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Abstract—Previous studies have shown that cardiac micro-
acceleration signals, recorded either cutaneously, or embedded
into the tip of an endocardial pacing lead, provide meaningful
information to characterize the cardiac mechanical function.
This information may be useful to personalize and optimize the
cardiac resynchronization therapy, delivered by a biventricular
pacemaker, for patients suffering from chronic heart failure.
The present paper focuses on the improvement of a previously
proposed method for the estimation of the systole period from a
signal acquired with a cardiac micro-accelerometer (SonR sensor,
Sorin CRM SAS, France). We propose an optimal algorithm
switching approach, to dynamically select the best configuration
of the estimation method, as a function of different control
variables, such as signal-to-noise ratio or heart rate. This method
was evaluated on a database containing recordings from 31
patients suffering from chronic heart failure and implanted with
a biventricular pacemaker, for which various cardiac pacing
configurations were tested. Ultrasound measurements of the
systole period were used as a reference and the improved method
was compared with the original estimator. A reduction of 11% on
the absolute estimation error was obtained for the systole period
with the proposed algorithm switching approach.

Index Terms—Endocardial Acceleration, Heart Sounds, SonR,
Cardiac Resynchronization Therapy, Algorithm Switching

I. INTRODUCTION

CARDIAC resynchronization therapy (CRT) is the therapy
of choice for patients suffering from drug-refractory

heart failure (HF) with significant inter- or intraventricular
conduction delays [1]. A number of multicentric clinical trials
have shown that CRT effectively improves cardiac function
and, in general, the quality of life of most of these patients.
However, approximately 30% of the implanted patients do
not respond to the therapy [1]. One way to minimize the
rate of non-responders would be to personalize the pacing
parameters, particularly the atrio-ventricular (AV) and inter-
ventricular (VV) activation delays, since these parameters
have a significant impact on the cardiac function (ventricular
contractility, cardiac output, transmitral flow, etc.) and their
optimal configuration is patient-specific [2], [3].

Currently, the optimization of these pacing parameters in-
volves an echo-Doppler acquisition, to evaluate the ventricular
mechanical function while scanning different values for AV
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and VV delays. Different echocardiographic markers have
been analyzed in this context, such as the variations of cardiac
output [3]. This is a complex and cumbersome method, which
is not applied systematically and is typically performed at
rest, in supine position, before the discharge of the patient
from the hospital. An interesting alternative to this in-hospital,
echocardiography-based approach would be to obtain a signal
from an implantable sensor, capable of monitoring the me-
chanical cardiac function. This signal could be processed to
extract a set of features, such as the systolic and diastolic time
intervals, that could be used as control variables for an adaptive
closed-loop AV and VV delay optimization. This approach
would simplify and generalize the application of the AV
and VV delay optimization stage, reducing costs, and would
provide a better CRT delivery under different physiological
conditions (rest, exercise, etc.).

Cardiac mechanoacoustic signals, such as the phonocardio-
gram (PCG) have been largely studied for the evaluation of the
mechanical function of the heart, including the analysis of the
effect of different CRT pacing configurations on systolic time
intervals [4]–[7]. Recently, Sorin CRM SAS (Clamart, France)
developed a piezo-electric micro-accelerometer inserted into
the tip of an endocardial pacing lead (SonR sensor). This
sensor provides an endocardial micro-acceleration signal, that
may be useful for the continuous optimization of the delivered
CRT [8]–[11]. This sensor could also provide complementary
information that would be useful to improve remote patient
follow-up and the early-detection of undesired events [12].

The SonR signal is composed of two main components,
denoted here SonR1 and SonR2, that are synchronous with
the first and second heart sounds in the PCG, respectively
(see figure 1). We hypothesize that variations of the AV and
VV pacing delays will induce modifications of the cardiac
mechanical activity that can be monitored by a set of features
extracted from the SonR signal.

In a previous work, we studied an external version of the
SonR signal, and proposed a method to estimate the mitral
and aortic valve closure instants [13]. This method was then
clinically evaluated in the context of CRT optimization with
data from 75 HF patients, under different pacing configura-
tions [14]. We showed that satisfactory systolic/diastolic time
interval estimations can be obtained from the SonR signal.
For instance, a correlation coefficient of 0.85 with an average
absolute estimation error of 13.4 ms was obtained for the esti-
mation of the systole period. More details on the performance
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obtained for the different valve closing instants are provided
in [14]. However, we also noticed that, according to the signal
context (signal-to-noise ratio, instantaneous heart rate, etc...)
of each record, the SonR signal processing methods providing
the best performance were not the same. In the present paper,
we propose an improvement of the original method, integrating
an optimal combination of different detector configurations, in
an algorithm switching approach.

Fig. 1. Surface electrocardiogram (ECG) and mechanoacoustic (SonR)
signals obtained from a CRT recipient during bi-ventricular pacing. (a) average
surface ECG computed from 15 consecutive cycles, (b) average SonR cycle
computed from 15 consecutive cycles, displayed with the detected onset
instants for SonR1 and SonR2, (c) high-pass filtered SonR cycle in (b) with its
envelope. Time t=0 corresponds to the first ventricular event (right ventricular
pacing spike in this case).

II. METHODS

A. Brief description of the original method and its parameters

The original detection method proposed in [14] analyzed
the SonR signal and output the timing of SonR1 and SonR2.
Briefly, after ensemble averaging and high-pass filtering, we
applied signal envelope estimation and identified the onset of
SonR1 and SonR2 by testing when the envelope exceeded
specific thresholds. The following paragraphs provide some
details on each of these processing phases and presents the
notation that will be used throughout this paper.

As the first step, the instant of electrical activation of
each beat (e.g. first pacing spike for pacing records or QRS
detection in spontaneous rhythm) is performed on the available
ECG to segment SonR signals into independent cardiac cycles.
The ensemble averaging phase is performed separately on
SonR1 and SonR2, from a group of 15 consecutive, correlated
beats. This phase includes: i) the estimation of phase shifts that
maximize the correlation between each observed cycle, ii) the
alignment of each cycle with respect to the corresponding
estimated phase-shift and iii) the calculation of the two average
components SonR1 and SonR2. Only cycles with a normalized
correlation coefficient greater than 0.6 for SonR1 and 0.5 for
SonR2 were included in the averaging phase.

The obtained average cycles, SonRk(t), were then high-
pass filtered with a cutoff frequency fc and the signal envelope
was computed by applying method M and a moving average
filter of size w. After normalization, a threshold λ was finally
applied to detect the onset of SonR1 and SonR2, which will
be respectively defined as t̂SonR1 and t̂SonR2.

Figure 1 presents an example of a processed average cycle,
acquired from a CRT recipient during bi-ventricular pacing
and showing the main detection instants, when using an
envelogram computed with the absolute value method. Similar
envelope estimation methods have been largely applied to the
segmentation of PCG signals and it has been shown that their
performance strongly depends on the tuning of fc, w, λ and
M [4]–[7], [13].

B. Parameter optimization and performance evaluation

This section presents a method to optimize parameters fc,
w, λ and M using data from a CRT patient population. The
database used for learning and testing the optimal parameter
set is firstly described. The parameter optimization method
is then presented and, finally, a bootstrapping method is
proposed to analyze the reproducibility of the optimal detector
configuration as a function of the learning and test sets used.

1) Database: In this work we considered a subset of the
database used in [14], containing 31 HF patients implanted
with a biventricular system and enrolled by the Rennes
University Hospital (CHU Rennes, Service de Cardiologie
et Maladies Vasculaires). This database (DB) is composed
of N = 103 records containing two standard ECG leads,
surface SonR and pulsed Doppler echocardiography, acquired
during various pacing configurations (biventricular pacing with
various VV delays, single ventricular pacing, and sponta-
neous rhythm, when possible). For each pacing configuration,
Doppler acquisitions were performed sequentially at the aortic
and the mitral sites. An example of the acquired signals during
the exploration of the aortic site is presented in figure 2.

A particular effort has been made to maximize the accuracy
and reproducibility of the Doppler measurements. Doppler
signals were processed by a custom-made software, in order
to assist in the annotation of the valve closure instants. Semi-
automatic annotations were thus performed for each record
k (k = 1, ..., N ) by a trained operator, validated by an
independent echocardiographer over 3 to 6 selected cycles,
and averaged. The systole interval obtained from the Doppler
signals from record k, Isysk , calculated as the difference
between the closure instant of the aortic valve and the closure
instant of the mitral valve, will be used in this paper as the
reference marker for performance evaluation. The estimation
of the systole period implies a correct estimation of the closure
instants of the mitral and aortic valves, and can be used to
estimate the diastole period.

2) Optimization method: Rather than using an evolutionary
algorithm, as we have proposed in previous works [15],
parameter optimization was performed here by applying the
above-mentioned detection method with all combinations of
the following parameter values: fc ∈ {20, 25, 30} Hz; w ∈
{60, 80, ..., 120} ms and M ∈ {A,S}, where A and S
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Fig. 2. Synchronous ECG (top panel), raw surface SonR (middle panel) and
pulsed Doppler signal at the aortic site (lower panel), showing three beats from
a record of the database. Pacing spikes were detected from the ECG signal
and projected as segmented lines on the SonR signal. Segmented white lines
on the Doppler signal represent the annotated opening and closure instants of
the aortic valve for each beat.

represent, respectively, the absolute and squared envelope
estimators. Thresholds were applied to individually normalized
envelograms for SonR1 and SonR2 and were obtained from
the set λ ∈ {0.1, 0.2, ..., 0.7}. The elements of these different
parameter sets were defined within the ranges typically ob-
served in the literature and from our previous experience in
the processing of SonR and PCG signals [4]–[7], [13].

The application of this pseudo-exhaustive research approach
produced ND = 168 different ”detector configurations”
DSonR1
i , i = 1, ..., ND for the detection of the onset of SonR1

and DSonR2
j , j = 1, ..., ND for the onset of SonR2. The couple

(DSonR1
i , DSonR2

j ) will be simply referred to as Dm, with
m = 1, ..., N2

D. It is worth noting that for some Dm, the
detectors might fail to provide an estimation of t̂SonR1

m,k and/or
t̂SonR2
m,k . We have chosen to reject all Dm providing a rate of

detection failure higher than 6%. For each Dm and each record
k, an estimation Îsysm,k of the clinical reference measurement
Isysm,k was obtained through a function fL, such that

Îsysm,k = fL(t̂SonR1
m,k , t̂SonR2

m,k ). (1)

Function fL was estimated by means of a multivariate linear
regression during the learning phase and was kept fixed during
the test phase. Detection performance was thus evaluated
through the absolute estimation error:

εSm,k =
∣∣∣Îsysm,k − I

sys
m,k

∣∣∣ (2)

where S = L when Îsysm,k is calculated with the learning dataset
and S = T when Îsysm,k is calculated with the test dataset (but
with the fixed fL function). Finally, the mean absolute error
for configuration m is obtained by

ε̄Sm =
1

N

N∑
k=1

εSm,k, (3)

where, again, S represents either the learning S = L or the
test S = T datasets and N is the number of available records.

The optimal detector configuration Dm∗ is thus selected
as the configuration providing the lowest ε̄Lm. However, as
mentioned before, this optimal configuration depends strongly
on the specific records included in the learning database. The
next section proposes a bootstrapping method to quantify the
influence of the learning and test datasets on the selection of
Dm∗ and the obtained detection performance.

3) Bootstrapping method: In order to evaluate the sensitiv-
ity of the optimal configuration to the learning and test sets, a
bootstrapping method was used to create NB = 100 different
learning (LDB(n) ⊂ DB) and test (TDB(n) ⊂ DB,
n = 1, ..., NB) datasets. Each learning dataset is obtained by
selecting randomly, without replacement, NL = 72 records
(70% of the available records in DB), while the corresponding
test dataset was created with the resting NT = 31 records.

The above-mentioned optimization procedure was applied
to compute the absolute estimation error for each Dm, when
applied to each record k of each realization n of the bootstrap-
ping method. These errors are stored in m×k vectors εLm,k(n)

and εTm,k(n) when using LDB(n) and TDB(n), respectively.
Corresponding vectors containing the average absolute error
over all records k, ε̄Lm(n) and ε̄Tm(n) were also calculated.
The optimal detector configuration for a given realization of
LDB(n) is defined as DL

m∗
n

, where

m∗n = argmin
m

(ε̄Lm(n)). (4)

Finally, we calculate the mean absolute error generated by
each DL

m∗
n

over all realizations of the bootstrapping method,

µεL =
1

NB

NB∑
n=1

ε̄Lm∗
n
(n) (5)

and its standard deviation σεL . A similar approach has been
applied to TDB(n) to compute the average errors µεT and
σεT , using configuration DL

m∗
n

.
A problem arises when we decide to implement these

parameters in a real-life application: which of the parameter
configuration should we use? We hypothesize that this depen-
dence is partly related to the signal quality of each record and
that detection performance can be improved by selecting the
optimal set of parameters as a function of the signal context.

C. Algorithm switching method

The objective of the proposed algorithm switching approach
is to select the detection configuration DL

m∗
n,q

that optimizes a
certain performance criterion and where the index q is obtained
by quantization of a control variable ck, which reflects the
current signal context for SonRk(t). Similar approaches have
been proposed in multimodel control systems, where quanti-
zation phase is based on a set of sharp or fuzzy rules [16]. In
this paper, we present an approach that is adapted to a real-
time implementation and is based on a priori knowledge on
the response of each Dm to different signal contexts.

A diagram of the proposed detection approach is presented
in figure 3. The algorithm is composed of the following phases:
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Fig. 3. General diagram of the proposed algorithm switching detector.

1) SonR signal pre-processing: The raw SonR signal is
processed to obtain the average cardiac cycle SonRk(t), as
presented in section II.A.

2) Signal context estimation: A control variable ck ∈ R,
representing the current signal context, is estimated for each
pre-processed signal SonRk(t). Different features extracted
from SonRk(t) were considered for the control variable ck:
i) the instantaneous heart rate, ii) the interbeat SonR1 and
SonR2 correlation coefficients, iii) SonR1 and SonR2 peak
to peak amplitudes and iv) the SonR1 contrast, defined as
the ratio between the peak to peak amplitude of SonR1 and
the standard deviation of the first 300 milliseconds of signal
SonRk(t).

3) Quantile selection: Variable ck is quantized by means
of a classical quantile selection approach to obtain the switch
variable q ∈ {1, ..., Q}. The Q-quantiles of the distribution
of each ck are estimated using the entire database DB, and
subsets Cq = {k | ck ∈ qth quantile} are constructed.

4) Context-dependent optimal detector configurations: The
objective of the proposed algorithm switching approach is
to select an optimal configuration DL

m∗
n,q

, according to the
quantile membership q of the current signal context ck. This
configuration will be applied to the signal processing chain,
including high-pass filtering, envelope estimation, thresholding
and multilinear modeling, to finally obtain an estimation of the
systolic period Îsysm,k.

In order to identify these optimal configurations, the boot-
strapping method described in the previous section was ap-
plied. However, in this case, equation 4 is adapted to provide
the optimal configuration as a function of q,

m∗n,q = argmin
m

∑
k∈Cq

εLm,k(n)

|Cq|

 (6)

where |Cq| is the cardinality of Cq . The absolute error obtained
when using the algorithm switching approach for record k and
a given realization of LDB(n) will be noted εLm∗

n,q,k
(n). The

average absolute error is thus defined in this case by

ε̄Las(n) =
1

NL

Q∑
q=1

∑
k∈Cq

εLm∗
n,q,k

(n). (7)

We finally calculate the global indicators:

µasεL =
1

NB

NB∑
n=1

ε̄Las(n) (8)

and its standard deviation σasεL . Configurations DL
m∗

n,q
are

then tested on each TDB(n) to obtain the reference testing
indicators µasεT and σasεT .

III. RESULTS AND DISCUSSION

A. Optimal configurations of the original detection method

Table I presents the optimal configurations of the original
detection method Dm∗

n
, for a random selection of 10 real-

izations of the bootstrapping approach. It is worth noting
that the optimal detector parameters vary from one realization
to the other, meaning that the optimal detector configuration
depends on the selection of records constituting the learning
database. This is particularly true for the detection of SonR1.
For example, the range of optimal values for parameter w
varies from 80 ms (leading to a sharp envelope) to 140 ms
(generating a very smooth envelope).

The mean absolute error generated by each DL
m∗

n
over the

100 realizations of the learning database (LDB(n)) equals
µεL = 12.4ms with a standard deviation σεL = 0.6 ms.
The application of the optimal configurations DL

m∗
n

on the
corresponding realization of the test dataset TDB(n) yielded
a higher mean absolute error, µεT = 14.5 ms and standard
deviation σεT = 1.7 ms, as expected.

A Bland-Altman plot comparing Îsysm,k versus Isysm,k, for a
representative realization of TDB(n) (n = 41) is presented
in figure 4. The mean absolute error for this realization was
ε̄Tm∗

n
= 14.61 ms, which is close to µεT . No particular distri-

bution can be observed on the plot, and only one estimation
was out of the limits of agreement for this realization. These
results are in line with those obtained in our previous works
with the same patient population and will be used as reference
to evaluate the impact of the proposed algorithm switching
method on detection performance.

B. Algorithm switching method

Tests have been performed with Q = 2, Q = 4 and Q = 8.
Results will only be shown for 4 quantiles, since this was
the best tradeoff between algorithm complexity and detection
performance.

Results obtained from the application of the algorithm
switching method, for three different control variables (SonR1
contrast, as defined in section II.C, instantaneous heart rate
and the amplitude of the SonR2 component) and the 100
realizations of the bootstrapping method are summarized in
Table II. For all the tested control variables, the mean absolute
estimation error was reduced with respect to the reference
values. For instance, with control variable ”SonR1 contrast”,
the learning error is µasεL = 10.8 ms whereas it was µεL =
12.4 ms without algorithm switching: the observed learning
gain is 1.6 ms or 13%. Concerning the testing results, the error
decreases from µεT = 14.5 ms to µasεT = 12.9 ms: the testing
gain is 11%. In all cases, the gain was statistically significant
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TABLE I
RANDOM SELECTION OF 10 OPTIMAL DETECTOR CONFIGURATIONS FOR THE DETECTION OF SONR1 (DSonR1

i∗ ) AND SONR2 (DSonR2
i∗ ), TAKEN FROM

THE 100 REALIZATIONS OF THE BOOTSTRAPPING METHOD. THE PARAMETERS INCLUDED IN EACH DETECTOR CONFIGURATION ARE: M -ENVELOGRAM
TYPE (A-ABSOLUTE AND S-SQUARED ENVELOGRAMS), w-SMOOTHING WINDOW DURATION, λ-THRESHOLD COEFFICIENT AND fc-HIGH-PASS FILTER

CUTOFF FREQUENCY. THE MEAN ABSOLUTE DETECTION ERROR IS PRESENTED FOR EACH CONFIGURATION.

Bootstrapping Optimal detector configuration Optimal detector configuration Mean absolute detection error
realization for SonR1 (DSonR1

i∗ ) for SonR2 (DSonR2
j∗ ) for the learning (L) and test (T) sets

n M w (ms) λ fc(Hz) M w (ms) λ fc (Hz) ε̄Lm∗
n

(n) (ms) ε̄Tm∗
n

(n) (ms)
4 A 100 0.3 20 S 60 0.2 30 12.6 13.3

14 A 100 0.3 20 S 60 0.2 30 11.7 15.0
42 S 80 0.1 20 S 60 0.2 30 12.9 12.7
49 A 100 0.3 20 S 60 0.2 30 10.7 19.0
66 A 140 0.3 30 S 60 0.2 30 13.1 12.3
79 A 120 0.2 30 S 60 0.2 30 13.3 11.7
80 S 80 0.1 20 S 60 0.2 30 12.0 14.6
92 A 60 0.2 30 A 140 0.5 30 11.8 16.1
96 A 120 0.2 30 A 60 0.5 30 13.1 11.7
99 A 80 0.2 30 A 120 0.6 30 11.7 15.8
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Fig. 4. Bland-Altman plot comparing the reference systole period, estimated
from the echo Doppler signal (Isysk ), with the estimated systole period (Îsysm,k)
using the original detector and data from a representative realization (n = 41)
of the testing dataset TDB(n).

(p < 0.001 observed with a bilateral paired t-test). Although
the values of σasεL and σasεT are globally similar to the reference
values, they are lower than the reference when using SonR1
contrast or SonR2 amplitude as control variables. This result
shows that the proposed approach allows for a more robust
estimation of Isysm,k than the original method, being thus less
sensitive to overfitting. We can also mention that, in all cases,
there was no increase in the miss-detection rate, which was
still under the 6% limit.

Figure 5 shows a Bland-Altman plot obtained with the
algorithm switching method using the SonR1 contrast variable.
Realization n = 41 of TDB(n) was also used in this figure. A
mean absolute error of ε̄Tm∗

n
= 12.63 ms was observed for this

realization. The Bland-Altman plot properties for the algorithm
switching approach are similar to those of the original detector
(Figure 4), but present a lower dispersion. Indeed, the effect
of the proposed method can be observed when comparing
individual points on both plots. Records presenting the highest
and lowest performance gain when applying the proposed

approach are marked respectively with a star (∗) and a triangle
(4) in figures 4 and 5. The highest gain was of 23.3 ms and
the lowest was of −6.6 ms.

280 300 320 340 360
−50

0

50

Mean + 1.96*SD = 33.34

Mean − 1.96*SD = −32.74

Mean of the differences = 0.30

(

I s y s
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Fig. 5. Bland-Altman plot comparing the reference systole period, estimated
from the echo Doppler signal (Isysk ), with the estimated systole period
(Îsysm,k) obtained with the proposed algorithm switching method using the
SonR1 contrast variable. Data from realization n = 41 of the testing dataset
TDB(n) was used. Points ∗ and 4 represent, respectively, the records with
the highest and lowest performance gain with respect to the original method.

TABLE II
BEST ALGORITHM SWITCHING CONTROL VARIABLES AND THEIR
ASSOCIATED AVERAGE PERFORMANCE. µas

εS
(ms) AND σas

εS
(ms)

REPRESENT RESPECTIVELY THE MEAN ABSOLUTE ERROR AND STANDARD
DEVIATION, CALCULATED OVER THE 100 REALIZATIONS OF THE

BOOTSTRAPPING METHOD DURING THE LEARNING PHASE (S = L) OR
THE TEST PHASE (S = T ). RESULTS OBTAINED FROM THE ORIGINAL

METHOD ARE SHOWN AS REFERENCE.

Control Variable (ck) µasεL σasεL µasεT σasεT

SonR1 contrast 10.8 0.6 12.9 1.5
Heart Rate 11.1 0.6 13.9 1.8

SonR2 amplitude 11.2 0.6 13.6 1.6

µεL σεL µεT σεT
Reference results 12.4 0.6 14.5 1.7
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IV. CONCLUSION

Previous studies have shown that the use of cardiac
mechanoacoustic signals may be useful for the assessment
of the mechanical function of the heart. A number of signal
processing methods have been proposed to estimate the most
significant events of the cardiac cycle from these signals.
However, the optimal configuration of these detectors remains
a challenging problem. In this paper, we have proposed a
generic algorithm switching method that activates an optimal
configuration for the applied signal processing chain, as a
function of the current signal context.

The proposed method has been quantitatively evaluated
using data from a population of 31 patients suffering from
chronic heart failure and implanted with a biventricular pace-
maker, so as to estimate the systolic period for different
pacing configurations, through the analysis of a cardiac micro-
acceleration signal (SonR). A bootstrapping method was ap-
plied to i) estimate the sensitivity of the optimal detector
configuration to a given couple of learning and test datasets
and ii) evaluate the benefits of using the proposed algorithm
switching approach. Results show that modifications of the
signal-to-noise ratio, but also of the instantaneous heart rate,
on the records constituting the learning dataset have an impact
on the definition of the optimal detector configuration. In this
context, the application of the proposed algorithm switch-
ing method provides a statistically significant performance
improvement with respect to the original detector of more
than 11% in the estimation of the systole period (and hence,
diastole period) from the SonR signal. Although interesting,
this improvement may however be of limited impact on some
clinical applications, in which variations of less than 3 ms on
the systolic and diastolic periods can be neglected.

Additional developments may improve even further the ob-
tained results. Indeed, although the semi-automatic approach
for Doppler annotation showed significantly higher interoper-
ator reproducibility than the manual method, the interoperator
estimation error for the systole interval reached 7 ms on a set
of 10 patients randomly selected from DB [14]. The proposed
method provides thus an absolute error that approaches the
variability of the reference. A new clinical protocol is being
designed to acquire the SonR signal synchronously with
invasive blood pressure signals during the implant of the
pacemaker. These data will provide a better reference than
the Doppler method. Furthermore, although results from the
bootstrapping method provided encouraging information about
the improved robustness and generalization capabilities of the
proposed method with respect to the original approach, an
evaluation on a database with a higher number of patients
should be performed.

Finally, results also show that the estimator’s performance
depends on other aspects than the signal context. An addi-
tional improvement may thus be found by optimizing detector
configurations in a patient-specific manner. Current works
are directed towards the estimation of these patient-specific
configurations and also to the extension of the proposed
method to multiple, concurrent control variables and a fuzzy
quantile selection function.
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