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Abstract We propose an evidence synthesis approach through a degradation

model to estimate causal influences of physiological factors on myocardial infarc-

tion (MI) and coronary heart disease (CHD). For instance several studies give

incidences of MI and CHD for different age strata, other studies give relative or

absolute risks for strata of main risk factors of MI or CHD. Evidence synthesis

of several studies allows incorporating these disparate pieces of information into

a single model. For doing this we need to develop a sufficiently general dynam-

ical model; we also need to estimate the distribution of explanatory factors in

the population. We develop a degradation model for both MI and CHD using a

Brownian motion with drift, and the drift is modeled as a function of indicators

of obesity, lipid profile, inflammation and blood pressure. Conditionally on these

factors the times to MI or CHD have inverse Gaussian (IG) distributions. The

results we want to fit are generally not conditional on all the factors and thus

we need marginal distributions of the time of occurrence of MI and CHD; this

leads us to manipulate the inverse Gaussian normal distribution (IGN ) (an IG
whose drift parameter has a normal distribution). Another possible model arises

if a factor modifies the threshold. This led us to define an extension of IGN ob-

tained when both drift and threshold parameters have normal distributions. We

applied the model to results published in five important studies of MI and CHD
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and their risk factors. The fit of the model using the evidence synthesis approach

was satisfactory and the effects of the four risk factors were highly significant.

Keywords Causality · Causal inference · Coronary heart disease · Degradation

model · Epidemiology · Evidence synthesis · Inverse Gaussian distribution ·
Myocardial infarction · Stochastic processes

1 Introduction

Most often in epidemiology, risks of events are modeled using a proportional haz-

ard assumption. Degradation models may be closer to physiological mechanisms

in many cases; indeed it is often the case that an event occurs when a degra-

dation process reaches a certain threshold (Doksum and Normand, 1995; Aalen

and Gjessing, 2001; Hashemi et al, 2003; Lee and Whitmore, 2006; Aalen et al,

2008). A good example is myocardial infarction (MI). It has been shown that MI

is most commonly due to occlusion (blockage) of a coronary artery following the

rupture of an atherosclerotic plaque (Hansson, 2005; Nicholls, 2009). A Brownian

motion with positive drift seems well adapted to describe the progressive growth

of atheroma, with MI occurring when this process reaches a certain threshold. One

advantage of this approach is that we can link MI with broader coronary heart

disease (CHD) events which happen before MI when occlusion is not complete

but the heart already suffers from hypoxia. These CHD events may occur when

the atheromatous process reaches a threshold below that required for MI. One of

the reason to use such a model is to express the effect of risk factors. Several risk

factors are already known for MI. Most analyses focus on one particular risk fac-

tor rather than presenting a global model. Few works have attempted to develop

more global dynamic analysis: Wilson et al (1998), using data from the Framing-

ham study, developed prediction scores using indicators of lipid profile, diabetes,

obesity, blood pressure and tobacco consumption as explanatory variables in a

conventional Cox model; Gamborg et al (2011) used the dynamic path analysis of

Fosen et al (2006) to take into account the possible evolution of obesity and blood

pressure, but they did not take into account other factors.

However, for calibrating complex dynamic models, cohorts having recorded all

the relevant risk factors may be lacking; in particular, a factor like C-reactive pro-
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tein (CRP), a marker of inflammation, has attracted interest only recently (Ridker

et al, 1997) so that this marker is not available in historical studies. So, there is

an interest in developing a method for synthesizing evidence from different studies

with the following potential advantages: (i) incorporating recently discovered fac-

tors, (ii) investigating to which extent the results are consistent across studies, (iii)

gaining power. Synthesis studies are different from meta-analysis (Van Houwelin-

gen et al, 2004): while meta-analyses aim at giving a global conclusion based on

several studies which have estimated the same parameter (the effect of treatment

for instance), synthesis analyses aim at incorporating information of different types

for estimating the parameters of a global model (parameters which may not ap-

pear in any single study). Evidence synthesis (other than meta-analyses) is chiefly

represented by ”Bayesian synthesis” (Raftery et al, 1995), although a likelihood

approach was suggested by Schweder and Hjort (1996); this has also a link with

so-called indirect methods (Jiang and Turnbull, 2004). The literature on evidence

synthesis based on dynamical models is rather scarce; an example in the field of

HIV epidemiology is Presanis et al (2011) who used a Bayesian approach.

The aim of the paper is to present an approach based on a degradation model

for synthesis of information of different types coming from different studies and to

apply it to the epidemiology of MI and CHD. The paper is organized as follows.

In section 2 we present a frequentist approach to evidence synthesis. Section 3

proposes a degradation model for MI and (CHD); on our way we come upon a new

distribution, the inverse Gaussian normal-normal (IGNN ) distribution. Section 4

presents the application of the approach to several studies of MI and CHD. Section

5 concludes.

2 An approach to evidence synthesis through a dynamical model

Consider a dynamical statistical model describing the causal influences of different

processes. It is expressed in terms of a possibly multivariate stochastic process, the

possible laws of which are indexed by a parameter vector θ, θ ∈ Θ. The parameter

θ could be estimated from observations of one study. It may happen that no study

contains information on all the processes involved in the model. In that case it

may be necessary to synthesize the information of several studies. This has the



4

advantage of giving a more robust result (not relying on a single study) and also

gives the opportunity of examining whether the different studies have consistent

results. In a synthesis analysis we assume that study k gives an estimate Q̃k of a

quantity Qk, accompanied by a standard error σk that is assumed known for sake

of simplicity. For instance Qk may be the incidence of a certain condition in one

study, the incidence of another condition in another study, a relative risk in yet

another study. So let us admit that we can define Qk and express it as a function

of the parameters θ: we have Qk(θ).

We propose to consider that Q̃k is like an observation of Qk(θ∗), where θ∗

would be the true parameter value if the model was well-specified. Typical Q̃k

are proportions or maximum likelihood estimates of relative risks. In both cases

they are asymptotically normal. Thus we can write a contribution to a pseudo-

loglikelihood:

Lk(θ) = − (Q̃k −Qk(θ))2

2σ2
k

. (1)

If a study gives several contributions, Q̃k is a vector which is assumed to have a

multinormal distribution with variance matrix Ωk. The contribution to the pseudo-

likelihood is then:

Lk(θ) = −1

2
(Q̃k −Qk(θ))TΩ−1

k (Q̃k −Qk(θ)). (2)

Summing over k we get the total pseudo-loglikelihood: L(θ) =
∑K

k=1 Lk(θ). The

estimate θ̂ maximizes L(θ). If L(θ) has a maximum the problem is identifiable.

If it does not, we can either add new studies, or add a priori knowledge on the

parameters or other quantities Qk in a Bayesian spirit.

It is good here to give an example. We have developed a degradation model

(described in section 4) which gives the joint distribution of the time of occur-

rence of MI and of risk factors; these distributions are indexed by a parameter

vector θ which includes in particular the effects of the risk factors on the drift,

the threshold parameter(s), and the correlations between risk factors (see Table

9). The Atherosclerosis Risk In Communities (ARIC) surveillance study (National

Heart Lung and Blood Institute, 2006) provided an estimate of the incidence of

MI among American men. For instance, the estimated incidence in the 55-64 age

stratum based on the observation of 32,572 person-years was Q̃k = 6.26‰. Here
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we have:

Qk(θ) =
1

10

Fθ(65) − Fθ(55)

1 − Fθ(55)
, (3)

where Fθ is the marginal cumulative distribution function of time of occurrence

of MI in our model given the value θ of the parameters. The variance of Q̃k in the

person-years method is classically estimated by σ2
k =

Q̃k

32 572
; this is justified by

assuming that the observed number of cases has a Poisson distribution (Clayton

and Schifflers, 1987). In fact the ARIC study yielded estimates of both MI and

CHD, so we had to use formula (2).

We do not expect that the model for the Q̃k is well specified. We assume that

the Q̃k are independent. Let θ0 the value which maximizes the expectation of the

pseudo-likelihood. Under mild regularity assumptions, an extended theory of M-

estimators (Van der Vaart, 2000; Freedman, 2006) ensures the consistency of θ̂ for

θ0. The variance of θ̂ cannot be estimated directly by the inverse Hessian of the

pseudo-loglikelihood (H−1), but by the sandwich estimators:

V ar
(
θ̂
)

= H−1

[
K∑

k=1

UkU
T
k

]
H−1, (4)

where Uk = ∂Lk

∂θ |θ̂
is the score for study k.

When a study gives several contributions we should evaluate the covariance

matrix Ωk and use formula (2). In many cases however the correlations between

contributions are very small so that they can be treated as independent: this is the

case of incidence estimates for different age strata. In other cases the correlations

can be difficult to estimate. We can then treat them as independent when writing

the pseudo-likelihood but not in the sandwich estimator, an approach similar to

the GEE (Liang and Zeger, 1986). In principle we could use this approach for all

the studies but we would need a large number of studies in order to get reliable

estimates of the variances. In this paper we will examine whether the contributions

of the same study can be considered as independent and the Lk, k = 1, . . . ,K will

be the independent contributions to the pseudo-loglikelihood.
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3 A degradation model for myocardial infarction and CHD

3.1 The degradation model; modeling the drift

The atheromatous process A(t) can be modeled as a Brownian motion with drift

defined by the stochastic differential equation: dA(t) = λdt + dBA(t), where BA

is a Brownian motion and λ is the drift. The time parameter was taken as age

(in years) minus 20 and we take A(0) = 0. A basic degradation model is that MI

happens when the atheromatous process reaches a certain threshold η, so that the

time T at which MI occurs is the first hitting time of A(t); for fixed η, T has an

inverse Gaussian (IG) distribution with parameters (η/λ, η2); its density is:

f(t)(λ,η) =

[
η2

2πt3

]1/2
exp



−λ2

(
t− η

λ

)2

2t


 1{t≥0}.

What is interesting from an epidemiological point of view is to model the drift as

a function of physiological conditions suspected to play a role in the atheromatous

process. Here we will take into account four of them: obesity, represented by body

mass index (BMI), lipid profile represented by low density lipid concentration

(LDL), inflammation represented by C-reactive protein concentration (CRP) and

blood pressure represented by systolic blood pressure (SBP); in this paper the risk

factors are assumed constant. We assume a linear model for λ:

λ = λ0 + βBMIBMI + βLDLLDL + βCRPCRP + βSBPSBP + ελ, (5)

where λ0 is a baseline drift and ελ has a normal distribution with zero expectation

and may represent unmeasured risk factors. We will in fact use transforms of BMI,

LDL, CRP and SBP in order to get an approximately multinormal distribution

(see section 4.2). Conditional on the values of these factors and the random error

term ελ, the time of occurrence of MI has an IG distribution.

However for our synthesis we wish to use results of studies which have not

recorded all of these factors. Thus, we potentially need all the distributions of T

obtained by conditioning or not on these factors, and for computing them, all the

corresponding distributions of λ. We assume that the indicators (BMI, LDL, CRP,

SBP) have a multinormal distribution; equation (5) gives us the conditional distri-

bution of λ given (BMI, LDL, CRP, SBP). From this we can compute analytically
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the marginal distribution of λ (which is normal), as well as the distribution of λ

conditional on BMI for instance (but marginal on LDL, CRP and SBP). Then

the marginal distributions of T are inverse Gaussian Normal (IGN ) (Whitmore,

1986). If the drift parameter λ has a N (mλ, s
2
λ) distribution, then the hitting time

T has the distribution IGN (mλ , s
2
λ
, η), with density:

f(t)(m
λ
,s2

λ
,η) =

[
η2

2πt3 (1 + s2
λ
t)

]1/2
exp

(
−(η −mλt)

2

2t(1 + s2
λ
t)

)
1{t≥0} (6)

This is an improper distribution in that P (T = ∞) > 0; this is not a problem in

our model since not everybody develops a MI.

The model can be extended for defining two hitting times. It often happens

that the progression of the atheromatous process first produces symptoms related

to hypoxia (like angina pectoris) before the completion of MI; CHD includes these

symptoms as well as MI. Thus two thresholds that we will denote ηCHD and ηMI

can be defined and determine the distribution of the time of occurrence of CHD,

TCHD, and of MI, TMI. This is illustrated in Figure 1.

A graph of the causal influences between processes as suggested in Commenges

and Gégout-Petit (2009) is represented in Figure 2.

3.2 Modeling drift and threshold

Another model arises if the threshold rather than the drift varies with the value

of an explanatory variable. Several authors (Aalen et al, 2008; Sæbø et al, 2005;

Pennell et al, 2010) have used a degradation model where both drift and start-

ing point may depend on covariates; these authors have also introduced random

effects for these parameters and Whitmore (1986) considered random drift and

variance. All these authors parameterized the model in term of starting point with

fixed threshold, while we assume that the starting point is 0 and our parameter

is the threshold. This is just two different parameterizations but with different

interpretations. Parameterizing in term of starting point is adapted if the subjects

start at different levels of the pathological process. In our application it is natural

to consider that all subjects start with a very low level of atherosclerosis, thus

A(0) = 0, and to parameterize in term of threshold. For instance it may be asked

whether SBP has a cumulative effect represented by an effect on the drift, or an
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= 17.6
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Fig. 1 Example of the trajectory of the atheromatous process A(t). η
CHD

and η
MI

are the

two thresholds; here, the subject has CHD symptoms at 62 and develops an infarctus at 68.

Atheroma 

BMI 

LDL 

CRP 

MI 

SBP 

CHD 

Fig. 2 Causal graph linking physiological conditions, atheromatous process, CHD and MI.

Plain arrows mean purported causal influences and dashed arrows mean possible influences

which have not been modeled in a mechanistic way and which result in correlations; we have

not shown all the dashed arrows between LDL, BMI, CRP and SBP.
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SBP 

BMI 

LDL 

CRP 

MI 

CHD 

Atheroma 

Fig. 3 Causal graph linking physiological conditions, atheromatous process, CHD and MI.

Here SBP influences both the atheromatous process (effect on the drift) and directly CHD

and MI (effect on the threshold). Plain arrows mean purported causal influences and dashed

arrows mean possible influences which have not been modeled in a mechanistic way and which

result in correlations; we have not shown all the dashed arrows between LDL, BMI, CRP and

SBP.

instantaneous effect represented by an effect on the threshold, or both. SBP could

favor the occurrence of MI by increasing the drift of the atheromatous process and

also for a given state of the atheromatous process by lowering the threshold. The

model for the threshold could be: η = η0 + β′
SBPSBP + εη. The graph of causal

influences would then be as in Figure 3. Conditional on the explanatory variables

and ελ and εη, the distribution of T is still IG. As before, for the synthesis anal-

ysis we need marginal distributions for which both λ and η are normal and may

be correlated. We call the resulting distribution inverse Gaussian normal-normal

(IGNN ), which to the best of our knowledge, has not been previously described.

It happens that the density of this distribution has an analytic form, given in

Appendix A. This distribution may also be useful in Bayesian computations if we

put normal priors on baseline drift and thresholds.

4 Application to five studies

4.1 Studies giving information on CHD and MI risks

We have used five large studies. The National Health and Nutrition Examination

Survey (NHANES) has been used to estimate the joint distribution of the physio-

logical indicators in the population (see section 4.2). Four studies give information
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Table 1 The studies used for the synthesis: NHANES: National Health and Nutrition Exam-

ination Survey; ARIC: Atherosclerosis Risk In Communities; PHS: Physicians Health Study;

HPFS: Health Professionals Follow-up Study; FHS: Framingham Heart Study; # Contributions

gives the number of independent contributions to the pseudo-loglikelihood, and in parenthesis

the number of elementary contributions.

Study Nature of Q̃k Event Risk factors # Contributions

NHANES Correlations – BMI, LDL, CRP, SBP 1 (6)

ARIC Incidences MI and CHD – 4 (8)

PHS Relative risks MI CRP 3 (3)

HPFS Absolute risks CHD BMI 5 (5)

FHS Absolute risks CHD BMI, LDL, SBP 1 (10)

on CHD and MI risks. Table 1 gives the list of the studies used together with the

type of information they bring.

The ARIC (Atherosclerosis Risk In Communities) surveillance study gives esti-

mates of the incidence of both MI and CHD for four age strata; see Table 2, taken

from Tables 4.9 and 4.10 of National Heart Lung and Blood Institute (2006). The

estimates of the MI incidences of different age strata can be considered as approxi-

mately independent; this is also the case for CHD incidences. We also make this ap-

proximation for incidence of MI and CHD for different age strata. This approxima-

tion however is not tenable for incidence estimates of MI and CHD for the same age

stratum because the CHD cases observed include the MI cases. For stratum k we

have Yk,CHD = Yk,MI +Yk,M̄I, where Yk,CHD, Yk,MI and Yk,M̄I are the observed num-

bers of CHD, MI and non-MI cases respectively. The incidences are estimated by

Q̃k,1 =
Yk,MI

ak1
and Q̃k,2 =

Yk,CHD

ak2
respectively, where ak1 and ak2 are the respective

numbers of person-years. Assuming independence between Yk,MI and Yk,M̄I we have

cov(Yk,CHD, Yk,MI) = var(Yk,MI). Assuming Poisson distributions for these numbers,

simple computations show that we can estimate the covariance between Q̃k,1 and

Q̃k,2 by
Q̃k,1

ak2
; the variances are estimated by

Q̃k,j

akj
, j = 1, 2. Thus the ARIC study

brings four independent contributions to the pseudo-loglikelihood (based on es-

timates of MI and CHD incidences for the four age strata) which are computed

by formula (2): Lk(θ) = −1
2 (Q̃k − Qk(θ))TΩ−1

k (Q̃k − Qk(θ)), k = 1, 2, 3, 4. The
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Table 2 Incidence of CHD and MI in men in USA, ARIC Surveillance, 1987-2001.

Age CHD sample CHD Incidence MI sample MI Incidence

35-44 56, 457 1.19‰ 61, 554 1.05‰

45-54 42, 257 3.55‰ 45, 831 3.22‰

55-64 29, 606 7.32‰ 32, 572 6.26‰

65-74 20, 796 12.20‰ 23, 049 9.64‰

Qk(θ) = (Qk,1(θ), Qk,2(θ))T were computed by equation (3), using the IGN (or

IGNN ) distributions of TCHD and TMI. For instance in formula (3) we have to

compute Fθ(65), the value at 65 of the marginal cumulative distribution of the

time of occurrence of MI.

The Physicians Health Study (PHS) is a randomized study of the prevention

of cardiovascular diseases based on 22,071 subjects followed-up between 1982 and

1995. We use a case-control study nested in the PHS. Among these subjects, 543

men who developed a MI during the follow-up and 543 controls were chosen for

studying the effect of CRP (Ridker et al, 1997). The study gives estimates of the

relative risks for CRP strata with respect to a reference stratum (Table 3); it is

not clear whether these are relative risks or odds-ratios but the two computations

yield nearly the same result. The only information about age is the mean, which

is 59. For simplifying the computations we attribute this age to all the subjects.

The follow-up period was 13 years, thus we computed the risk for the age-period

(59 − 72). The relative risk of the CRP stratum ]0.055;0.115[ with respect to the

stratum ]0;0.055] was computed as :

RR1
CRP =

(
Fθ|CRP∈]0.055;0.115[(72) − Fθ|CRP∈]0.055;0.115[(59)

) (
1 − Fθ|CRP∈[0;0.055](59)

)
(
Fθ|CRP∈[0;0.055](72) − Fθ|CRP∈[0;0.055](59)

) (
1 − Fθ|CRP∈]0.055;0.115[(59)

) ,

where Fθ|CRP∈]a;b[(.) is the cumulative distribution function of the TMI conditional

on CRP ∈]a; b[. To avoid the numerical integration required for the computation

of Fθ|CRP∈[a;b](t), we approximated it by Fθ|CRP=c(t) where c is the median value

of CRP in the sub-sample [a, b] of the NHANES study. The standard deviations σk

were computed from the confidence intervals given in the publication. In Ridker

et al (1997) the confidence intervals have been derived from a normal approxima-

tion of the distribution of the regression coefficient. Thus the Q̃k were the estimated

values of this coefficients and the standard deviations σk were deduced from the
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Table 3 Relative risk of MI in men according to the quartile of CRP concentration, PHS,

1982-1995.

Quartile of CRP concentration (mg · dL−1)

≤ 0.055 0.056 − 0.115 0.116 − 0.210 ≥ 0.211

Relative risk 1.0 1.7 2.6 2.9

95% CI – 1.1-2.9 1.6-4.3 1.8-4.6

Table 4 CHD risk in men in USA according to BMI strata, HPFS, 1988-2004.

BMI

< 23 23 − 24.9 25 − 26.9 27 − 29.9 ≥ 30

Number of events 349 625 821 643 333

Number of subjects at risk 7,669 12,104 11 466 7,712 3,400

confidence intervals of the relative risks as σk = (log(R̂Rk
CRP) − log(RRk

inf ))/1.96

where RRk
inf is the lower bound of the confidence interval for RRk

CRP given in

Ridker et al (1997). Approximate computation of the correlations between the es-

timates of the three relative risks gives values lower than 0.01 and thus we consider

that the PHS study gives three independent contributions L5(θ), L6(θ), L7(θ) of

the form given by formula (1).

The Health Professionals Follow-up Study (HPFS) is a prospective cohort

study bearing on 42,351 subjects. Flint et al (2010) have estimated the risk of

CHD on a 12-year period as a function of the BMI at inclusion; see Table 4. The

absolute risk for the 12 year follow-up period for subjects presenting a BMI lower

than 23 was computed assuming that all subjects were 53 years old at inclusion

(the mean age at inclusion) as:

Q8(θ) =
Fθ|BMI∈[0;23[(65) − Fθ|BMI∈[0;23[(53)

1 − Fθ|BMI∈[0;23[(53)
. (7)

Here, Fθ|BMI∈[a;b[(.) is the cumulative distribution function of TCHD given BMI ∈
[a; b[. The variance was estimated by Q̃k

ak
. Similar formulas were applied for the

other BMI strata. The estimates for the five BMI strata are approximately indepen-

dent, so the HPFS study yielded five independent contributions Lk(θ), k = 8, 12.

The Framingham Heart Study (FHS) is a cohort study especially designed for

cardiovascular epidemiology. Kannel et al (2002) have estimated the effect of BMI
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Table 5 Risk of CHD in US men according to BMI strata, FHS, 1971-1987.

BMI

< 25 25 − 29.9 ≥ 30

Number of events 99 188 72

Number of subjects at risk 772 1,306 375

Table 6 CHD risk in US men according to LDL strata, FHS, 1971-1983.

LDL (mg · dL−1)

< 130 130 − 159 ≥ 160

Number of events 104 124 155

Number of subjects at risk 929 866 719

Table 7 CHD risk in US men according to SBP strata, FHS, 1971-1983.

SBP (mm Hg)

< 130 130 − 139 140 − 159 ≥ 160

Number of events 110 77 115 81

Number of subjects at risk 1127 526 556 303

on CHD risk and give the number of CHD events over a 16 years period and the

number of persons at risk. This allowed us to build Table 5. From the results of

Wilson et al (1998) we can construct the same kind of tables for LDL and SBP:

see Tables 6 and 7. The estimators of absolute risks for the different strata of BMI,

LDL and SBP were computed by the same type of formula as (7) presented for

the PHS study. These estimators however can not be considered as independent

because they rely on observations of the same subjects; thus we can treat them in

the GEE spirit, considering that for the computation of the sandwich estimator

there is only one independent contribution L13(θ) (the sum of the loglikelihood

contributions for the 10 observations).

4.2 Construction of normal physiological indicators

The NHANES study is a repeated transversal surveys study recording a large num-

ber of physiological and behavioral factors on large representative samples of the
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American population. We used the 2007-2008 survey giving observations of BMI,

CRP, LDL and SBP on n = 2871 men aged 20 or older. To make the computation

of the marginal distributions of the event times feasible we need an underlying

normal distribution for the physiological factors. Inspection of the empirical dis-

tribution of these variables reveals that they do not have normal distributions. In

order to construct indicators with a distribution close to the normal we used Box-

Cox transformations (Box and Cox, 1964) defined as
Xκ − 1

κ
κ 6= 0 and ln(X)

if κ = 0. The parameter κ can be estimated by maximum likelihood (Velilla,

1993; Yeo and Johnson, 2000). This is implemented in the R package CAR (Fox

and Weisberg, 2010). We found the optimal values of κ to be −0.58, 0.41, −0.04,

−1.27 for BMI, LDL, CRP and SPB respectively.

As shown in Figure 4 the optimal Box-Cox transformations yield new variables

with a distribution much closer to the normal than the original ones. Of course

marginal normal distributions do not mean that we have a multinormal distri-

bution but we expect to get closer to it (Kowalski, 1970). We applied a further

transformation to standardize the indicators (zero mean and unit variance), so as

to compare more easily the effects of these physiological factors.

From this study we could estimate the covariance (or correlation) matrix of

our transformed variables:

corr(LDL,BMI,CRP, SBP) =




1.00 0.07 0.09 −0.05

0.07 1.00 0.34 0.10

0.09 0.34 1.00 0.11

−0.05 0.10 0.11 1.00




We consider the empirical correlation as observations. To get approximate nor-

mal distribution we used Fisher transformation. For the correlation between LDL

and BMI for instance, we considered Q̃14,1 = arctanh[corr(LDL,BMI)] as normal

with mean arctanh(ρLDL,BMI(θ)) (where ρLDL,BMI(θ) is computed from the model)

and variance 1
n−3 . However the Q̃14,j , j = 1, . . . , 6 may be correlated in a way

which is difficult to analyze. Thus we consider that the NHANES study gives just

one independent contribution to the pseudo-loglikelihood L14 =
∑6

j=1
n−3
2 (Q̃14,j−

Q14,j(θ))2.
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Fig. 4 Quantile-quantile plot of raw and transformed physiological variables. Left: original

indicators; right: after Box-Cox transformation.

4.3 Results

Finally, the global pseudo-loglikelihood was the sum of 14 independent contri-

butions :  L(θ) =
∑14

k=1 Lk(θ). The pseudo-loglikelihood was computed using a

Fortran program and was maximized using a Marquardt algorithm (Marquardt,

1963) (also programmed in Fortran). The algorithm converged in 29 iterations (it

was verified that different starting points led to the same convergence point). Ta-

ble 8 gives the fit of the model for the information of the studies about MI and
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CHD. We do not show the fits for the correlations of the physiological factors in

the NHANES study: they were very good and the contribution was L14 = −0.003.

For the other quantities, we consider that the fit is rather satisfactory given the

heterogeneity of the studies. For instance the risk observed in the HPFS study for

the 27–30 BMI stratum is around 8%; it is to be compared with the risk computed

with the model of developing CHD between age 53 and 65 for this BMI stratum,

which is around 10%: we get the good order of magnitude. Of course this is not a

good fit in view of the small standard deviation attributed to the observed risk;

if the model was well specified −Lk would have a chi-squared distribution with

one degree of freedom: the value of 17.5 is much too large. We know from the

beginnning that our model cannot be well specified and this is why we used the

term ”pseudo-loglikelihood” rather than ”loglikelihood”.

Table 9 gives the parameter estimates together with sandwich estimates of their

standard deviations; the estimate of the standard deviation of ελ was very close to

zero and is not shown in the table. We note that the four regression parameters are

positive, meaning that increasing the level of these factors increases the risk, which

is consistent. Since the values are greater than 2 times their standard deviations,

they are significant. There is a positive baseline drift and, as expected ηCHD < ηMI.

From the sandwich covariance matrix we can compute the standard deviation of

η̂CHD − η̂MI. We found 0.051 so that η̂CHD − η̂MI is significantly different from zero.

Figure 5 displays the cumulative distribution of the times of occurrence of MI

(probability to have MI before age t) for three profiles: (i) mean level for all risk

factors: λ = λ0 = 0.99, (ii) above the mean level by one standard deviation for all

factors: λ = λ0 + βLDL + βBMI + βCRP + βSBP = 0.354, (iii) below the mean level by

one standard deviation for all factors: λ = λ0−βLDL−βBMI−βCRP−βSBP = −0.155.

We see that the latter profile has very low risk to develop MI during lifespan while

profile (i) has high risk, for instance a probability of 0.80 to develop MI before 80.

Finally we have fitted the model described in section 3.2, where SBP could

modify both thresholds (we took the same regression coefficient for both). The

pseudo-loglikelihood for this model was −212.56. This is not significantly better

than that of the basic model (without influence on the thresholds) which was

−212.79.
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Table 8 Fit of the information from the four studies. RR1
CRP, RR2

CRP, RR3
CRP are the relative

risks for the CRP strata 0.56-1.14, 1.15-2.10, ≥ 2.11 respectively, versus the reference stratum

CRP ≤ 0.55, and AR stands for absolute risk. Last column: −Lk, where Lk, k = 1, . . . 13 are

the first 13 independent contributions to the pseudo-loglikelihood. For ARIC the contributions

comes from the bivariate observations of incidences of CHD and MI in age strata. For FHS the

global contribution is given. The 14th contribution brought by the correlations is not shown.

Study Event Nature of Q̃ Q(θ̂) Q̃ σ −Lk

ARIC CHD Incidence 35-44 0.0013 0.0012 0.00015

ARIC MI Incidence 35-44 0.0011 0.0010 0.00013 3.5

ARIC CHD Incidence 45-54 0.0045 0.0035 0.00029

ARIC MI Incidence 45-54 0.0041 0.0032 0.00026 6.2

ARIC CHD Incidence 55-64 0.0070 0.0073 0.00050

ARIC MI Incidence 55-64 0.0063 0.0063 0.00044 14.9

ARIC CHD Incidence 65-74 0.0080 0.0122 0.00077

ARIC MI Incidence 65-74 0.0077 0.0096 0.00065 32.6

PHS MI log
(
RR1

CRP

)
0.47 0.53 0.27 0.0

PHS MI log
(
RR2

CRP

)
0.77 0.96 0.26 0.3

PHS MI log
(
RR3

CRP

)
1.17 1.06 0.24 0.1

HPFS CHD ARBMI(< 23) 0.034 0.046 0.0024 10.6

HPFS CHD ARBMI(23-25) 0.056 0.052 0.0021 2.6

HPFS CHD ARBMI(25-27) 0.077 0.072 0.0025 2.2

HPFS CHD ARBMI(27-30) 0.103 0.083 0.0033 17.5

HPFS CHD ARBMI(≥ 30) 0.159 0.189 0.0074 7.9

FHS CHD ARBMI(< 25) 0.042 0.128 0.013

FHS CHD ARBMI(25-30) 0.080 0.144 0.010

FHS CHD ARBMI(≥ 30) 0.136 0.192 0.023

FHS CHD ARLDL(< 130) 0.037 0.112 0.011

FHS CHD ARLDL(130-159) 0.100 0.143 0.013

FHS CHD ARLDL(≥ 160) 0.174 0.216 0.017

FHS CHD ARSBP(< 130) 0.035 0.098 0.0093

FHS CHD ARSBP(130-139) 0.087 0.146 0.0167

FHS CHD ARSBP(140-160) 0.128 0.207 0.0172

FHS CHD ARSBP(≥ 160) 0.212 0.267 0.0297 114.4
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Table 9 Parameter estimates: ρX,Y is the correlation between X and Y , the β’s are the

regression coefficients of the standardized transformed physiological factors, λ0 is the baseline

drift, the η’s are the thresholds.

Estimate Sandwich SD

ρBMI,LDL 0.070 0.0015

ρBMI,CRP 0.343 0.0003

ρBMI,SBP 0.096 0.0014

ρLDL,CRP 0.093 0.0007

ρLDL,SBP -0.045 0.0024

ρCRP,SBP 0.107 0.0006

βBMI 0.053 0.014

βLDL 0.092 0.015

βCRP 0.024 0.006

βSBP 0.087 0.015

λ0 0.099 0.008

ηMI 17.50 0.81

ηCHD 17.06 0.79
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Fig. 5 Probability of developing MI as a function of age for three risk factors profiles: λ =

0.099: all risk factors at their mean value; λ = −0.155: all risk factors at one standard deviation

below the mean; λ = 0.354: all risk factors at one standard deviation above the mean.
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5 Conclusion

We have shown that a complex degradation model could be used for evidence syn-

thesis of disparate results coming from different studies. The results are consistent

in that we found a positive baseline drift, positive effects of the risk factors, posi-

tive values of the thresholds with higher threshold for MI than for CHD. We could

have restricted the parameter space to impose the constraint ηMI > ηCHD. However

at the maximum of the likelihood, either we would find η̂MI > η̂CHD or η̂MI = η̂CHD.

In the former case the constraint is inactive so that the result is the same whether

we impose the constraint or not; in the latter case the constraint is active and this

would throw suspicion on the model adequacy because without the constraint we

would have η̂MI < η̂CHD.

We are limited in the epidemiological and clinical interpretation of these results

because of the small number of studies that we have included. We have made

the assumption of a linear relationship between λ and the risk factors. This is

necessary to keep the computations relatively simple. A non-linear relationship

would entail a non-normal joint distribution and we would lose the analytical

marginal or partially conditional distributions. This is feasible but at the price

of heavier computations. Also we have not included tobacco consumption; this

factor raises a methodological problem due to the difficulty of finding a normalizing

distribution. As smokers and non-smokers form a dichotomy, the situation calls for

a two-component mixture of IG distributions rather than a normal mixture (IGN)

over smoking status. Another potential problem is that we implicitly assume that

death acts as an independent censoring. There may be selection effects due to

deaths by diseases which share some common physiological process: for instance

oxidative stress may play a role in both CHD and cancer.

The synthesis analysis can be viewed as an extension of meta-analysis. Indeed

fixed-effect meta-analysis is a particular case when the Qk(θ) are the same param-

eter for all k. Often meta-analyses put a random effect per study. This would also

be possible in the synthesis approach and would certainly improve the fit, at the

price of more computations.

This is a ”proof-of-concept” paper, which shows that such an approach is very

promising and could be developed in several directions. It could be applied to a
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large number of studies of MI or CHD for producing reliable results, allowing to

understand and to link the results of the literature on the subject. The evidence

synthesis approach would become even more important if we moved toward life-

course epidemiology for which information about the evolution of physiological

factors would be incorporated, as suggested in (Commenges, 2012). This approach

could also be applied to other topics as well.

Appendix A: The IGNN distribution

The inverse Gaussian normal-normal (IGNN ) distribution is an IG where param-

eters λ and η have a bivariate normal distribution with marginals N (mλ, s
2
λ) and

N (mη, s
2
η) and correlation coefficient ρ. The probability density function of this

distribution, although more complicated than that of IGN , has an analytic form

that we have derived with the help of MapleTM:

f(t)(mλ,mη,s
2
λ
,σ2

η
,ρ) = −

sη
√

1 + ts2λ(1 − ρ2)

π
√
t
(
t2s2λ − t(2sλρsη − 1) + s2η

) e
−

(
s2λm2

η + s2ηm2
λ − 2sλmηρsηmλ

)
t + m2

η

2 (1 + ts2λ(1 − ρ2)) s2η

+

(
(sλρsηmλ − s2λmη)t + sλρsηmη − s2ηmλ −mη

)√
2t2s2λ + (2 − 4sλρsη)t + 2s2η

2
√
π
(
t2s2λ − t(2sλρsη − 1) + s2η

)2

e
−

(tmλ − mη)2

2
(
t2s2λ − t(2sλρsη − 1) + s2η

)
erf



√

t
(
(sλρsηmλ − s2λmη)t + sλρsηmη − s2ηmλ − mη

)

sη
√

1 + ts2λ(1 − ρ2)
√

2t2s2λ + (2 − 4sλρsη)t + 2s2η




where erf is the error function (erf(x) =
2√
π

∫ x

0
t−2dt).
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