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LJK
Mistis team

Montbonnot, France

INRIA Rennes Bretagne Atlantique
Visages team

Rennes, France

INSERM
GIN

Grenoble, France

Abstract

We propose a technique for fusing the out-
put of multiple Magnetic Resonance (MR) se-
quences to robustly and accurately segment
brain lesions. It is based on an augmented
multi-sequence hidden Markov model that in-
cludes additional weight variables to account
for the relative importance and control the
impact of each sequence. The augmented
framework has the advantage of allowing 1)
the incorporation of expert knowledge on the
a priori relevant information content of each
sequence and 2) a weighting scheme which
is modified adaptively according to the data
and the segmentation task under considera-
tion. The model, applied to the detection
of multiple sclerosis and stroke lesions shows
promising results.

1 Introduction

Magnetic Resonance (MR) brain scans consist of 3D
data volumes, composed of voxels (volume elements).
The segmentation of such data sets into their con-
stituent tissues is a fundamental task in a number of
applications. A healthy brain is generally segmented
into three tissues: cephalo spinal fluid, grey matter
and white matter. Statistical based approaches usu-
ally aim to model probability distributions of voxel
intensities with the idea that such distributions are
tissue-dependent.

The delineation and quantification of brain lesions is
critical to establishing patient prognosis, and for chart-

Appearing in Proceedings of the 13th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2010, Chia Laguna Resort, Sardinia, Italy. Volume 9 of
JMLR: W&CP 9. Copyright 2010 by the authors.

ing the development of pathology over time. Typically,
this is performed manually by a medical expert, how-
ever automatic methods have been proposed (see [20]
for review) to alleviate the tedious, time consuming
and subjective nature of manual delineation.

Automatic brain image segmentation remains a chal-
lenging task due to the presence of various artifacts
such as noise or intensity nonuniformities. The latter
induce spatial intensity variations within each tissue
which is a major obstacle to an accurate tissue seg-
mentation.

Automated or semi-automated brain lesion detection
methods can be classified according to their use of mul-
tiple sequences, a priori knowledge about the struc-
ture of normal brain, tissue segmentation models, and
whether or not specific lesion types are targeted. A
common feature is that most methods are based on the
initial identification of candidate regions for lesions. In
most approaches, normal brain tissue a priori maps are
used to help identify regions where the damaged brain
differs, and the lesion is identified as an outlier.

Existing methods frequently avail of complementary
information from multiple sequences. For example, le-
sion voxels may appear atypical in one modality and
normal in another. This is well known and implic-
itly used by neuroradiologists when examining data.
Within a mathematical framework, multiple sequences
enable the superior estimation of tissue classes in a
higher dimensional space.

For multiple MRI volumes, intensity distributions are
commonly modelled as multi-dimensional Gaussian
distributions. This provides a way to combine the mul-
tiple sequences in a single segmentation task but with
all the sequences having equal importance.

However, given that the information content and dis-
criminative power to detect lesions varies between dif-
ferent MR sequences, the question remains as to how
to best combine the multiple channels. Depending on
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the task at hand, it might be beneficial to weight the
various sequences differently.

In this paper, rather than trying to detect lesion vox-
els as outliers from a normal tissue model, we adopt
an incorporation strategy whose goal is to identify le-
sion voxels as an additional fourth component. Such
an explicit modelling of the lesions is usually avoided.
It is difficult for at least two reasons: 1) most lesions
have a widely varying and inhomogeneous appearance
(eg. tumors or stroke lesions) and 2) lesion sizes can be
small (eg. multiple sclerosis lesions). In a standard tis-
sue segmentation approach, both reasons usually pre-
vent accurate model parameter estimation resulting in
bad lesion delineation. Our approach aims to make
this estimation possible by modifying the segmenta-
tion model with an additional weight field. We pro-
pose to modify the tissue segmentation model so that
lesion voxels become inliers for the modified model and
can be identified as a genuine model component. Com-
pared to robust estimation approaches (eg. [22]) that
consist of down-weighting the effect of outliers on the
main model estimation, we aim to increase the weight
of candidate lesion voxels to overcome the problem of
under-representation of the lesion class.

We introduce additional weight variables in the seg-
mentation model and then solve the issue of prescrib-
ing values for these weights by developing an appropri-
ate estimation framework. This has the advantage to
avoid the specification of ad-hoc weight values and to
allow the incorporation of expert knowledge through a
weight distribution. We provide an estimation proce-
dure based on a variational Expectation Maximization
(EM) algorithm to produce the corresponding segmen-
tation. Furthermore, in the absence of explicit expert
knowledge, we show how the weight distribution can
be specified to guide the model toward lesion iden-
tification. Experiments on artificial and real lesions
of various sizes are reported to demonstrate the good
performance of our approach.

2 A weighted multi-sequence Markov

model

Combining sequences is a data fusion issue which, in
a probabilistic setting, naturally becomes an issue of
combining probabilistic distributions. This relates to
the so-called pooling of distributions in the statistical
literature [12]. Examples include linear and logarith-

mic pooling. The former corresponds to a mixture
of distributions, while the latter consists of combining
the distributions into a product where each compo-
nent is raised to a power. This power is viewed as
a weight. In this work we will consider logarithmic
pooling for it appears that it is more appropriate to

our segmentation framework. Note however that the
link to pooling although interesting is only mention for
information and that our approach could be presented
without referring to such aspects.

We consider a finite set V of N voxels on a regular
3D grid. We denote by y = {y1, . . . ,yN} the intensity
values observed respectively at each voxel.

Each yi = {yi1, . . . , yiM} is itself a vector of M in-
tensity values corresponding to M different MR se-
quences. Our goal is to assign each voxel i to one of K
classes considering the observed features data y. For
brain tissue segmentation, we consider in general 3 tis-
sues plus some possible additional classes to account
for lesions in pathological data. We denote the hidden
classes by z = {z1, . . . , zN}, and the set in which z
takes its values by Z.

Typically, the zi’s take their values in {1 . . .K}.
We consider nonnegative weights ω = {ωi, i ∈ V }
in a state space denoted by W and with ωi =
{ωi1, . . . , ωiM}. In our general setting the weights are
sequence and voxel-specific. The rationale is that rel-
evant information is not usually uniformly localized so
that the weights cannot be fixed equally for all the vox-
els in a given sequence but may depend on the location
in the brain.

Spatial dependencies between voxels are then intro-
duced through Markov Random Field (MRF) mod-
elling.

The segmentation task is recast into a missing data
framework in which y are observations and z are miss-
ing variables. Their joint distribution p(y, z|ω;ψ) is
governed by the weights ω ∈ W and parameters ψ ∈ Ψ,
which are both unknown and need to be estimated
within the segmentation procedure. A prior distribu-
tion p(ω) is defined on the weights.

Taking advantage of the fact that Bayesian inference
does not differentiate between missing data and ran-
dom parameters, we propose a framework in which the
weights ω are viewed as additional missing variables.
Denoting the parameters by ψ = {β, φ}, we assume
that the joint distribution p(y, z, ω;ψ) is a MRF with
the following energy function:

H(y, z, ω;ψ)=HZ(z;β)+HW (ω)+
∑

i∈V

log g(yi|zi, ωi;φ) (1)

where the energy term HW (ω) involving only ω does
not depend on ψ and the g(yi|zi, ωi;φ)s are probability
density functions of yi. The three terms in this energy
are further specified below.

Data term. The data term
∑

i∈V
log g(yi|zi, ωi;φ) in

(1) corresponds to the modelling of tissue dependent
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intensity distributions. We consider M-dimensional
Gaussian distributions with diagonal covariance ma-
trices. For each class k, t(µk1, . . . , µkM ) is the mean
vector and {sk1, . . . , skM} the covariance matrix com-
ponents. When zi = k, then G(yim;µzim, szim) repre-
sents the Gaussian distribution with mean µkm and
variance skm. The whole set of Gaussian parameters
is denoted by φ = {µkm, skm, k = 1 . . .K,m = 1 . . .M}.

Our data term is then defined by setting

g(yi|zi, ωi;φ) =

M
∏

m=1

G(yim;µzim,
szim

ωim
) ,

which is proportional to
M
∏

m=1
G(yim;µzim, szim)ωim .

This corresponds to a modified logarithmic pooling [12]
of the M distributions p(zi|yim, ωim;ψ) and p(zi;β) .

Intuitively, the impact of a larger ωim is to give more
importance to the intensity value yim in the model.
Typically an integer ωim greater than one would corre-
spond to increase ωim times the number of voxels with
intensity value yim. When the weights are all one, a
standard multivariate Gaussian case is recovered.

Missing label term. The missing data term
HZ(z;β) in (1) is set to a standard Potts model, with
external field ξ and spatial interaction parameter η,
and whose energy is

HZ(z;β) =
∑

i∈V

(ξizi
+

∑

j∈N (i)

η 〈zi, zj〉),

where N (i) denotes the voxels neighboring i and
〈zi, zj〉 is 1 when zi = zj and 0 otherwise. Param-
eter β = {ξ, η} with ξ = {t(ξi1 . . . ξiK), i ∈ V } being a
set of real-valued K-dimensional vectors and η a real
positive value.

Missing weight term. The weights are assumed in-
dependent from parameters ψ and independent across
modalities. The simplest choice is to define a prior
p(ω) =

∏M

m=1

∏

i∈V p(ωim) where each p(ωim) is
a Gamma distribution with hyperparameters αim

(shape) and γim (inverse scale). Thus

HW (ω) =

M
∑

m=1

∑

i∈V

((αim − 1) logωim − γim ωim).

In practice, the set of hyperparameters is fixed so that
the modes of each prior p(ωim) are located at some
expert weights {ωexp

im ,m = 1 . . .M, i ∈ V } accounting
for some external knowledge, if available. Formally,
we set αim = γim ωexp

im + 1 to achieve this. The ex-
pert weights can be chosen according to the specific
task. For example, when voxels with typical lesion in-
tensities are not numerous enough to attract a model

component, increasing the expert weight for some of
them will help in biasing the model toward the identi-
fication of a lesion class.

Note that we also investigated the use of Dirichlet dis-
tributions for the weights adding the constraints that
they should sum to the sample size N in each modal-
ity. However, there were no real theoretical reasons
to do so and it required less stable numerical com-
putation. This is due to the fact that the Dirichlet
distribution is not a conjugate distribution in our set-
ting. In addition, results were not improved compared
to the simpler independent Gamma case.

3 Estimation by Variational EM

We propose to use an Expectation-Maximization (EM)
[7] framework to deal with the missing label and weight
data.

Let D be the set of all probability distributions on
Z×W. EM can be viewed [16] as an alternating max-
imization procedure of a function F such that for any
q ∈ D, F (q, ψ) = Eq[log p(y,Z,W ; ψ)] + I[q] where
I[q] = −Eq[log q(Z,W )] is the entropy of q, and Eq de-
notes the expectation with respect to q. Capital letters
indicate random variables, and lower case their real-
isations. Denoting current parameter values by ψ(r),
the corresponding alternating procedure assigns:

E-step: q(r) = arg max
q∈D

F (q, ψ(r)) (2)

M-step: ψ(r+1) = arg max
ψ∈Ψ

F (q(r), ψ)

However, the optimization (2) leads to q(r)(z, ω) =
p(z, ω|y;ψ(r)) which is intractable for non trivial
Markov models.

We therefore propose to use an EM variant in which
the E-step is instead solved over a restricted class of
probability distributions, D̃, chosen as the set of distri-
butions that factorize as q(z, ω) = qZ(z) qW (ω) where
qZ ∈ DZ and qW ∈ DW , the sets of probability distri-
butions on Z and W respectively.

The fact that the weights can be equivalently consid-
ered as missing variables or random parameters in-
duces some similarity between our Variational EM
variant and the Variational Bayesian EM algorithm
presented in [2, 13]. Our framework differs slightly. In
contrast to these latter papers, our observations are
not i.i.d. and condition (2) in Section 3 of [2] is not
satisfied. However, these differences are not signifi-
cant. More importantly, our missing data presenta-
tion offers the possibility to deal with extra parameters
(the Gaussian means and variances in our setting) for
which no prior information is available. This is done
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in a maximum likelihood manner and avoids the use of
non-informative priors that could be problematic (dif-
ficulties with non informative priors are listed in [11]
p. 64-65). As a consequence, the variational Bayesian
M-step of [2] is transferred into our E-step while our
M-step has no equivalent in the formulation of [2].

It follows then that the E-step becomes an approxi-
mate E-step that can be further decomposed into two
stages using two equivalent expressions of F when q
factorizes in D̃. At iteration (r), with current esti-
mates denoted by q

(r−1)
W and ψ(r), the updating be-

comes

E-Z-step: q
(r)
Z = arg max

qZ∈DZ

F (q
(r−1)
W qZ ;ψ(r))

E-W-step: q
(r)
W = arg max

qW ∈DW

F (qW q
(r)
Z ;ψ(r)) .

These expressions can be written in terms of a
Kullback-Liebler divergence so that it is not necessary
to use calculus of variations to take functional deriva-
tives with respect to qZ and qW . From the Kullback-
Liebler divergence properties, the solutions of the E-Z
and E-W steps satisfy:

E-Z: q
(r)
Z ∝ exp

(

E
q
(r−1)
W

[log p(z|y,W;ψ(r)]
)

(3)

E-W: q
(r)
W ∝ exp

(

E
q
(r)
Z

[log p(ω|y,Z;ψ(r))]
)

. (4)

The corresponding M-step is

M: ψ
(r+1) = arg max

ψ∈Ψ
E
q
(r)
Z
q
(r)
W

[log p(y,Z,W ;ψ)] .

(5)

It follows from the Markovianity of the joint distri-
bution (1) that any conditional distribution is also
Markovian. In particular, p(z|y, ω;ψ) is Markovian
with energy

H(z|y, ω;ψ) = HZ(z;β) +
∑

i∈V

log g(yi|zi, ωi;φ),

omitting terms independent of z. This latter expres-
sion is linear in ω, so that the solution of (3) is

q
(r)
Z (z) = p(z|y, E

q
(r−1)
W

[W ];ψ(r)).

For most models with dependencies, the Markov prob-
ability p(z|y, ω;ψ) is intractable, but a number of ap-
proximation techniques are available. In particular, we
use a mean-field like algorithm as described in [4]. De-
noting E

(r−1)
qW

[Wim] by ω̄
(r−1)
im , at each iteration, q(r)Z (z)

is approximated by

q̃
(r)
Z (z) ∝

∏

i∈V

M
∏

m=1

G(yim;µ(r)
zim

,
s
(r)
zim

ω̄
(r−1)
im

) ×

p(zi|z̃
(r)

N (i);β
(r)), (6)

where z̃(r) is a particular configuration of Z updated
at each iteration according to a specific scheme and
p(zi|z̃

(r)

N (i);β
(r)) ∝ exp(ξ

(r)
izi

+
∑

j∈N (i) η
(r)〈zi, z̃

(r)
j 〉) (see

[4] for details).

Of the three different schemes available in [4], all cor-
respond to a product approximation (6), however only
the mean field scheme can be seen as a standard vari-
ational approximation.

Similarly, for step (4), the conditional distribution
p(ω|y, z;ψ) is Markovian with energy

H(ω|y, z;ψ) = HW (ω) +
∑

i∈V

log g(yi|zi, ωi;φ).

The choice of independent Gamma distributions for
HW (ω), has the advantage of producing a product
of independent conjugate Gamma distributions for
q
(r)
W (ω). The expectation E

q
(r)
W

[Wim] denoted by ω̄
(r)
im

becomes:

ω̄
(r)
im =

αim + 1
2

γim + 1
2

∑K

k=1 δ(yim, µ
(r)
km, s

(r)
km) q

(r)
Zi

(k)
, (7)

where δ(y, µ, s) = (y − µ)2/s is the squared Maha-
lanobis distance between y and µ (when the variance
is s) and q

(r)
Zi

(k) stands for q
(r)
Z (Zi = k).

For a given sequence m, expression (7) shows that

the expected weight ω̄
(r)
im at voxel i is lower when

δ̄(yim) =
∑K

k=1 δ(yim, µ
(r)
km, s

(r)
km) q

(r)
Zi

(k) is higher. The

quantity denoted by δ̄(yim) can be interpreted as the
expectation, with regard to qZi

of the squared Maha-
lanobis distance between yim and the mean of its tissue
class. A large δ̄(yim) is typical of a model outlier while
a small δ̄(yim) corresponds to an inlier. The value

of ω̄
(r)
im also depends on the expert weight through

αim = γimω
exp
im +1. The higher ωexp

im the higher ω̄
(r)
im is.

It appears then that the value of the expected weight
as given by (7) is a balance between the atypicality of
the voxel and the expert weighting for this voxel.

The M-step (5) can be divided into two independent
steps leading respectively to β(r+1) and φ(r+1). The
maximization over β corresponds to the M-step ob-
tained for a standard Hidden MRF model and can be
solved using a mean field like approximation as in [4].
For the updating of φ, the maximization leads straight-
forwardly to

µ
(r+1)
km =

∑N

i=1 q
(r)
Zi

(k) ω̄
(r)
im yim

∑N

i=1 q
(r)
Zi

(k) ω̄
(r)
im

,

s
(r+1)
km =

∑N

i=1 q
(r)
Zi

(k) ω̄
(r)
im (yim − µ

(r+1)
km )2

∑N

i=1 q
(r)
Zi

(k)
,
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where it appears that voxels with small expected
weights have small impact on the Gaussian parame-
ter values. As justified in [15] par.7.5.3, we can then

replace the divisor
∑N

i=1 q
(r)
Zi

(k) in the s
(r+1)
km formula

by
∑N

i=1 q
(r)
Zi

(k) ω̄
(r)
im .

Related models. It appears that equation (7)
and the Gaussian parameters updating formulas have
forms similar to the equations derived in the case ofK-
component mixtures of M -dimensional t-distributions
[15]. However, our model cannot be reduced to a
standard mixture model due to the non i.i.d. na-
ture of the observed data. The class memberships
z = {z1, . . . , zN} are not independent but linked
trough a Markov distribution and more importantly,
our weight distributions depend on the MR sequence
m but also on the voxel location i, this latter depen-
dency being crucial for lesion detection.

4 Lesion segmentation procedure

The weight field depends on some expert weights to be
fixed so as to incorporate expert knowledge. In prac-
tice, such expert knowledge may not be available or at
least difficult to translate into weight values. There-
fore, following the intuition that lesion voxels should
be weighted more to be appropriately identified, we
propose to set the expert weights to a value ωL greater
than 1 for all voxels in a region L while the others are
weighted 1. To determine region L, we can make use of
any method that defines candidate lesions, eg. manual
seeding by an expert in a semi-supervised framework
or any outlier detection technique (eg. [15] 7.3 or [22]).
In our framework, we propose to apply our algorithm
with K = 3, considering only the three normal tissue
classes (with all ωexp

im and γim set to 1). In this pre-
liminary step, the ξ parameters in the MRF prior are
set to ξik = log fik where fik is the normalized value
given by a normal tissue atlas. We used the ICBM452
probabilistic atlas from The International Consortium
for Brain Mapping1. The interaction parameter η is
estimated as specified in [4] and using a stochastic gra-
dient descent. In such a three-class model, lesions vox-
els are likely to appear as outliers and then assigned
a low weight. Identifying these outliers can then be
done directly by thresholding the estimated weights as
given by (7) or equivalently the expected Mahalanobis
distances δ̄(yim). In our experiments, the threshold
for the weights is found using a chi-squared percentile
to be specified below (see [15] 7.3 for justification).
This percentile choice determines a threshold by in-
dicating how large δ̄(yim) has to be in order for yim

to be classified as outlier. The region L is deduced
by thresholding the more informative weight map (ac-

1http://www.loni.ucla.edu/Atlases/

cording to medical expertise, T1, Flair or DW in our
experiments). We note that the selected voxels are
not just outliers with respect to the tissue model, but
also with respect to the MRF and prior atlas model.
The candidate region is refined using additional inten-
sity constraints, as in [22, 9, 10]. For example for MS,
lesions which are not in white matter and too small
lesions (typically less than 3mm) are removed.

The lesion segmentation can then be carried out using
our model with K = 4 classes. In this second step,
we propose to set γims according to: γim = γL for
all i ∈ L and γim = γL̄ for all i 6∈ L, where γL and
γL̄ are values to be specified. The γim parameters are
related to the variance of the weight distributions and
therefore express the confidence in prior expert knowl-
edge. A high γim induces a higher impact of the prior
in the estimation process. In practice, this means that
a high γim will constrain successive weight estimations
to the vicinity of the initial expert weight ωexp

im . We
propose setting γL̄ to a high value (e.g. γL̄ = 1000) so
as to express our a priori trust in the estimation of the
normal brain tissue classes from the preliminary first
step. The γL value is then set to a lower value to allow
the corresponding average weights ω̄im to vary more.
As regards the external field parameters ξ, they are
considered constant over voxels so that ξ reduces to a
single vector t(ξi . . . ξK), that is estimated. The inter-
action parameter η is also estimated. Then, to carry
out the lesion segmentation algorithm with K = 4, an
initial classification is required. It is computed, from
the result of the preceeding 3-class segmentation, by
assigning all the voxels in L to the lesion class and by
using the final segmentation obtained with the 3-class
model to initialize the normal tissue classes. It follows
that our method requires the choice of three values:
the chi-squared percentile, the weight value ωL and
the γL value that expresses confidence in the prior.
Using simulated data, we first perform a number of
experiments to assess the sensitivity of our method to
these parameter values. Following this analysis, not
reported here, we propose to set the chi-squared per-
centile as follows, so as to limit the number of false
positives in L. For different levels of the chi-squared
percentile varying from 99% to 99.999%, we compute
the percentage of voxels in the corresponding L. We
then select the region L for which this percentage is
closest to 0.4%. If this percentage is greater than 0.4%,
the expert weight ωL is fixed to ωL = 2 and it is set to
ωL = 10 otherwise. Large values of ωL make the lesion
class more representative and handles the possibility
of very small lesions, while a small ωL ensures that the
weighting of a large candidate lesion region does not
affect the estimation of other classes. We set γL = 10
to allow some flexibility in the weight estimation.
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5 Results

Results on simulated data. The simulated data
we consider are 1 mm3 phantoms from the Brain Web
database2 [5]. The database contains simulated im-
ages with multiple sclerosis (MS) lesions for varying
levels of nonuniformity and noise. We use three co-
registered modalities (T1-weighted, T2-weighted and
PD sequences), with three types of lesions (mild, mod-
erate and severe). The noise level is set successively to
3%, 5%, 7% and 9%. The nonuniformity level is set to
0% and 40%. Note that in practice real data sets rarely
show noise and inhomogeneity levels exceeding 9% and
20%. As in [1, 21, 23] we perform a quantitative eval-
uation using the Dice similarity coefficient (DSC) [8].
This coefficient measures the overlap between a seg-
mentation result and the gold standard. Denoting by
TPk the number of true positives for class k, FPk the
number of false positives and FNk the number of false
negatives the DSC is given by: dk = 2TPk

2TPk+FNk+FPk

and dk takes its value in [0, 1] where 1 represents the
perfect agreement. The obtained Dice similarity co-
efficients (DSC) [8] are reported in Table 1. To our
knowledge, very few other BrainWeb MS results exist
in the literature. A recent paper [10] provides results
for all lesion loads, three non-uniformity levels and the
above levels of noise. Another paper [17] reports re-
sults for the three lesion loads but only in the 3% noise
0% nonuniformity case while [9] reports DSC values
for all above levels of noise but only in the moderate
lesion case. Note however, that the results in [9] can-
not be directly compared to ours as a number of slices
were removed (61 of 181 were kept) before processing,
which tends to produce DSC’s overestimated by a few
percent. For the 0% non-uniformity and 3%, 5%,7%
and 9% noise cases reduced to 61 slices, [9] obtained
respectively 77%, 77%, 75% and 73%. We then apply
the method described in [22] using the EMS software
package3. We use the default setting of a 3D poly-
nomial of order 4 with a Mahalanobis threshold of 3.
The results from these methods and the gain in DSC
values using ours are reported in Table 1. These val-
ues show the good performance of our method in the
0% inhomogeneity case. However, it appears that the
segmentation quality decreases as the noise level in-
creases. For comparison, when applying our method
on data previously denoised with the Non Local Means
method [6], we observe significantly higher DSC’s espe-
cially for 7% and 9% noise levels and mild lesions. For
a high inhomogeneity level (40%), we observe satisfy-
ing results considering that our method is not explic-
itly designed to account for such distortions in contrast
to the methods in [22] and [10] which include some

2http://www.bic.mni.mcgill.ca/brainweb/
3http://www.medicalimagecomputing.com/EMS

bias field modelling. The performance of our method
however can be significantly impacted especially in the
mild lesion cases. Although a common solution then
is to pre-process the data for inhomogeneity intensity
correction, dealing with nonuniformities is important
when delineating lesions and we mention in Section
6 directions for improvement of our model in future
work.

Real data sets. We use co-registered T1-weighted,
T2-weighted and Flair sequences (voxel size 1mm2 ×
3mm) from five patients with MS for which the le-
sions were manually delineated by an expert. As an
illustration, we show also how the method can be ap-
plied on a stroke data set for which three co-registered
sequences (T2, DW and Flair) were available (voxel
size 1mm2 × 5mm) . In all cases, the images are pre-
processed for denoising [6] and inhomogeneity inten-
sity correction [14].

For the MS data, the results using our method and
the EMS package [22] are reported in Table 2. They
correspond to an average DSC of 60%+/-16 for our
method and of 55%+/-8 for EMS. The scores with our
method vary from 82% to 45%. For the poorest scores,
we observe a high number of false positives that heav-
ily impact on the DSC as the lesions are small (pa-
tients 3 and 5). They also suggest that a stronger
Markov interaction parameter could be more appro-
priate for these data sets. However, the percentage of
lesion voxels does not seem to explain satisfyingly our
scores variations. The latter are more likely due to
poor contrast between lesions and normal tissues, and
variations in the locations and shapes of the lesions.
Further investigations are needed. As an illustration
of the different possible aspects of MS lesions, the seg-
mentations for Patient 1 and 3 are shown in Figures 1
and 2. Our method gives better results than the EMS
software in 3 cases and equivalent ones (2% loss) in the
2 others. Comparison with results in [10] suggests that
our method performs satisfyingly considering the diffi-
culty of the task. Indeed the authors in [10] obtain, for
three sequences, T1-w, T2-w and PD, an average DSC
of 63%+/-17 over 10 data sets and report an average
DSC of 59%+/-16 using EMS. The average gain over
EMS in [10] is then equivalent to our which is promis-
ing considering that the lesion loads in our data sets
are on average smaller than those in [10]. For addi-
tional comparison, for three sequences, T1-w, T2-w
and PD, the authors in [22] report a best DSC of 45%
over 20 data sets. In [18], using PD, T2 and Flair im-
ages, an average DSC of 78%+/-12 over 23 data sets
is obtained with a method that benefits from human
intervention in addition to parameter tuning.

The result obtained for the stroke example is shown in
Figure 3 (b) (the DSC is 63%). To report other results
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Method 3% 5% 7% 9%
Mild lesions (0.02% of the voxels)

AWEM 72 (+5) 55 (-15) 39 (+5) 22 (+18)
[10] 67 70 34 0
[22] 56 33 13 4
[17] 52 NA NA NA

Moderate lesions (0.18% of the voxels)
AWEM 86 (+7) 80 (-1) 77 (+18) 73 (+36)
[10] 72 81 59 29
[22] 79 69 52 37
[17] 63 NA NA NA

Severe lesions (0.52% of the voxels)
AWEM 93 (+8) 88 (0) 78 (+6) 74 (+33)
[10] 79 88 72 41
[22] 85 72 56 41
[17] 82 NA NA NA

0% non-uniformities
-

Method 3% 5% 7% 9%
Mild lesions (0.02% of the voxels)

AWEM 50 (-25) 0 (-65) 0 (-20) 0 (-30)
[10] 75 65 20 30
[22] 58 27 13 6

Moderate lesions (0.18% of the voxels)
AWEM 64 (-12) 66 (-10) 66 (-1) 0 (-48)
[10] 75 76 67 48
[22] 76 64 47 31

Severe lesions (0.52% of the voxels)
AWEM 88 (+2) 84 (+1) 80 (+6) 67 (+9)
[10] 75 83 74 58
[22] 86 74 62 45

40% non-uniformities

Table 1: DSC results (%) on MS Brain Web simulated
data, for various lesion sizes, noise and non-uniformity
levels. Comparison of different methods: AWEM for
our Adaptive Weighted EM, Garcia-Lorenzo & al’s
method [10], Van Leemput & al.’s method [22] and
Rousseau & al.’s method [17]. The corresponding
gain/loss over the best comparable results is given in
parenthesis. NA means not available.

on stroke lesions, using single T1 sequences for eight
real cases, an average DSC of 64%+/-10 is found in
[20].

6 Discussion

We propose an adaptive weighting scheme for multiple
MR sequences for Brain lesion segmentation. It uses a
tissue segmentation model and is not specific to a le-
sion type. Our approach differs from the mainstream
approaches in that lesion voxels are not considered
solely as outliers to be detected. The general idea is to
first identify voxels that would not be well represented
by a normal tissue model in order to use them to bias,
via the weight prior specification, the model toward
the identification of a lesion class. The weight prior,
and in particular the expert weights, require selection.

LL EMS AWEM
Patient1 0.42 62 82 (+20)
Patient2 1.71 54 56 (+2)
Patient3 0.29 47 45 (-2)
Patient4 1.59 65 72 (+7)
Patient5 0.31 47 45 (-2)
Average 55 +/-8 60 +/-16

Table 2: Lesion load or percentage of lesion vox-
els (LL), DSC results (%) for Van Leemput & al.’s
method [22] (EMS) and for our Adaptive Weighted
EM (AWEM), for 5 patients with MS.

We propose an automatic selection method and future
work includes investigating other settings, particular-
ily in relation to targeting specific lesion types. More
generally, robustness to intensity nonuniformity could
be provided by incorporating the local estimation prin-
ciple of [19]. Another interesting generalization would
be to use full covariance matrices for the Gaussian in-
tensity distributions to handle possible strong corre-
lations between the different sequences. They would
result in more complex estimation formulas but this
could be an important refinement for applications us-
ing temporal multi-sequence data (eg. follow-up of le-
sions). As a generalization of Gaussian mixtures, our
model has larger modelling capabilities. It is entirely
based on a mathematical framework in which each step
is theoretically well-founded. Its ability to provide
good results, when application related expertise is dif-
ficult to formalize, is particularly promising for med-
ical applications. Therefore, it has advantages over
other methods that include ad-hoc processing while
being open to incorporation of more task dependent
information.
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