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ABSTRACT

A quantitative analysis of white matter fibers is based on dif-

ferent physical features (shape, scale, orientation and posi-

tion) of the fibers, depending on the specific application. Due

to the different properties of these features, one usually de-

signs different metrics and spaces to treat them individually.

We propose a comprehensive Riemannian framework that al-

lows a joint analysis of these features in a consistent manner.

For each combination, we provide a formula for the distance,

i.e. quantification of differences between fibers and a formula

for geodesics, i.e. optimal deformations of fibers into each

other. We illustrate this framework in the context of cluster-

ing fiber tracts from the corpus callosum and study the results

from different combinations of features.

1. INTRODUCTION

The analysis of white matter fibers, of interest in applications

as varied as the differential diagnosis of white matter diseases,

neurosurgery or a study of brain connectvity, requires differ-

ent techniques and approaches. Some of the more recent Dif-

fusion Tensor MRI (DT-MRI) literature has addressed issues

such as the clustering of fibers into anatomically meaningful

bundles [1], atlas building for group studies [2] and statistical

methods for quantitative analysis [3] or to evaluate fractional

anisotropy, mean diffusivity and other measures of white mat-

ter integrity along tracts [4].

Geometrically, white matter fibers reconstructed using DT-

MRI, can be described as 3-dimensional open, continuous

curves. These fibers, when viewed as curves, have certain

physical features associated with them, namely shape, scale,

orientation, and position. There have been several recent pa-

pers on shape analysis of continuous curves using a Rieman-

nian framework [5]. This type of framework has many ad-

vantages: (1) It provides techniques for comparing, match-

ing, and deforming shapes of curves under the chosen met-

ric. The correspondences for these tasks are established auto-

matically. (2) It also provides tools for defining and comput-

ing statistical summaries of sample shapes for different shape
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classes [6]. In the current problem, there is interest in includ-

ing the other features – scale, orientation, and position – in

the analysis, since this information can significantly aid the

clustering, classifying, labeling and quantitative analysis of

fiber tracts. It is therefore desirable to have a comprehensive

Riemannian framework that can compare and quantify differ-

ences between these multiple features in a coherent way. In

this conceptual paper, we define a sequence of feature spaces,

each associated with a Riemannian metric, such that any de-

sired combination of features of fibers can be analyzed using

geodesics and geodesic distances. An important aspect of this

work is that despite dealing with parameterized curves, the re-

sulting geodesics and geodesic distances are invariant to the

actual parametrization of the curves.

The rest of this paper is organized as follows. The mathe-

matical framework for comparing curves using different fea-

tures is laid out in Section 2. Experimental results demon-

strating feasibility are presented in Section 3, and some con-

cluding remarks are presented in Section 4.

2. MATHEMATICAL FRAMEWORK

Let β : [0, 2π] → R
3 be a parameterized curve, representing

a fiber tract. We are interested in developing a Riemannian

framework where we can study different physical features as-

sociated with β. An important requirement in this analysis is

to obtain results that do not depend on any particular parame-

terization of β. If we use the standard L
2 metric for compar-

ing curves (‖β1 − β2‖2 =
√

∫ 2π

0
‖β1(t) − β2(t)‖2dt), as is

often done in quantitative analysis of fibers, then the results do

not have the independence to the re-parameterizations. This

forces us to choose novel mathematical representations of curves

that allows us to have the desired invariance. In the following,

we are going to present a sequence of representations (spaces

and metrics) that capture different combinations of features

and provide techniques for comparing curves according to

those features. In particular, we are going to provide two

things in each case: (i) a geodesic distance between curves

that depends only on selected features (and is independent of

the parameterization of curves), and (ii) a geodesic path be-

tween the two curves. The geodesic paths are useful for many



reasons. Firstly, it provides a way of deforming one curve into

the other in an optimal way. Secondly, it is fundamental to

computing sample statistics, such as means and covariances,

of curves.

2.1. Comparison using the complete feature set

We start by considering a situation where we are interested in

comparing curves using all the four physical features – shape,

scale, position and orientation. Define a representation of a

curve β using a square-root function (SRF):

h(t) =

√

‖β̇(t)‖β(t) , h : [0, 2π] → R
3 .

In order to compare any two curves, we will compare their

SRFs. The metric that we use for this comparison is the L
2

metric. One advantage of this representation is its invariance

to re-parameterization of curves. We explain this point fur-

ther. Let γ : [0, 2π] → [0, 2π] be a smooth, one-to-one, and

onto function; γ serves as a re-parameterization function for

any curve. (Let Γ denote the set of all such functions.) For a

curve β, the new curve β̃(t) ≡ β(γ(t)) is simply the old curve

with a new parameterization. Also, for the re-parameterized

curve β̃, the SRF is given by h̃(t) =
√

γ̇(t)h(γ(t)). We of-

ten use (h, γ) to denote this re-parameterized SRF. Now, it

can be shown that for any two curves β1, β2, with the cor-

responding SRFs h1 and h2, and any γ ∈ Γ, we have that

‖(h1, γ)− (h2, γ)‖2 = ‖h1 − h2‖2. Because of this equality,

we can define a distance between the two curves as:

da(β1, β2) = min
γ∈Γ

(‖h1 − (h2, γ)‖2) . (1)

This minimization is performed using the standard dynamic

programming (DP) algorithm, and it results in a quantifica-

tion of differences in curves that is associated with all four

features – shape, position, orientation, and scale. In addition

to a proper distance, this framework also provides a geodesic

path between the curves. In this case, the geodesic path is

given by:

ψ(τ) = (1 − τ)h1 + τ(h2, γ
∗) ,

where γ∗ is the optimal re-parameterization obtain earlier in

minimization using DP.

2.2. Comparison using shape, scale and orientation

Suppose we want to compare curves using all features ex-

cept their positions. Now we consider the task of comparing

curves using three features (shape, orientation, and scale) and

thus not including the position in the analysis. In this case we

define a new representation of β, using the velocity function

β̇, as follows: Given β : [0, 1] → R
3, define

q(t) =
β̇(t)

√

||β̇(t)||
, q : [0, 2π] → R

3 .

This function is different from the earlier square-root func-

tion in that this definition is completely based on the velocity

function β̇. Therefore, this function is called the square-root

velocity function (SRVF) [7]. Since this function is invari-

ant to a global translation of β, any analysis based on this

function will not dependent on the global coordinates of the

curves. Note that the norm ||q(t)|| defines the square root

of the instantaneous speed along the curve β. It is important

to know that one can recover the original curve β, within a

translation, using β(t) =
∫ t

0
||q(s)||q(s)ds. If β̃ = β ◦ γ is

a re-parameterized curve, then its SRVF is given by (q, γ) ≡
√

γ̇(t)q(γ(t)), where q is the SRVF of the original curve.

As earlier, it can be shown that for any curves β1, β2, with

the corresponding SRVFs q1 and q2, and any γ ∈ Γ, we have

that ‖(q1, γ) − (q2, γ)‖2 = ‖q1 − q2‖2. Once again, we can

define a distance between the two curves as:

db(β1, β2) = min
γ∈Γ

‖q1 − (q2, γ)‖2 . (2)

This minimization is performed using the DP algorithm, and

it results in a quantification in differences in curves according

to the remaining three features – shape, orientation, and scale.

In this case, the geodesic path between the two curves is given

by:

ψ(τ) = (1 − τ)q1 + τ(q2, γ
∗) ,

where γ∗ is the optimal re-parameterization obtain the earlier

minimization.

2.3. Comparison using shape and orientation

Now we consider a situation where the scales of observed

curves are not important and we want to remove them from

the analysis. In order to remove the influence of scales of

curves in the quantitative analysis, we can rescale them to

be of the same length, say 1. The mathematical representa-

tion and the Riemannian metric remains same as earlier ex-

cept the set of SRVFs is reduced as a consequence of this

rescaling. If the curve β is of length 1, then
∫ 1

0
||β̇(t)||dt =

∫ 1

0
||q(t)||2dt = 1 holds. Therefore, the set of all SRVF func-

tions associated with curves of length one are elements of a

hypersphere in L
2 (since their norms are one). This greatly

simplifies the shape analysis due to the fact that the differen-

tial geometry of a sphere is well-known. For example, if q1
and q2 are two elements of a unit hypersphere, the geodesic

distance between them is given by length of shortest arc con-

necting them on the sphere. This length is actually given by

cos−1(
∫ 2π

0
〈q1(t), q2(t)〉 dt). As in the previous two cases,

this distance does not depend on the re-parameterization of

the two curves. That is, for any q1, q2 and γ,

cos−1(

∫ 2π

0

〈q1(t), q2(t)〉 dt) =

cos−1(

∫ 2π

0

〈(q1, γ)(t), (q2, γ)(t)〉 dt).



This leads to the definition of a distance between two curves

that depends only on their shapes and orientations:

dc(β1, β2) = min
γ∈Γ

(

cos−1(

∫ 2π

0

〈(q1, γ)(t), (q2, γ)(t)〉 dt)

)

.

(3)

In this case, the geodesic path between the two curves is given

by:

ψ(τ) =
1

sin(θ)
[sin(θ − τθ)q1 + sin(τθ)(q2, γ

∗)] ,

where θ = dc(β1, β2).

2.4. Comparison using shape and scale

As the next case, we are interested in comparing curves ac-

cording to their shapes and scales, i.e. we want to remove

the rigid motions from the representations. Let SO(3) the set

of all possible rotations in R
3. If we rotate the curve β by

a rotation matrix O ∈ SO(3), we obtain the curve Oβ(t).
The SRVF of the rotated curve is given by Oq where q is the

SRVF of the original curve. Consequently, the SRVF of a ro-

tated and re-parameterized curve is given by
√

γ̇(t)Oq(γ(t)).
To include the scale, we return to the SRVF representation of

unscaled curves, and the distance function given in Eqn. 2

applies. The SRVFs are no longer restricted to a sphere but

are elements of the full space. In order to remove the orienta-

tion feature, we need to add the minimization over SO(3) as

follows. Define a distance function:

dd(β1, β2) = min
γ∈Γ,O∈SO(3)

‖q1 −O(q2, γ)‖2 . (4)

Let γ∗ andO∗ be the re-parameterization and the rotation that

minimize the right side in this equation. Then, the geodesic

path between any two curves is given by:

ψ(τ) = (1 − τ)q1 + τ(O∗q2, γ
∗) .

2.5. Comparison using shape only

In the final case, we are interested in comparing curves only

according to their shapes. That is, we want to remove all other

physical variables (positions, scales, and orientations) from

the representations, and want to consider only the influence of

shapes in clustering and classification of fibers. The geodesic

distance between any two scaled SRVFs is given by Eqn. 3. In

order to remove orientation, we have to minimize over SO(3)
as well as Γ now. Define a distance function:

de(β1, β2) = min
γ∈Γ,O∈SO(3)

cos−1(

Z 2π

0

〈(q1, γ)(t), O(q2, γ)(t)〉 dt).

(5)

Let γ∗ andO∗ be the re-parameterization and the rotation that

minimize the right side in this equation. Then, the geodesic

path between any two curves is given by: for θ = de(β1, β2),

ψ(τ) =
1

sin(θ)
[sin(θ − τθ)q1 + sin(τθ)(O∗q2, γ

∗)] .

3. CLUSTERING CORPUS CALLOSAL FIBERS

As an application, we consider the clustering of fibers of the

corpus callosum using distances derived from the methods de-

scribed above.

The corpus callosum(CC) is a large collection of fibers

that connect the left and right hemispheres (Fig. 1). Patholo-

gies such as multiple sclerosis [8], schizophrenia and Alzheimer’s

disease [9] selectively affect specific regions of the CC and so

there is interest in segregating the different regions for study.

Clustering is made difficult both because there are no obvious

landmarks and also because a limitation in DT-MRI tractogra-

phy [10] renders fibers which have small differences in shape

and scale along the length of the CC.

Combining shape, orientation and scale feature distances

gives better discrimination than shape information alone. In

the case of the CC, the genu(blue) and splenium(green) are

at opposite ends and are easily grouped using the joint shape,

orientation and scale metric, db (Fig.2a). The results for shape

clustering alone (using de) are shown in Fig. 2b for compari-

son.

There are instances where a combination of shape, orien-

tation and scale do not yield the best results. When a third

bundle, the anterior section of the corpus(red) is added for

clustering, the joint shape and orientation distance, dc, consis-

tently gives better results than the db metric (Fig. 3). This can

be explained by the fact that the genu(blue) and corpus(red)

have roughly the same scale and tend to cluster together with

a db metric. They are, however, oriented in different direc-

tions (0◦, 90◦, 180◦ respectively) and so the dc metric, which

does not include scale, provides better discrimination.

A second example is the clustering of the isthmus(magenta)

and the splenium(green) at the posterior end of the CC(Fig. 4).

The scale parameter, similar for the two groups, dominates

the clustering and using either the shape and scale, dd, or the

db distance gives poor results. The dc metric, which does not

include scale information, gives the best results (Fig. 4a).

4. CONCLUSION

This conceptual paper presents a comprehensive Riemannian

framework for comparing fiber tracts using a variety of physi-

cal variables – shapes, positions, orientations, and scales. De-

pending on the application, some combination of these vari-

ables may be sufficient for a quantitative analysis. We con-

sider a number of these combinations and for each combina-

tion we provide: (i) a geodesic distance function for compar-

ing curves according to the chosen features, (ii) a geodesic

path equation for computing geodesic paths between given

curves. Both these quantities are invariant to the re-parameterizations

of curves. This framework is versatile, in that, it allows for

inclusion of any combination of shape, scale, orientation and

translation in the analysis. The primary application of this

framework analysis of 3D open curves is classification of DT-



MRI white matter fibers in the brain. This framework can

be extended to include additional features, e.g. the fractional

anisotropy function and the mean diffusivity function along

the fibers, to further strengthen the quantitative analysis [11].

Fig. 1. A mid-sagittal view of the corpus callosum. The ros-

trum and genu(blue), rostral body(cyan), anterior corpus(red),

posterior corpus(black), isthmus(magenta), tapetum(yellow)

and splenium(green) subdivisions are based on the Witel-

son [12] classification.

(a) shape+orientation+scale (db) (b) shape (de)

Fig. 2. Clustering the genu and splenium, the anterior and

posterior sections of the CC. Here, shape information alone

(2b) is not adequate for clustering.

(a) shape+orientation (dc) (b) shape+orientation+scale (db)

Fig. 3. Clustering of the genu, corpus and splenium, the an-

terior, middle and posterior sections of the CC. Including the

scale information results in poorer clustering (3b).
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Fig. 4. Clustering the isthmus and splenium, the posterior CC.


