elements and long stretches of 

sequence homology. We also show that dog CNVs are affected by the signal of 

purifying selection and identify candidate CNVs for involvement in breed-specific 

characteristics. This comprehensive catalogue of CNVs will be useful for future 

studies to uncover the genetic basis of complex traits in dogs. 

 

Materials and methods 

 

Sample collection 

 

EDTA-blood was collected as part of the LUPA project [43] from pedigree dogs 

around Europe and USA with owners’ consents. A total of 50 dogs from 17 breeds 

including 2 unrelated individuals from the following breeds: Border Terrier, Boxer, 

Cavalier King Charles Spaniel, Chihuahua, Dachshund, English Springer Spaniel, 

English Cocker Spaniel, Finnish Spitz, German Shepherd, Labrador Retriever, Nova 

Scotia Duck Tolling Retriever, Poodle, Sarloos Wolfhound, Schnauzer and Swedish 

Elkhound, and 10 unrelated individuals from Golden Retriever and Irish Wolfhound 

breeds. In addition 3 gray wolves from Belarus, Spain and Finland respectively, were 

included. A Finnish male Boxer was used as the reference sample. Genomic DNA 

was purified using commercial purification kits and the quality of the DNA was 

analysed by spectrophotometry and agarose gel electrophoresis prior to the 

hybridization experiment. 

 

Discovery and genotyping 

 

Array comparative genomic hybridization (aCGH) was used to detect DNA copy 

number alterations using NimbleGen’s canFam2 Whole Genome CGH oligo array 

platform with 2.1 million probes on a single slide and a median probe spacing of 1 kb. 

The array design is based on the annotated CanFam2.0 genome sequence of a female 

Boxer genome. The isothermal 50-75mer probes were evenly distributed throughout 

the unique sequence of the genome. The genomic DNA samples were sent to 

NimbleGen’s service facility where the hybridizations were performed in a two-



colour format according to Selzer et al. [44]. Copy number was quantified from the 

fluorescence ratios of the two dyes. NimbleGen conducted the initial data processing 

from normalization to signal calling and quantification. Ratios were log2 transformed, 

and positive log2 ratios indicate gains and negative log2 ratios indicate loss of copy 

number. Copy number for each called CNV was calculated as 2(1+mean log2ratio) and 

rounded to whole numbers. 

 

CNV calling was conducted in three stages: smoothing, segmentation and selection. 

Prior to segmentation and selection, triangular smoothing was done on the ratios, 

which implements an 11-point weighted smoothing function along the chromosomes. 

This is equivalent to several passes of fewer-point rectangular smoothings 

(unweighted sliding-average), and is more effective at reducing high-frequency noise 

in the signal. Segmentation was done with the R-package cghFLasso to segment a 

continuous distribution of intensity ratios into discrete regions of consecutively 

different ratios. From these putative CNV segments, those with significant deviation 

are selected as the final set of CNVs. The selection was performed in three stages; 

first ascertain CNV locations per sample using a stringent threshold (discovery 

threshold) second consolidate the calls from all individuals by mapping them onto one 

“master genome” to get merged general CNV locations, and third decide the state of 

the general CNVs in each breed using a less stringent threshold (genotyping 

threshold) to assign individuals to diploid copy number classes. Noisy data was 

handled by recalculating the ratios into values of standard deviation from a theoretical 

normal distribution of ratios. These were used to allow samples with little noise to 

utilize lower thresholds. The two thresholds were then individually chosen on 

chromosome basis from a fixed log2 ratio and a standard deviation value. 

 

The fixed genotyping ratio was set to correspond to a deviation of 0.5 copies from the 

reference, while the fixed discovery ratio was set to the slightly higher 0.65 copies 

deviation. The standard deviation genotyping value was chosen to include 5% of the 

data points, while the standard deviation discovery value was chosen to include 0.1% 

of the data points, from the theoretical normal distribution (any copy number variants 

should be clearly distinct from the distribution). These were chosen so that similar 

number of samples used the fixed values and the standard deviation values. The 

discovery threshold was picked as maximum of these two numbers, while the 



genotyping threshold was picked as the minimum of the two numbers. This means 

that in the first stage, no CNVs are identified if the deviation from the reference is 

below 0.65 copies, and in the final stage all CNVs with a deviation above 0.5 copies 

from the reference are identified as CNVs. 

 

Validation 

 

aCGH results were experimentally validated by quantitative PCR (qPCR) in randomly 

selected CNV loci. Relative copy numbers of the selected regions were determined in 

comparison to the reference sample (Finnish male Boxer). Regions were selected 

based on the aCGH profiles across breeds. qPCR experiments were performed on ABI 

Prism 7500 Fast instrument (Applied Biosystems) using SYBR Green detection 

chemistry according to the manufacturer’s instructions. Primers (available upon 

request) were designed inside CNVs using Primer3 and NCBI primer design 

programs. Each assay was performed in triplicate using 20 ȝl reactions containing 10 

ȝl of qPCR master mix (Roche), 10 nM concentration of dNTPs, 250 nM 

concentration of forward and reverse primer and 10 ng of genomic DNA. 

Amplification was performed under the following conditions: one cycle at 50 °C for 2 

min, one cycle at 95 °C for 10 min, 40 cycles at 95 °C at 15 seconds and 62 °C for 45 

seconds. Beta-actin and GAP175 were used as controls. Serial dilutions were 

performed for each assay to estimate the PCR efficiency (E) prior to analysis. The 

ddCT method was used for the quantification of copy numbers in test individuals 

relative to the same reference Boxer sample used in the aCGH experiments. The CT 

values for each set of triplicates were averaged and adjusted for PCR efficiency (E) as 

log2(ECT). The CT-values were then normalized against the control primers. The 

relative copy number for each site was calculated as 2-(t-r), where t = normalized CT 

for the test sample and r = normalized CT for the reference sample. 

 

Large CNVs, by virtue of their potential functional impact, were validated in an 

additional validation step. The same set of individuals was genotyped according to 

manufacturer’s instructions on the CanineHD 170K SNP array (Illumina) with a 

resolution of 1 SNP per 13 kb. The GenomeStudio V2010.3 software package 

(Illumina) was used to obtain normalized total signal intensity, Log R ratio, and B 

allele frequencies for all SNPs according to the manual and Peiffer et al. [45]. 



Exported Log R Ratio and B allele frequencies for every SNP were used in the 

subsequent CNV calling. The CNV calling was performed using QuantiSNP [46]. 

Default settings in QuantiSNP were used, i.e. L=2M, expectation-maximization 

iterations =10, and the parameter file levels-hd.dat. Samples having a standard 

deviation of the Log R Ratio above 0.35 were removed from the subsequent analysis 

(3 samples). Furthermore CNVs having less than 5 SNPs or a Log Bayes factor of less 

than 10 were removed. The Log Bayes factor is a score that represents the support for 

the existence of the CNV and a Log Bayes Factor of at least 10 will result in up to 

10% false positive calls. 

 

Statistical and population genetics analysis 

 

Prior to analysis, all chromosomes were centred on their mean log2 ratio to remove 

potential chip biases. The X-chromosome was treated differently in this manner, since 

the pseudo-autosomal regions (PARs) were centred separate to the rest of the 

chromosome, which differs in relative copy number to a male reference. To identify 

the PARs the raw log2 ratios from all female samples were used to determine the 

average position of the probe where copy number changed from diploidy. Since no 

CNVs were successively called in that particular region, the position seems to be 

accurate. 

 

The metric used to call CNVs from the aCGH data was the log2 ratio, which is the log 

(base 2) ratio of the observed normalized R-value for a signal intensity divided by the 

mean signal of a reference sample. Threshold of log2 ratio was defined as in the 

discovery and genotyping section to define a true copy number change that presents a 

pattern consistently different from a diploid region. CNV duplications were defined 

with (log2 ratio)>threshold and CNV deletions were defined as (log2 ratio)<-

threshold. Deletion and duplication variants are special cases of multi-allelic CNVs. 

To minimize the risk of false positives, we required each locus to be targeted by at 

least ten consecutive probes to call a CNV, resulting in a final resolution of ~9 kb. 

 

Segmental duplications, defined as regions at least one kilobase in length, at least 

90% identical at two or more loci, and not consisting entirely of mobile elements were 

identified by self-alignment of the genome as described in Zody et al. [35]. In the GC-



peak analysis we identified GC-peaks by sliding two windows along the genome; a 10 

kb window for background rate (same size as a CNV breakpoint) and centred in this a 

500 bp window for peak discovery. When the peak window showed a 1.5-fold 

increase in GC-content compared to background, a GC-peak was marked for all base 

pairs in the window. The program Neighbour from the Phylip package was used to 

construct the breed phylogeny from a distance matrix containing the pair wise 

differences between the breeds for all CNV loci. 

 

GO analysis was made with the web based tool g:GOSt Gene Group Functional 

Profiling provided by g:Profiler  (formerly known as GOSt, Gene Ontology Statistics), 

[47], with default parameters. This tool does not only search for enrichment in GO 

categories, it also looks for enrichment in KEGG/REACTOME pathways and 

TRANSFAC regulatory motifs / MicroCosm microRNA sites as well as Human 

Phenotype Ontology and BioGRID protein-protein interaction networks. The set of 

orthologous genes were extracted with the tool g:Orth from the same project, which 

maps orthologous genes in related organisms using Ensembl alignments. 

 

Statistical significance of overlap between genomic features was assessed by 

estimating the distribution of sample means. This was either done by random 

redistributions per chromosome or bootstrapping. Chromosome-wise redistributions 

were done by repeatedly and randomly redistributing all features on the same 

chromosome to get a distribution of means from which significance can be assessed. 

Bootstrapping was done by resampling the individual observations with replacement 

from the population of CNVs to get an empirical bootstrap distribution from which a 

bootstrap confidence interval could be derived to infer statistical significance. 

 

R was used to smooth the aCGH data and the R package cghFLasso was used to 

assess copy number alterations. For genome annotation the University of Santa Cruz 

(UCSC) Genome Browser [48] and Ensembl Genome Browser [49] were used. Gene 

and exon coordinates were downloaded from Ensembl website version 65. Disease 

statuses of genes were obtained from OMIM [50]. 

 

Access to data 

 



A Database of Genomic Copy Number Variants, DoG_CNV, in the dog genome has been 
developed to provide the annotation of CNVs discovered in this study and a useful resource to 
assist with the assessment of CNVs in the contexts of canine variation and disease susceptibility 
[51]. In addition, the raw array data has been submitted to Gene Expression Omnibus at NCBI 
[52] with accession number GSE40210. 
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Figure legends 
 

Figure 1. The genomic architecture of CNVs. Black lines represents all 38 canine 

autosomes and the X chromosome. Deletions are plotted as red rectangles below each 

chromosome and duplications are plotted as blue rectangles above each chromosome. 

Figure 2. Comparison of LUPA dataset with a summary of CNVs presented by 

Nicholas et al. [31] and a list of segmental duplications in dog [53]. The Venn 

diagram shows the number of overlapping CNVs from the datasets. Since the datasets 

contain different entries, numbers are coloured according to which dataset the counted 

entries belong. For example 196 of Nicholas’ CNVs overlap with 213 of our (LUPA) 

CNVs, and 120 and 132 respectively of these also overlap with segmental 

duplications. 

 

Figure 3. Enrichment of GC-peaks around CNV breakpoints. The strongest excess of 

GC peaks compared to random expectations is observed close to CNV breakpoints 
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http://www.omim.org/
http://dogs.genouest.org/LUPA.dir/CNV.chloe.html
http://www.ncbi.nlm.nih.gov/geo/


and decays with increasing distance from the breakpoint. The midpoint of the 

breakpoint is at position 0, the shaded area to the left of this represents points within 

the CNV and the area to the right represents flanking sequence. 

Figure 4. a) Minor allele frequency distribution of CNVs compared across all 15 

breeds with a sample size of two. b) Minor allele frequency distribution of CNVs 

within the two breeds with a sample size of ten. 

Figure 5. Neighbour-joining tree based on allele sharing at CNV loci. 



Table 1. Numbers of CNVs identified 

 

 Deletions Duplications Both All 

Total CNV loci (complex) 226 (19) 104 (16) 100 (42) 430 (77) 

Mean CNV loci per breed* 100.5 68.5 3.4 172.4 

Mean CNV loci per sample* 77 53.8 0 130.9 

Median size [kb] 19 29.5 27.8 24.3 

Deletions are defined as CNV  oci that only exhibit reduction in copy number relative 

to the reference assembly. Duplications are loci that only exhibit increased copy 

number. "Both" refers to loci that exhibit both deletions and duplications. * Based on 

15 breeds with 2 samples 

 

 

Table 2. Number of CNV loci covering genomic regions. 

 

 Total Intergenic 

Intragenic 

Total 
Whole 

Gene 

Partial Gene 

Total Stop 

codon 

Total 430 340 90 31 67 29 

Deletion 226 198 28 8 21 4 

Duplication 104 62 42 13 33 19 

Both 100 80 20 10 12 6 

Deletion:duplication 

ratio 

2.17 3.08 0.67 0.62 0.64 0.21 

All groups are non-overlapping. Subcategories are not additive as a CNV can span 

several genes and harbour both deletions and duplications in different samples. 

 

 



Table 3. Enriched GO categories in genic CNVs. 

 

p-value (significant in bold) GO ID Domain No. genes Name 

All CNVs deletions duplications   All deletions duplications  

9.48e-02 - 3.12e-03 GO:0032787 BP 5 0 5 1. Monocarboxylic acid metabolic process 

5.00e-06 6.32e-04 1 GO:0022610 BP 14 7 1 1. Biological adhesion 

5.00e-06 6.32e-04 1 GO:0007155 BP 14 7 1  2. Cell adhesion 

2.67e-11 1.36e-06 1 GO:0016337 BP 14 7 1   3. Cell-cell adhesion 

7.31e-13 2.37e-07 1 GO:0007156 BP 14 7 1    4. Homophilic cell adhesion 

3.56e-03 6.29e-02 1 GO:0071944 CC 18 8 2 1. Cell periphery 

2.68e-04 1.76e-01 1 GO:0016020 CC 47 16 20 1. Membrane 

2.15e-03 4.88e-02 1 GO:0005886 CC 18 8 2  2. Plasma membrane 

3.37e-04 6.08e-01 3.64e-01 GO:0044425 CC 40 13 19 1. Membrane part 

8.74e-05 2.49e-01 3.45e-01 GO:0031224 CC 39 13 18  2. Intrinsic to membrane 

6.07e-05 2.17e-01 2.92e-01 GO:0016021 CC 39 13 18   3. Integral to membrane 

5.97e-02 1 3.82e-02 GO:0004872 MF 16 4 12 1. Receptor activity 

- 1 2.66e-02 GO:0038023 MF 18 3 11  2. Signaling receptor activity 

1.96e-02 1 1.27e-02 GO:0004888 MF 16 3 11   3. Transmembrane signaling receptor activity 

1.49e-03 1 5.21e-04 GO:0004930 MF 15 3 11    4. G-protein coupled receptor activity 

6.22e-06 1 9.88e-06 GO:0004984 MF 12 2 9    4. Olfactory receptor activity 



3.18e-04 7.11e-05 1 GO:0005509 MF 17 10 1 1. Calcium ion binding 

5.20e-01 - 9.98e-03 GO:0005506 MF 6 0 6 1. Iron ion binding 

5.04e-03 1 6.44e-03 KEGG:04740 ke 7 1 5 1. Olfactory transduction 

BP – Biological Process, CC – Cellular Component, MF – Molecular Function, ke – KEGG Pathway. P-values are determined using a 

hierarchical multiple testing procedure. Numbers accompanied by indentation before the name of GO terms indicate relative depth of the term in 

the hierarchy. 

 

Table 4. Excess of L1 repeats in CNV breakpoints. 
 

Name Excess1 Divergence2 Length 

(bp) 

No. repeats 

in genome 

No. repeats in 

breakpoints 

No. breakpoints 

with repeats 

L1_Cf 3.92 0.035 1192 16127 178 137 

L1_Canis 2.54 0.088 799 72587 678 309 

L1_Canid 1.87 0.144 534 42070 254 135 

L1_Carn 1.25 0.168 525 132806 652 275 

Eutheria 0.91 0.246 359 589155 2046 590 

1- the proportion of repeat coverage in breakpoints vs. whole genome. 2- average divergence of the repeat from its reference in RepBase. 

  



Table 5. CNVs identified in each breed and sample compared to the reference genome. 

Breed Samples Total CNV loci per breed Average CNV loci per sample 

Total MB BS Total MB BS 

Border Terrier (BTe) 2 156 154 2 128.5 126.5 2 

Boxer (Box) 2 103 102 1 64.5 64 0.5 

Cavalier King Charles Spaniel (CCS) 2 189 182 7 148.5 143.5 5 

Chihuahua (Chi) 2 181 178 3 142 140.5 1.5 

Dachshund (Dac) 2 180 172 8 131 127 4 

English Cocker Spaniel (ECS) 2 166 165 1 129 128.5 0.5 

English Springer Spaniel (ESS) 2 214 207 7 160 156 4 

Finnish Spitz (FSp) 2 186 176 10 148.5 140.5 8 

German Shepherd (GSh) 2 163 160 3 126 123.5 2.5 

Labrador Retriever (LRe) 2 170 168 2 129 128 1 

Nova Scotia Duck Tolling Retriever (NSD) 2 193 190 3 147.5 145.5 2 

Poodle (Pdl) 2 182 180 2 130 129 1 

Sarloos (Sar) 2 175 168 7 135 130 5 

Schnauzer (Sch) 2 169 163 6 127 123.5 3.5 

Swedish Elkhound (Elk) 2 159 158 1 116.5 115.5 1 

Average (2-sample breeds) 2 172.4 168.2 4.2 130.9 128.1 2.8 

Golden Retriever (GRe) 10 264 255 9 121.6 118.8 2.8 



Irish Wolfhound (IrW) 10 229 215 14 136.2 127.7 8.5 

Average (10-sample breeds) 10 246.5 235 11.5 128.9 123.3 5.7 

Wolf (Wlf) 3 163 160 3 96.3 95.3 1 

MB = multi-breed (CNVs found in more than one breed); BS = breed-specific (CNVs found in only one breed). 
 
 
 
 
Table 6. Polymorphic CNVs in breeds with two samples. 
 

Breed Samples Loci matching reference Shared loci between breeds Private loci single breeds 

Total Polymorphic Fixed Total Polymorphic Fixed 

Border Terrier 2 274 154 55 99 2 0 2 

Boxer 2 327 102 76 26 1 1 0 

Cavalier King Charles Spaniel 2 241 182 77 105 7 4 3 

Chihuahua 2 249 178 75 103 3 3 0 

Dachshund 2 250 172 90 82 8 8 0 

English Cocker Spaniel 2 264 165 73 92 1 1 0 

English Springer Spaniel 2 216 207 102 105 7 6 1 

Finnish Spitz 2 244 176 71 105 10 4 6 

German Shepherd 2 267 160 73 87 3 1 2 

Labrador Retriever 2 260 168 80 88 2 2 0 



Nova Scotia Duck Tolling Retriever 2 237 190 89 101 3 2 1 

Poodle 2 248 180 102 78 2 2 0 

Sarloos 2 255 168 76 92 7 4 3 

Schnauzer 2 261 163 79 84 6 5 1 

Swedish Elkhound 2 271 158 85 73 1 0 1 

Average 2 257.6 168.2 80.2 88 4.2 2.9 1.3 

Wolf 3 267 160 121 39 3 3 0 

Total – number of CNVs observed in the breed, Polymorphic – average number of polymorphic CNV sites between samples of the breed, 

Fixed – number of CNVs found in both samples of the breed. 

 

 

Table 7. Fixed CNVs in breeds with ten samples. 

 

Breed Loci matching 

reference 

Shared loci between breeds Private loci in single breed 

Total 

 

Polymorphic Fixed Total Polymorphic Fixed 

Golden Retriever 166 255 235 20 9 9 0 

Irish Wolfhound 203 215 177 38 14 14 0 

Average 184.5 235 206 29 11.5 11.5 0 
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