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ABSTRACT:

Patients with normal karyotype represent the single largest cytogenetic group of 

acute myeloid leukemia (AML), with highly heterogeneous clinical and molecular 

characteristics. In this study, we sought to determine new prognostic biomarkers 

in cytogenetically normal (CN)-AML patients. A gene expression (GE)-based risk 

score was built, summing up the prognostic value of 22 genes whose expression 

is associated with a bad prognosis in a training cohort of 163 patients. GE-

based risk score allowed identifying a high-risk group of patients (53.4%) in 

two independent cohorts of CN-AML patients. GE-based risk score and EVI1 gene 

expression remained independent prognostic factors using multivariate Cox 

analyses. Combining GE-based risk score with EVI1 gene expression allowed the 

identiication of three clinically different groups of patients in two independent 
cohorts of CN-AML patients. Thus, GE-based risk score is powerful to predict clinical 

outcome for CN-AML patients and may provide potential therapeutic advances.

INTRODUCTION

Acute myeloid leukemia (AML) is a cytogenetically 

and molecularly heterogeneous disease characterized by 

accumulation of a variety of somatically acquired genetic 

aberrations in myeloid precursors, resulting in their 

clonal proliferation and maturation arrest. These genetic 

alterations are found in bone marrow or blood cells of 

approximately 55% of previously-untreated adults with 

AML and have long been recognized as independent 

predictors for clinical outcome, allowing the classiication 
of patients into favorable, intermediate, and unfavorable 

prognostic groups [1]. However, no genetic aberrations 

have been identiied in 45% of adult AML patients yet. 
These cytogenetically normal (CN) patients are usually 

assigned to intermediate prognostic group [2]. Over the 

past decades, several gene mutations such as internal 

tandem duplication (ITD) of the FLT3 gene, mutations 

in the NPM1 gene, partial tandem duplication of the 

MLL gene, mutations in the CEBPA gene, and changes 

in gene expression, such as overexpression of BAALC, 

ERG, EVI1, MN1 and CDKN1B, have been discovered 

to strongly affect clinical outcome of CN-AML patients 

[3,4]. Twenty-four % of CN-AML patients show none of 
the aforementioned mutations, underlining the biological 

and clinical heterogeneity of this disease [5].

The development of high-throughput gene 

expression proiling (GEP) is of interest to improve 
risk classiication of patients with CN-AML. Bullinger 
et al. [6], by combining supervised and unsupervised 

data analysis from 40K cDNA microarrays, reported 
a 133-gene signature that split CN-AML patients into 

2 groups with different survival. Radmacher et al. [7] 

conirmed the prognostic signiicance of this signature 
on an independent CN-AML cohort, using Affymetrix 

U133plus2.0 microarrays. Metzeler et al. [8] identiied 
66 genes, whose expression was prognostic for overall 

survival (OS), and deined a prognostic score based on this 
signature. Altogether, these studies emphasized the power 

of GEP data to predict outcome of CN-AML patients.
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Based on our previous experience in building 
powerful risk scores in patients with malignant plasma cell 

disorders [9], we looked for whether this strategy could be 

applied to design gene expression (GE) based-risk score in 
CN-AML patients using publicly-available data. We report 

here the design of a GE-based risk score, involving 22 
genes, whose value is strongly prognostic in 2 independent 

cohorts of CN-AML patients. 

RESULTS

GE-based risk score in CN-AML

 Using Maxstat R function and Benjamini-Hochberg 
multiple testing correction [10], 27 probe sets were 
found to be signiicantly associated with poor prognosis 
(adjusted P value <.05) (Table 1). These probe sets probed 

for 22 unique genes and 2 expressed sequence tag clones 

and were used to build the GE-based risk score.  Figure 1 
shows the variation of GE-based risk score along patients 
of the training cohort and the expression of the prognostic 

probe sets. With respect to AML FAB classiication 
system, the GE-based risk score was signiicantly higher 
(P < 3.10-3) and lower (P < 1,8.10-2) in M1 and M5 

subgroups, respectively (Figure 2).
When used as a continuous variable, GE-based risk 

score had prognostic value (P ≤ 10-4; data not shown). 

Patients of the training cohort (N=163) were ranked 
according to increased prognostic score, and for a given 

score value, the difference in survival of patients with a 

GE-based risk score ≤ score or > score was computed. A 
maximum difference in overall survival (OS) was obtained 

with a score = -16.92 splitting patients in a high-risk group 
of 53.4% of patients (prognostic score > -16.92) with a 
6.2 months median OS and a low risk group of 46.6% 
of patients (prognostic score ≤ -16.92) with not reached 

Table 1: List of the 27 probe sets associated with poor prognosis in CN-AML 

patients. Gene symbol, adjusted P-value and hazard ratios (HR) are given for 

each gene. Probe sets are sorted by decreasing HR.
Name Gene Symbol Adjusted P value Hazard Ratio

217975_at WBP5 0,0023 3,67

203860_at PCCA 0,0057 3,67

227964_at FRMD8 0,0407 3,46
237311_at --- 0,0009 3,37

203373_at SOCS2 0,0011 3,33

201540_at FHL1 0,0091 3,27

218086_at NPDC1 0,0032 3,25

219922_s_at LTBP3 0,0125 3,25

217820_s_at ENAH 0,0101 3,22

215034_s_at TM4SF1 0,0029 3,14
203372_s_at SOCS2 0,0026 3,12

221973_at
LOC100506076 /// 

LOC100506123 0,0281 3,07

222803_at PRTFDC1 0,0133 3,06
213056_at FRMD4B 0,0065 3,00
212364_at MYO1B 0,0426 2,96

204030_s_at IQCJ-SCHIP1 0,0298 2,93

232752_at LOC100287616 0,0130 2,91

209386_at TM4SF1 0,0286 2,90
212387_at TCF4 0,0106 2,88

243010_at MSI2 0,0123 2,87

206950_at SCN9A 0,0377 2,87

208798_x_at GOLGA8A 0,0495 2,78

215071_s_at HIST1H2AC 0,0248 2,73

227943_at --- 0,0355 2,73

206478_at KIAA0125 0,0503 2,66

209387_s_at TM4SF1 0,0425 2,66

212509_s_at MXRA7 0,0444 2,65
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median survival (Figure 3A). The prognostic value of our 
GE-based risk score was validated in an independent CN-
AML patient’s cohort (N=79) with a 9.9 months median 
OS in the high risk group and not reached median survival 

in the low risk group (Figure 3B).
Cox analysis was used to determine whether 

GE-based risk score provides additional prognostic 
information compared to previously-identiied poor 
outcome-related markers such as BAALC, ERG, MN1 

or EVI1 gene expression (supplementary Figure S1), 
and for gene signatures established by Bullinger’s and 
Metzeler’s groups [6,8]. Using univariate analyses, 

GE-based risk score, Bullinger’s and Metzler’s gene 
expression signatures, BAALC, ERG, MN1 and EVI1 gene 

expression were prognostic (P < .005; Table 2A). When 
compared two by two, GE-based risk score tested with 
EVI1 expression remained signiicant (P < .0001; Table 
2B). When all parameters were tested together, only GE-
based risk score and EVI1 gene expression kept prognostic 

value (Table 2C).

Association of GE-based risk score and EVI1 

expression as prognostic factor in CN-AML 

patients

Since EVI1 and GE-based risk score had independent 
prognostic information, they were combined to split 

patients into 3 groups with different OS.  The irst group 
comprised 40% of patients with low risk score, the second 
group 25% of patients with high risk score and EVI1low 

expression and the third group 35% of patients with high 

risk score and EVI1high expression. Patients of group 3 had 
the worst survival with 3.6 month median OS, patients of 

group 2 with high risk score and EVI1low expression had a 

median OS of 8.4 months and patients of group 1 had not 
reached median OS (Figure 4A). In the validation cohort 
of 79 CN-AML patients, median OS was not reached for 

group 1, was 13 months for group 2 and 8 months for 

group 3 (Figure 4B). 
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Figure 1: GE-based risk score in CN-AML. Clustergram (upper part) of genes ordered from best to worst prognosis and samples 

ordered by increasing GE-based risk score (lower part) for CN-AML patients (N=163). The level of the probe set signal is displayed from 
low, deep blue to high, deep red gene expression.
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DISCUSSION

Given the genetic heterogeneity of hematological 
malignancies, GEP studies have enabled the detection of 
new biologically and prognostically relevant subtypes of 

patients [9,11,12]. In the present study, we designed a GE-
based risk score incorporating the prognostic information 

of 22 genes associated with poor OS in CN-AML patients. 

This risk score allowed splitting CN-AML patients of 2 

independent cohorts into 2 groups: a high risk group with 

6.2 or 9.9 months median OS and a low risk group with 

not reached median OS (Figure 3) [6,8].  
Comparing the current list of 22 distinct genes with 

previously-published prognostic gene signatures, 2 and 17 

of our identiied target genes overlapped with the 133 and 
86 survival predictors described by Bullinger et al. and 

Metzeler et al., respectively [6,8] (supplemental Tables S1 

A&B). 
Besides the powerful prognostic value of this GE-

based risk score, our current study highlights some 

pathways that could be involved in poor prognostic 

CN-AML. Among the 22 genes, the transcription factor 

TCF4 (T-cell factor 4) was shown to be a part of a gene 

set overexpressed in leukemic cells of acute T-cell 

leukemia/lymphoma patients [13] and to be associated 
with chemotherapy cross-resistance and treatment 

outcome in childhood acute lymphoblastic leukemia [14]. 
TCF4 protein is also known to interact with beta-catenin 
whose up-regulation has been observed in AML samples 

in association with poor prognosis [15]. Interaction of 

beta-catenin with TCF4 is critical in the activation of the 
cell cycle genes in response to upstream signals of Wnt/
beta-catenin pathway. Interestingly, Tian et al. identiied a 
new small molecule inhibitor named BC21 which inhibits 
TCF4/beta-catenin binding in colon cancer cells. BC21 
blocks the clonogenic activity of colon cancer cells, 

down-regulates c-Myc and cyclin-D1 expression, and 

represents a new potential anticancer agent that targets 

TCF4/beta-catenin interaction [16]. This inhibitor could 
be of clinical interest in the high-risk group of CN-

AML patients identiied with our GE-based risk score. 
Overexpression of others genes included in our signature, 

MSI2 (Musashi 2) and SOCS2 (Suppressor of cytokines 

signaling 2), predicted unfavorable outcome in AML 

and chronic myeloid leukemia (CML) [17,18]. The two 

genes were also shown to be up-regulated in leukemia in 

the report from the Microarray Innovation in Leukemia 

Figure 2: GE-based risk score in FAB CN-AML classiication. The GE-based risk score was investigated in the groups of the 
FAB classiication AML in the CN-AML cohort of 163 patients (M0: Minimally differentiated acute myeloblastic leukemia; M1: Acute 
myeloblastic leukemia without maturation; M2: Acute myeloblastic leukemia with maturation; M4: Acute myelomonocytic leukemia; M5: 
Acute monocytic and monoblastic leukemia; M6: Acute erythroid leukemia). * Indicate that the score value is signiicantly higher in the 
group compared to all the patients of the cohort (P < .05). ** Indicate that the score value is signiicantly lower in the group compared to 
all the patients of the cohort (P < .05).

FAB AML 

classification
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(MILE) study group [19]. MSI2 plays an important role 

in hematopoietic stem cells (HSC) proliferation and 

differentiation [20]. Enforced expression of MSI2 in mice 

created a pre-leukemic phase [21] and its overexpression 

was found during transition from chronic to acute phase 

in a CML murine model. These indings were validated in 
CML patients [22]. Moreover, it has been demonstrated 

that MSI2 activates Notch signaling pathway, inhibiting 

translation of Numb mRNA, a negative regulator of 

Notch [20]. As well, among our prognostic predictors, 
we identiied TM4SF1 (Transmembrane 4 L six family 
member 1) and SCN9 (Sodium channel, voltage-gated, 

type IX, alpha subunit). These markers were described 

as novel key regulators of tumor growth, invasion 

and metastasis in prostate cancer and were found to 

be markedly up-regulated in patients’ prostatic cells 

[23,24]. TM4SF1 is a tetraspanin-like membrane protein 
reported as a negative regulator of apoptosis in pleural 

mesothelioma tumor cells [25] and as a key regulator of 

endothelial cells function and angiogenesis that could 

represent an attractive therapeutic target [26].

Interestingly, when compared using multivariate 

analysis, only the current GE-based risk score and EVI1 

expression kept prognostic value. EVI1 gene encodes 

a transcription factor with important role in normal 

hematopoiesis and leukemogenesis [27]. EVI1 up-

regulates cell proliferation through the activation of 

AP1 and by repression of transforming growth factor 

Figure 3: Prognostic value of GE-based risk score in CN-AML. Patients of the training cohort (N=163) were ranked according to 
increased GE-based risk score and a maximum difference in OS was obtained with a score = -16.92 splitting patients in a high risk (53.4%) 
and low risk (46.6%) groups. The prognostic value of GE-based risk score was tested on an independent cohort of 79 patients (validation 
cohort). The parameters to compute the GE-based risk score of patients in the validation cohort and the proportions delineating the 2 
prognostic groups were those deined with the training cohort.
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beta (TGF-beta) [28]. Moreover, high EVI1 blocks 

differentiation through its interaction with transcription 

factors essential in hematopoiesis such GATA1 [29], 
SPI1 [30] and RUNX1[31]. The prognostic impact of 
EVI1 expression has been a subject of debate since many 
years. Langabeer et al. [32] have demonstrated that EVI1 

deregulation is a relatively frequent event in AML, with no 

predictive impact on patients’ outcome. On the contrary, 

Lugthart et al. [33] showed that high EVI1 levels predict 

adverse outcome among intermediate cytogenetic risk 

AML. In our study, this association allowed prognostic 

stratiication of the high-risk group of patients who were 
either EVI1low or EVI1high. Furthermore, the prognostic 
impact of our GE-based score should be tested in the 
context of molecular mutations such as FLT3 ITD and 

NPM1 mutations [3].

Given the heterogeneity of CN-AML patients, 
the current GE-based risk score associated with EVI1 

expression would be of clinical value to identify patients 

who may beneit from intensive therapeutic strategies and 
to develop new targeted treatments in high risk patients.

MATERIALS AND METHODS

Patients

Gene expression microarray data from two 
independent cohorts of patients with CN-AML were 

used, the irst cohort comprising 163 adult patients and 
the second one 79 adult patients. Pretreatment clinical 
characteristics of patients are shown elsewhere [8]. All 

patients received intensive chemotherapy. Affymetrix gene 

expression data are publicly available via the online Gene 
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/)
under accession number GSE12417. They were performed 
using Affymetrix HG-U133 A&B microarrays for irst 
cohort of 163 patients and using Affymetrix HG-U133 
plus 2.0 microarrays for the second cohort of 79 patients. 
Normalization of microarray data was performed using the 

variance stabilizing normalization algorithm, and probe set 

signals calculated by the median polish method. Quality 

control consisted of visual inspection of the array image 

for artifacts, assessment of RNA degradation plots, and 

inspection of rank-vs-residual plots after normalization 

and probe set summarization.

Gene expression proiling and statistical analyses

Gene expression data were analyzed with SAM 
(Signiicance Analysis of Microarrays) [34],  R [35] and 
Bioconductor [36] softwares. Hierarchical clustering was 
performed with the Cluster and Treeview softwares from 

Eisen [37]. 

Table 2: Cox univariate and multivariate 

analysis of OS in CN-AML patients’ training 

cohort (N = 163). The prognostic factors 

were tested as single variable (A) or multi 

variables (B, C) using Cox-model. P-values 

and the hazard ratios (HR) are shown. NS, Not 

signiicant at a 5% threshold.
A. Overall survival (n=163)

Prognostic variable HR P value

GE-based risk score 6.79 <.0001
BAALC expression 1.99 .001
ERG expression 2.01 <.0001
MN1 expression 2.49 <.0001
EVI1 expression 2.06 .001
Metzeler's GEP score 3.41 <.0001
Bullinger's GEP signature 1.59 .01

B. Overall survival 

(n=163)

Prognostic variables 

compared two by two
HR P value

GE-based risk score 6.51 <.0001
BAALC expression 1.12 NS

GE-based risk score 6.84 <.0001
ERG expression .98 NS

GE-based risk score 6.05 <.0001
MN1 expression 1.57 NS

GE-based risk score 7.57 <.0001
EVI1 expression 2.37 <.0001
GE-based risk score 8.71 <.0001
Metzeler's GEP score .73 NS

GE-based risk score 7.74 <.0001
Bullinger's GEP signature .75 NS

C. Overall survival (n=163)

All prognostic variables HR P value

GE-based risk score 8.5 <.0001
BAALC expression 1.1 NS

ERG expression 1.0 NS

MN1 expression 1.42 NS

EVI1 expression 2.25 <.0001
Metzeler's GEP score .52 NS

Bullinger's GEP signature .59 NS
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Selection of prognostic genes on the training set 

(cohort of 163 patients)

Probe sets were selected for prognostic signiicance 
using Maxstat R function and Benjamini Hochberg 
multiple testing correction [10] yielding 27 signiicant 
probe sets (Adjusted P value < .05; Table 1). 

Building gene expression (GE)-based risk score

To gather prognostic information of the 27 

prognostic probe sets within one parameter, GE-based 
risk score of CN-AML was built as the sum of the beta 

coeficients weighted by ± 1 according to the patient signal 
above or below the probe set Maxstat value [10].

Figure 4: Association of GE-based risk score and EVI1 expression in CN-AML patients. (A) Distribution of the patients and 

Kaplan-Meier estimates of overall survival in the training cohort of 163 patients of low risk score and EVI1low expression patients (blue), 

low risk score and EVI1high expression patients (black), high risk score and EVI1low expression patients (green) and high risk score and 

EVI1high expression patients (red). (B) Kaplan-Meier estimates of overall survival in the training cohort and validation cohort (C) of low 
risk score patients (blue), high risk score and EVI1low expression patients (green) and high risk score and EVI1high expression patients (red).
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Validation on the independent cohort of patients

The GE-based risk score of CN-AML
 

was 

individually calculated and patients grouped according 

to the prognostic models and cut-offs from the training 

cohort. The prognostic value of this scoring was evaluated 

using log-rank statistics and Cox models.

Statistical analyses

BAALC, ERG, MN1 and EVI1 gene expression was 

assessed using 222780_s_at, 211626_s_at, 205330_at 
and 221884_at Affymetrix probe sets, respectively. Their 
prognostic value was assessed using Maxstat R function 

(Supplementary Figure S1). Computations were done with 
R.2.10.1 (http://www.r-project.org/) and bioconductor 
version 2.5. Cox analyses were performed with the SPSS 
version 12.0 software (SPSS, Chicago, IL, USA).

ACKNOWLEDGEMENTS

This work was supported by grants from ARC 

(SL220110603450, Paris France) and the European 
Community (FP7- OVERMYR). We thank the Microarray 

Core Facility of IRB (http://irb.montp.inserm.fr/en/index.
php?page=Plateau&IdEquipe=6).

REFERENCE

1. Mrózek K, Heerema NA, Bloomield CD. Cytogenetics in 
acute leukemia. Blood Reviews. 2004; 18:115-136

2. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison 
C, Harrison G, Rees J, Hann I, Stevens R, Burnett A, 
Goldstone A. The Importance of Diagnostic Cytogenetics 
on Outcome in AML: Analysis of 1,612 Patients Entered 
Into the MRC AML 10 Trial. Blood. 1998; 92:2322-2333

3. Mrózek K, Marcucci G, Paschka P, Whitman SP, 
Bloomield CD. Clinical Relevance of Mutations and Gene-
Expression Changes in Adult Acute Myeloid Leukemia with 
Normal Cytogenetics: Are We Ready for a Prognostically 
Prioritized Molecular Classiication? Blood. 2007; 109:431-
448

4. Haferlach C, Kern W, Schindela S, Kohlmann A, 
Alpermann T, Schnittger S, Haferlach T. Gene expression 
of BAALC, CDKN1B, ERG, and MN1 adds independent 
prognostic information to cytogenetics and molecular 

mutations in adult acute myeloid leukemia. Genes 
Chromosomes Cancer. 2012; 51:257-265

5. Döhner K, Schlenk RF, Habdank M, Scholl C, Rücker FG, 
Corbacioglu A, Bullinger L, Fröhling S, Döhner H. Mutant 
Nucleophosmin (NPM1) Predicts Favorable Prognosis in 
Younger Adults with Acute Myeloid Leukemia and Normal 

Cytogenetics: Interaction with Other Gene Mutations. 
Blood. 2005; 106:3740-3746

6. Bullinger L, Dohner K, Bair E, Frohling S, Schlenk 
RF, Tibshirani R, Dohner H, Pollack JR. Use of Gene-
Expression Proiling to Identify Prognostic Subclasses in 
Adult Acute Myeloid Leukemia. The New England Journal 
of Medecine. 2004; 350:1605-1616

7. Radmacher MD, Marcucci G, Ruppert AS, Mrózek K, 
Whitman SP, Vardiman JW, Paschka P, Vukosavljevic 
T, Baldus CD, Kolitz JE, Caligiuri MA, Larson RA, 
Bloomield CD. Independent Conirmation of a Prognostic 
Gene-Expression Signature in Adult Acute Myeloid 
Leukemia with a Normal Karyotype: A Cancer and 
Leukemia Group B Study. Blood. 2006; 108:1677-1683

8. Metzeler KH et al. An 86-probe-set gene-expression 
signature predicts survival in cytogenetically normal acute 

myeloid leukemia. Blood. 2008; 112:4193-4201
9. Moreaux J, Klein B, Bataille R, Descamps G, Maïga S, 

Hose D, Goldschmidt H, Jauch A, Rème T, Jourdan M, 
Amiot M, Pellat-Deceunynck C. A high-risk signature 
for patients with multiple myeloma established from the 

molecular classiication of human myeloma cell lines. 
Haematologica. 2011; 96:574-582

10. Kassambara A, Hose D, Moreaux J, Walker BA, 
Protopopov A, Reme T, Pellestor F, Pantesco V, Jauch A, 
Morgan G, Goldschmidt H, Klein B. Genes with a spike 
expression are clustered in chromosome (sub)bands and 

spike (sub)bands have a powerful prognostic value in 

patients with multiple myeloma. Haematologica. 2011; 
DOI: 10.3324/haematol.2011.046821

11. Wouters BJ, Löwenberg B, Delwel R. A decade of genome-
wide gene expression proiling in acute myeloid leukemia: 
lashback and prospects. Blood. 2009; 113:291 -298

12. Bou Samra E, Moreaux J, Vacheret F, Mills K, Ruflé 
F, Chiesa J, Piquemal D, Boureux A, Lavabre-Bertrand 
T, Jourdan E, Commes T. New prognostic markers, 
determined using gene expression analyses, reveal two 

distinct subtypes of chronic myelomonocytic leukaemia 

patients. British Journal of Haematology. 2012; 157:347–
356

13. Pise-Masison CA, Radonovich M, Dohoney K, Morris JC, 
O’Mahony D, Lee M-J, Trepel J, Waldmann TA, Janik 

JE, Brady JN. Gene Expression Proiling of ATL Patients: 
Compilation of Disease-Related Genes and Evidence for 
TCF4 Involvement in BIRC5 Gene Expression and Cell 
Viability. Blood. 2009; 113:4016-4026

14. Lugthart S, Cheok MH, den Boer ML, Yang W, Holleman 
A, Cheng C, Pui C-H, Relling MV, Janka-Schaub GE, 
Pieters R, Evans WE. Identiication of genes associated 
with chemotherapy crossresistance and treatment response 

in childhood acute lymphoblastic leukemia. Cancer Cell. 

2005; 7:375-386
15. Gandillet A, Park S, Lassailly F, Griessinger E, Vargaftig 

J, Filby A, Lister TA, Bonnet D. Heterogeneous sensitivity 
of human acute myeloid leukemia to |[beta]|-catenin down-

modulation. Leukemia. 2011; 25:770-780
16. Tian W, Han X, Yan M, Xu Y, Duggineni S, Lin N, 



Oncotarget 2012; 3:  821-829829www.impactjournals.com/oncotarget

Luo G, Li YM, Han X, Huang Z, An J. Structure-Based 
Discovery of a Novel Inhibitor Targeting the β-Catenin/
Tcf4 Interaction. Biochemistry. 2011; 51:724-731

17. Byers RJ, Currie T, Tholouli E, Rodig SJ, Kutok JL. MSI2 
Protein Expression Predicts Unfavorable Outcome in Acute 
Myeloid Leukemia. Blood. 2011; 118:2857-2867

18. Zheng C, Li L, Haak M, Brors B, Frank O, Giehl M, 
Fabarius A, Schatz M, Weisser A, Lorentz C, Gretz N, 
Hehlmann R, Hochhaus A, Seifarth W. Gene expression 
proiling of CD34|[plus]| cells identiies a molecular 
signature of chronic myeloid leukemia blast crisis. 

Leukemia. 2006; 20:1028-1034
19. Haferlach T et al. Clinical Utility of Microarray-Based Gene 

Expression Proiling in the Diagnosis and Subclassiication 
of Leukemia: Report From the International Microarray 
Innovations in Leukemia Study Group. Journal of Clinical 
Oncology. 2010; 28:2529 -2537

20. de Andres-Aguayo L, Varas F, Graf T. Musashi 2 in 
hematopoiesis. [Miscellaneous Article]. Current Opinion 

in Hematology July 2012. 2012; 19:268-272
21. Kharas MG et al. Musashi-2 regulates normal hematopoiesis 

and promotes aggressive myeloid leukemia. Nature 

Medicine. 2010; 16:903-908
22. Ito T et al. Regulation of myeloid leukaemia by the cell-fate 

determinant Musashi. Nature. 2010; 466:765-768
23. Allioli N, Vincent S, Vlaeminck-Guillem V, Decaussin-

Petrucci M, Ragage F, Rufion A, Samarut J. TM4SF1, a 
novel primary androgen receptor target gene over-expressed 

in human prostate cancer and involved in cell migration. 

The Prostate. 2011; 71:1239–1250
24. Diss JKJ, Stewart D, Pani F, Foster CS, Walker MM, Patel 

A, Djamgoz MBA. A potential novel marker for human 
prostate cancer: voltage-gated sodium channel expression in 

vivo. Prostate Cancer and Prostatic Diseases. 2005; 8:266-
273

25. Gordon GJ, Bueno R, Sugarbaker DJ. Genes associated with 
prognosis after surgery for malignant pleural mesothelioma 

promote tumor cell survival in vitro. BMC Cancer. 2011; 
11:169

26. Shih S-C, Zukauskas A, Li D, Liu G, Ang L-H, Nagy JA, 
Brown LF, Dvorak HF. The L6 Protein TM4SF1 Is Critical 
for Endothelial Cell Function and Tumor Angiogenesis. 
Cancer Res. 2009; 69:3272-3277

27. Maicas M, V|[aacute]|zquez I, Vicente C, Garc|[iacute]|a-
S|[aacute]|nchez MA, Marcotegui N, Urquiza L, Calasanz 

MJ, Odero MD. Functional characterization of the promoter 
region of the human EVI1 gene in acute myeloid leukemia: 
RUNX1 and ELK1 directly regulate its transcription. 
Oncogene. 2012; 

28. Wieser R. The oncogene and developmental regulator 

EVI1: Expression, biochemical properties, and biological 
functions. Gene. 2007; 396:346-357

29. Laricchia-Robbio L, Fazzina R, Li D, Rinaldi CR, Sinha 
KK, Chakraborty S, Nucifora G. Point Mutations in Two 

EVI1 Zn Fingers Abolish EVI1-GATA1 Interaction and 
Allow Erythroid Differentiation of Murine Bone Marrow 
Cells. Mol. Cell. Biol. 2006; 26:7658-7666

30. Laricchia-Robbio L, Premanand K, Rinaldi CR, Nucifora 
G. EVI1 Impairs Myelopoiesis by Deregulation of PU.1 
Function. Cancer Res. 2009; 69:1633-1642

31. Senyuk V, Sinha KK, Li D, Rinaldi CR, Yanamandra S, 
Nucifora G. Repression of RUNX1 Activity by EVI1: A 
New Role of EVI1 in Leukemogenesis. Cancer Res. 2007; 
67:5658-5666

32. Langabeer SE, Rogers JR, Harrison G, Wheatley K, 
Walker H, Bain BJ, Burnett AK, Goldstone AH, Linch DC, 
Grimwade D, Party OBOTMALW. EVI1 expression in 
acute myeloid leukaemia. British Journal of Haematology. 
2001; 112:208–211

33. Lugthart S, Van Drunen E, Van Norden Y, Van Hoven A, 
Erpelinck CAJ, Valk PJM, Beverloo HB, Löwenberg B, 
Delwel R. High EVI1 Levels Predict Adverse Outcome 
in Acute Myeloid Leukemia: Prevalence of EVI1 
Overexpression and Chromosome 3q26 Abnormalities 

Underestimated. Blood. 2008; 111:4329-4337
34. Cui X, Churchill GA. Statistical tests for differential 

expression in cDNA microarray experiments. Genome Biol. 
2003; 4:210-210

35. R Development Core Team. R: A language and environment 

for statistical computing, 3-900051-07-0R Foundation for 
Statistical Computing, Vienna, Austria. 2010; 

36. Gentleman RC et al. Bioconductor: open software 
development for computational biology and bioinformatics. 

Genome Biol. 2004; 5:R80
37. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster 

analysis and display of genome-wide expression patterns. 

Proc Natl Acad Sci U S A. 1998; 95:14863-14868


