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ABSTRACT

We propose a technique for fusing the output of multiple Magnetic

Resonance (MR) sequences to robustly and accurately segment brain

lesions. It is based on a Bayesian multi-sequence Markov model

that includes weight parameters to account for the relative impor-

tance and control the impact of each sequence. The Bayesian frame-

work has the advantage of allowing 1) the incorporation of expert

knowledge on the a priori relevant information content of each se-

quence and 2) a weighting scheme which is modified adaptively ac-

cording to the data and the segmentation task under consideration.

The model, applied to the detection of multiple sclerosis and stroke

lesions shows promising results.

Index Terms— MRI, segmentation, brain lesion, Bayesian

model, MRF, variational EM

1. INTRODUCTION

The delineation and quantification of brain lesions is critical to es-

tablishing patient prognosis, and for charting the development of

pathology over time. Typically, this is performed manually by a

medical expert, however automatic methods have been proposed (see

[13] for review) to alleviate the tedious, time consuming and subjec-

tive nature of manual delineation. Automated or semi-automated

brain lesion detection methods can be classified according to their

use of multiple sequences, a priori knowledge about the structure of

normal brain, tissue segmentation models, and whether or not spe-

cific lesion types are targeted. A common feature is that most meth-

ods are based on the initial identification of candidate regions for

lesions. In most approaches, normal brain tissue a priori maps are

used to help identify regions where the damaged brain differs, and

the lesion is identified as an outlier.

Existing methods frequently avail of complementary informa-

tion from multiple sequences. For example, lesion voxels may ap-

pear atypical in one modality and normal in another. This is well

known and implicitly used by neuroradiologists when examining

data. Within a mathematical framework, multiple sequences en-

able the superior estimation of tissue classes in a higher dimensional

space. However, given that the information content and discrimina-

tive power to detect lesions varies between different MR sequences,

the question remains as to how to best combine the multiple chan-

nels. Depending on the task at hand, it might be beneficial to weight

the various sequences differently.

In this paper, rather than trying to detect lesion voxels as out-

liers from a normal tissue model, we adopt an incorporation strat-

egy. We propose to modify the tissue segmentation model so that

lesion voxels become inliers for the modified model and can be iden-

tified as a genuine model component. Compared to robust estima-

tion approaches (eg. [14]) that consist of down-weighting the ef-

fect of outliers on the main model estimation, we aim to increase

the weight of candidate lesion voxels to overcome the problem of

under-representation of the lesion class.

We introduce weight parameters in the segmentation model and

then solve the issue of prescribing values for these weights by de-

veloping a Bayesian framework. This has the advantage to avoid the

specification of ad-hoc weight values and to allow the incorporation

of expert knowledge through a weight prior distribution. We provide

an estimation procedure based on a variational Expectation Maxi-

mization (EM) algorithm to produce the corresponding segmenta-

tion. Furthermore, in the absence of explicit expert knowledge, we

show how the weight prior can be specified to guide the model to-

ward lesion identification. Experiments on artificial and real lesions

of various sizes are reported to demonstrate the good performance of

our approach.

2. A WEIGHTED MULTI-SEQUENCE MARKOV MODEL

We consider a set V of N voxels and denote by y = {y1, . . . ,yN}
the intensity values observed at each voxel. Each yi = {yi1, . . . , yiM}
is itself a vector of M intensity values corresponding to M differ-

ent MR sequences. For brain tissue segmentation, we denote by

z = {z1, . . . , zN} the hidden classes (generally 3 tissues plus some

possible additional classes to account for lesions) and by Z the set

in which z takes its values. Typically, the zi’s take their values in

{1 . . .K}. We consider nonnegative weights ω = {ωi, i ∈ V } in a

state space denoted by W and with ωi = {ωi1, . . . , ωiM}. In our

general setting the weights are sequence and voxel-specific. The ra-

tionale is that relevant information is not usually uniformly localized

so that the weights cannot be fixed equally for all the voxels in a

given sequence but may depend on the location in the brain. Spatial

dependencies between voxels are then introduced through Markov

Random Field (MRF) modelling. Denoting ψ = {β, φ} additional

parameters, we assume that the joint distribution p(y, z, ω;ψ) is a

MRF with the following energy function:

H(y, z, ω;ψ)=HZ(z;β) +HW (ω) +
∑

i∈V

log g(yi|zi, ωi;φ) (1)

where the energy termHW (ω) involving only ω does not depend on

ψ and the g(yi|zi, ωi;φ)s are probability density functions of yi.

The three terms in this energy are further specified below.

Data term. The data term
∑

i∈V

log g(yi|zi, ωi;φ) in (1) corresponds

to the modelling of tissue dependent intensity distributions. We con-

sider M-dimensional Gaussian distributions with diagonal covari-



ance matrices. For each class k, t(µk1, . . . , µkM ) is the mean vec-

tor and {sk1, . . . , skM} the covariance matrix components. When

zi = k, then G(yim;µzim, szim) represents the Gaussian distri-

bution with mean µkm and variance skm. The whole set of Gaus-

sian parameters is denoted by φ = {µkm, skm, k = 1 . . .K,m =
1 . . .M}. Our data term is then defined by setting

g(yi|zi, ωi;φ) =
M
∏

m=1

G(yim;µzim,
szim

ωim
),

which is proportional to
M
∏

m=1

G(yim;µzim, szim)ωim . Intuitively,

the impact of a larger ωim is to give more importance to the inten-

sity value yim in the model. Typically an integer ωim greater than

one would correspond to increase ωim times the number of voxels

with intensity value yim. When the weights are all one, a standard

multivariate Gaussian case is recovered.

Missing data term. The missing data term HZ(z;β) in (1) is set to

a standard Potts model, with external field ξ and spatial interaction

parameter η, whose energy is

HZ(z;β) =
∑

i∈V

(ξizi
+

∑

j∈N (i)

η 〈zi, zj〉) ,

where N (i) denotes the voxels neighboring i and 〈zi, zj〉 is 1 when

zi = zj and 0 otherwise. β = {ξ, η} with ξ = {t(ξi1 . . . ξiK), i ∈
V } being a set of real-valued K-dimensional vectors and η a real

positive value.

Parameter prior term. The weights are assumed independent from

the other parameters ψ and independent across modalities. The sim-

plest choice is to define a prior p(ω) =
∏M

m=1

∏

i∈V
p(ωim) where

each p(ωim) is a Gamma distribution with hyperparameters αim
(shape) and γim (inverse scale). This corresponds to

HW (ω) =
M
∑

m=1

∑

i∈V

((αim − 1) logωim − γim ωim) .

In practice, the set of hyperparameters is fixed so that the modes of

each prior p(ωim) are located at some expert weights {ωexpim ,m =
1 . . .M, i ∈ V } accounting for some external knowledge, if avail-

able. Formally, we set αim = γim ωexpim +1. The expert weights can

be chosen according to the specific task. For example, when voxels

with typical lesion intensities are not numerous enough to attract a

model component, increasing the expert weight for some of them

will help in biasing the model toward the identification of a lesion

class.

3. ESTIMATION BY VARIATIONAL BAYESIAN EM

The joint distribution of the observations y and the missing variables

z is governed by the weights ω ∈ W and parameters ψ ∈ Ψ, which

are both unknown and need to be estimated within the segmentation

procedure. Our procedure must then provide point estimates for the

ψ while accounting for prior knowledge on ω. A natural solution

is to adopt an Expectation-Maximization (EM) framework in which

the weights ω are considered as additional missing variables, but this

results in an intractable E-step for our model. We therefore propose

to use an EM variant similar to the Variational Bayesian EM pre-

sented in [1]. Our framework varies slightly from the case of conju-

gate exponential models described in [1] and more importantly, our

presentation offers the possibility to deal with extra parameters (the

Gaussian means and variances in our setting) for which no prior in-

formation is available. As a consequence, the variational Bayesian

M-step of [1] is transferred into our E-step while our M-step has

no equivalent in the formulation of [1]. It follows that our E-step

becomes an approximate E-step which can be further decomposed

into two stages, respectively E-Z and E-W in which the goal is to

update probability distributions qZ and qW in turn on Z and W re-

spectively. At iteration r, with q
(r−1)
W and ψ(r) representing current

estimations, the E-step decomposes into:

E-Z: q
(r)
Z ∝ exp

(

E
q
(r−1)
W

[log p(z|y,W;ψ(r)]
)

(2)

E-W: q
(r)
W ∝ exp

(

E
q
(r)
Z

[log p(ω|y,Z;ψ(r))]
)

. (3)

The corresponding M-step is

M: ψ(r+1) = arg max
ψ∈Ψ

E
q
(r)
Z
q
(r)
W

[log p(y,Z,W ;ψ)] . (4)

Then step (2) leads to q
(r)
Z (z) = p(z|y, E

q
(r−1)
W

[W ];ψ(r)) which

remains intractable but for which a number of approximation tech-

niques are available. In particular, we use a mean-field like algorithm

as described in [3]. Among the three different schemes available

in [3], all correspond to a product approximation but only one (the

so-called mean field scheme) can be seen as a standard variational

approximation.

In step (3), the choice of independent Gamma priors for HW (ω),

has the advantage of producing a product of independent conjugate

Gamma distributions for q
(r)
W (ω). The expectation E

q
(r)
W

[Wim] de-

noted by ω̄
(r)
im becomes:

ω̄
(r)
im =

αim + 1
2

γim + 1
2

K
∑

k=1

δ(yim, µ
(r)
km, s

(r)
km) q

(r)
Zi

(k)

, (5)

where δ(y, µ, s) = (y − µ)2/s is the squared Mahalanobis dis-

tance between y and µ (when the variance is s) and q
(r)
Zi

(k) stands

for q
(r)
Z (Zi = k). For a given sequence m, expression (5) shows

that the expected weight ω̄
(r)
im at voxel i is lower when δ̄(yim) =

K
∑

k=1

δ(yim, µ
(r)
km, s

(r)
km) q

(r)
Zi

(k) is higher. The quantity denoted by

δ̄(yim) can be interpreted as the expectation, with regard to qZi
of

the Mahalanobis distance between yim and the mean of its tissue

class. A large δ̄(yim) is typical of a model outlier while a small

δ̄(yim) corresponds to an inlier. The value of ω̄
(r)
im also depends on

the expert weight through αim = γimω
exp
im +1. The higher ωexpim the

higher ω̄
(r)
im is. It appears then that the value of the expected weight

as given by (5) is a balance between the atypicality of the voxel and

the expert weighting for this voxel.

The M-step (4) can be divided into two independent steps leading

respectively to β(r+1) and φ(r+1). The maximization over β cor-

responds to the M-step obtained for a standard Hidden MRF model

and can be solved using a mean field like approximation as in [3].

For the updating of φ, the maximization leads straightforwardly to

µ
(r+1)
km =

N
∑

i=1
q
(r)
Zi

(k) ω̄
(r)
im

yim

N
∑

i=1
q
(r)
Zi

(k) ω̄
(r)
im

and s
(r+1)
km =

N
∑

i=1
q
(r)
Zi

(k) ω̄
(r)
im

(yim−µ
(r+1)
km

)2

N
∑

i=1
q
(r)
Zi

(k)

, where it appears

that voxels with small expected weights have small impact on

the Gaussian parameter values. As justified in [9] par.7.5.3, we

can then replace the divisor
N
∑

i=1

q
(r)
Zi

(k) in the s
(r+1)
km formula by

N
∑

i=1

q
(r)
Zi

(k) ω̄
(r)
im .



4. RESULTS

Lesion segmentation procedure. Following the intuition that lesion

voxels should be weighted more to be appropriately identified, we

propose to set the expert weights to a value ωL greater than 1 for all

voxels in a region L while the others are weighted 1. To determine

region L, we propose to apply our algorithm with K = 3, consider-

ing only the three normal tissue classes (with all ωexpim and γim set to

1). In this preliminary step, the ξ parameters in the MRF prior are set

to ξik = log fik where fik is the normalized value given by a normal

tissue atlas. We used the ICBM452 probabilistic atlas from The In-

ternational Consortium for Brain Mapping1. The interaction param-

eter η is also fixed as specified below. In such a three-class model,

lesions voxels are likely to appear as outliers and then assigned a

low weight. Identifying these outliers can then be done directly by

thresholding the estimated weights as given by (5) or equivalently

the expected Mahalanobis distances δ̄(yim). In our experiments, the

threshold for the weights is found using a chi-squared percentile to

be specified below (see [9] 7.3 for justification). The region L is de-

duced by thresholding the more informative weight map (according

to medical expertise, T1, Flair or DW in our experiments). We note

that the selected voxels are not just outliers with respect to the tissue

model, but also with respect to the MRF and prior atlas model. The

candidate region is refined using additional intensity constraints, as

in [14, 6, 7].

The lesion segmentation can then be carried out using our model

with K = 4 classes. In this second step, we propose to set γims
according to: γim = γL for all i ∈ V and γim = γL̄ for all i 6∈ V ,

where γL and γL̄ are values to be specified. The γim parameters are

related to the variance of the weight priors and therefore express the

confidence in prior expert knowledge. A high γim induces a higher

impact of the prior in the estimation process. In practice, this means

that a high γim will constrain successive weight estimations to the

vicinity of the initial expert weight ωexpim . We propose setting γL̄ to a

high value (e.g. γL̄ = 1000) so as to express our a priori trust in the

estimation of the normal brain tissue classes from the preliminary

first step. The γL value is then set to a lower value to allow the

corresponding average weights ω̄im to vary more. As regards the

external field parameters ξ, they are considered constant over voxels

so that ξ reduces to a single vector t(ξi . . . ξK), that is estimated.

Also, to carry out the lesion segmentation algorithm with K = 4, an

initial classification is required. It is computed, from the result of the

preceeding 3-class segmentation, by assigning all the voxels in L to

the lesion class and by using the final segmentation obtained with the

3-class model to initialize the normal tissue classes. It follows that

our method requires the choice of four values: the chi-squared per-

centile, the weight value ωL, the γL value that expresses confidence

in the prior and the interaction parameter η. Using simulated data,

we first perform a number of experiments to assess the sensitivity of

our method to these parameter values. Following this analysis, not

reported here, we propose to set the chi-squared percentile as fol-

lows, so as to limit the number of false positives in L. For different

levels of the chi-squared percentile varying from 99% to 99.999%,

we compute the percentage of voxels in the corresponding L. We

then select the region L for which this percentage is closest to 0.4%.

If this percentage is greater than 0.4%, the expert weight ωL is fixed

to ωL = 2 and it is set to ωL = 10 otherwise. Large values of ωL

make the lesion class more representative and handles the possibility

of very small lesions, while a small ωL ensures that the weighting

of a large candidate legion region does not affect the estimation of

other classes. We set γL = 10 to allow some flexibility in the weight

1http://www.loni.ucla.edu/Atlases/Atlas Detail.jsp?atlas id=6

estimation. The Potts prior is specified by fixing η, as suggested in

[2], to some increasing values from 0.1 to 0.2 to be more robust to

noise.

Results on simulated data. We consider simulated images with

multiple sclerosis (MS) lesions, from the BrainWeb database2,

for varying levels of nonuniformity and noise. We use three

co-registered modalities (T1-weighted, T2-weighted and PD se-

quences), with three types of lesions (mild, moderate and severe).

The noise level is set successively to 3%, 5%, 7% and 9%. The

nonuniformity level is set to 0%. Dealing with nonuniformities is

important when delineating lesions but this issue is reported in fu-

ture work (see Section 5). The obtained Dice similarity coefficients

(DSC) [5] are reported in Table 1. To our knowledge, very few

other BrainWeb MS results exist in the literature. A recent paper

[7] provides results for all lesion loads, three non-uniformity levels

and the above levels of noise. Another paper [10] reports results for

the three lesion loads but only in the 3% noise 0% nonuniformity

case while [6] reports DSC values for all above levels of noise but

only in the moderate lesion case. Note however, that the results in

[6] cannot be directly compared to ours as a number of slices were

removed (61 of 181 were kept) before processing, which tends to

produce DSC’s overestimated by a few percent. For the 3%, 5%,7%

and 9% noise cases reduced to 61 slices, [6] obtained respectively

77%, 77%, 75% and 73%. We then apply the method described in

[14] using the EMS software package3. We use the default setting of

a 3D polynomial of order 4 with a Mahalanobis threshold of 3. The

results from these methods and the gain in DSC values using ours

are reported in Table 1. These values show the good performance of

our method. However, it appears that the segmentation quality de-

creases as the noise level increases. For comparison, when applying

our method on data previously denoised with the Non Local Means

method [4], we observe significantly higher DSC’s especially for

7% and 9% noise levels and mild lesions.

Real data sets. We use co-registered T1-weighted, T2-weighted and

Flair sequences (voxel size 1mm2 ×3mm) from three patients with

MS for which the lesions were manually delineated by an expert.

As an illustration, we show also how the method can be applied on

a stroke data set for which three co-registered sequences (T2, DW

and Flair) were available (voxel size 1mm2 × 5mm) . In all cases,

the images are pre-processed for denoising [4] and inhomogeneity

intensity correction [8]. For the MS data, we obtain DSC values

of 82% (patient 1), 56% (patient 2) and 45% (patient 3) using our

method and 57%, 54% and 46% using the EMS package [14]. The

segmentation for patient 3 is shown in Figure 1. For comparison, for

three sequences, T1-w, T2-w and PD, the authors in [14] report a

best DSC of 45% over 20 data sets. In [11], using PD, T2 and Flair

images, an average DSC of 78%+/-12 over 23 data sets is obtained

with a method that requires human intervention in addition to pa-

rameter tuning. The result obtained for the stroke example is shown

in Figure 2 (b) (the DSC is 63%). To report other results on stroke

lesions, using single T1 sequences for eight real cases, an average

DSC of 64%+/-10 is found in [13].

5. DISCUSSION

We propose an adaptive weighting scheme for multiple MR se-

quences for Brain lesion segmentation. It uses a tissue segmentation

model and is not specific to a lesion type. Our approach differs from

the mainstream approaches in that lesion voxels are not considered

solely as outliers to be detected. The general idea is to first identify

voxels that would not be well represented by a normal tissue model

2http://www.bic.mni.mcgill.ca/brainweb/
3http://www.medicalimagecomputing.com/EMS



Method 3% 5% 7% 9%

Mild lesions

AWEM 68 (+1) 49 (-21) 36 (+2) 12 (+8)

[7] 67 70 34 0

[14] 56 33 13 4

[10] 52 NA NA NA

Moderate lesions

AWEM 86 (+7) 80 (-1) 73 (+14) 64 (+27)

[7] 72 81 59 29

[14] 79 69 52 37

[10] 63 NA NA NA

Severe lesions

AWEM 92 (+7) 86 (-2) 78 (+6) 68 (+27)

[7] 79 88 72 41

[14] 85 72 56 41

[10] 82 NA NA NA

Table 1. DSC results (%) on MS Brain Web simulated data, for

various lesion sizes and noise levels. Comparison of different meth-

ods: AWEM for our Adaptive Weighted EM, Garcia-Lorenzo & al’s

method [7], Van Leemput & al.’s method [14] and Rousseau & al.’s

method [10]. The corresponding gain/loss over the best comparable

results is given in parenthesis. NA means not available.

in order to use them to bias, via the weight prior specification, the

model toward the identification of a lesion class. The weight prior,

and in particular the expert weights, require selection. We propose

an automatic selection method and future work includes investi-

gating other settings, particularily in relation to targeting specific

lesion types. More generally, robustness to intensity nonuniformity

could be provided by incorporating the local estimation principle

of [12]. Another interesting generalization would be to use full co-

variance matrices for the Gaussian intensity distributions to handle

possible strong correlations between the different sequences. They

would result in more complex estimation formulas but this could

be an important refinement for applications using temporal multi-

sequence data (eg. follow-up of lesions). As a generalization of

Gaussian mixtures, our model has larger modelling capabilities. It

is entirely based on a mathematical framework in which each step is

theoretically well-founded. Its ability to provide good results, when

application related expertise is difficult to formalize, is particularly

promising for medical applications. Therefore, it has advantages

over other methods that include ad-hoc processing while being open

to incorporation of more task dependent information.
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