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Alexis Proust6,7, Martine Raphael6,7, Olivier Garraud3, Roger Le Grand1,2, Sophie Prevot4,5 and Yolande Richard1,2,8,9*

Abstract

Background: Conflicting results regarding changes inmucosal IgA production or in the proportions of IgA plasma cells in

the small and large intestines during HIV-infection have been previously reported. Except in individuals repeatedly exposed

to HIV-1 but yet remaining uninfected, HIV-specific IgAs are frequently absent inmucosal secretions fromHIV-infected

patients. However, little is known about the organization and functionality of mucosal B-cell follicles in acute HIV/SIV infection

duringwhich a T-dependent IgA response should have been initiated. In the present study, we evaluated changes in B-cell

and T-cell subsets as well as the extent of apoptosis and class-specific plasma cells in Peyer’s Patches, isolated lymphoid

follicles, and lamina propria. Plasma levels of IgA, BAFF and APRIL were also determined.

Results: Plasma IgA level was reduced by 46% by 28 days post infection (dpi), and no IgA plasma cells were foundwithin

germinal centers of Peyer’s Patches and isolated lymphoid follicles. This lack of a T-dependent IgA response occurs although

germinal centers remained functional with no sign of follicular damage, while a prolonged survival of follicular CD4+ T-cells

and normal generation of IgG plasma cells is observed. Whereas the average plasma BAFF level was increased by 4.5-fold

and total plasma cells were 1.7 to 1.9-foldmore numerous in the lamina propria, the relative proportion of IgA plasma cells in

this effector site was reduced by 19% (duodemun) to 35% (ileum) at 28 dpi.

Conclusion:Our data provide evidence that SIV is unable to initiate a T-dependent IgA response during the acute phase of

infection and favors the production of IgG (ileum) or IgM (duodenum) plasma cells at the expense of IgA plasma cells.

Therefore, an early and generalized default in IgA production takes place during the acute of phase of HIV/SIV infection,

whichmight impair not only the virus-specific antibody response but also IgA responses to other pathogens and vaccines as

well. Understanding themechanisms that impair IgA production during acute HIV/SIV infection is crucial to improve virus-

specific response inmucosa and control microbial translocation.
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Background

The gastrointestinal tract is a privileged site for both HIV-

1/SIV replication and extensive CD4+ T-cell depletion at

all stages of the pathogenic infection [1,2]. One of the

physiological roles of the gastrointestinal tract in immuno-

logical defense is to produce large amounts of IgA that

contribute to the protection of the intestinal mucosa from

pathogens [3]. IgA are produced from plasmablasts

(plasma cell precursors) generated in germinal centers

(GC) of Peyer’s patches (PP) and mesenteric lymph nodes

that constitute major inductive sites of T-dependent IgA

antibodies. Both T-cell help and local production of cyto-

kines participate in T-dependent IgA production [4-7].

IgA class switching also occurs in isolated lymphoid folli-

cles (ILF), which have a cellular composition similar to

PP-associated follicles and constitute dynamic lymphoid

structures that develop in response to chronic infection or

inflammation [8-10]. In addition to the canonical TGFβ1

IgA switch factor, IL10, IL21, B-cell Activating Factor of the
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TNF Family (BAFF) and A Proliferation-Inducing Ligand

(APRIL) are also key factors involved in both T-dependent

and T-independent immunoglobulin class switching [9,11].

These latter cytokines most likely account for IgA produc-

tion in children with defective CD40L [12,13]. In contrast

to humans, only one IgA isotype is found in macaques,

with a structure resembling that of human IgA2 [14,15].

Although conflicting results exist concerning the pres-

ence of HIV-specific IgA in genital secretions of women

repeatedly exposed to HIV-1 but yet remaining uninfected

[16-19], HIV-specific IgA are generally absent or present

at very low levels in plasma and mucosal secretions of

chronically HIV-infected patients [20-24]. In contrast to

other encountered mucosal microbial infections, HIV-1

infection preferentially leads to potent IgG responses in

any body fluids. Decreased levels of IgA in intestinal fluids

associates with reduced proportions of IgA plasma cells

within the lamina propria (LP) of the duodenum and

colon of chronically HIV-infected patients [25]. In AIDS

patients, depletion of IgA plasma cells in the small intes-

tine also correlates with decreased secretion of IgA in sal-

iva [22]. In supernatants of short-term cultured duodenal

biopsies from SIV-infected macaques, Schafer at al.

described a decrease in total IgA and a lack of SIV-specific

IgA for up to 6 months post-infection [26]. However,

measuring HIV/SIV-specific and total antibodies in intes-

tinal and vaginal secretions by ELISA constitutes a tech-

nical challenge [27], likely contributing to conflicting

results. Moreover, IgA secretion is highly dependent on

the integrity of epithelial cells, which is frequently

impaired during acute and chronic HIV/SIV infections

[28-30]. Overall, the lack of IgA in intestinal fluids of

chronically HIV-infected patients or SIV-infected maca-

ques can be explained by a default in shedding, impaired

homing of IgA plasmablasts to LP or their impaired ter-

minal differentiation into plasma cells. In addition, recent

data of Xu et al. suggested that an impaired isotype

switching towards IgA occurs in inductive sites [31], pre-

venting the generation of IgA plasmablasts.

Here, we have examined changes in the proportions

of IgA vs. IgG and IgM plasma cells within the in-

ductive sites (germinal centers of B-cell follicles) and

effector site (LP) of the small intestine (duodenum

and terminal ileum) of acutely SIV-infected macaques

to determine at which step the generation of IgA

plasma cells was impaired. Our data reveal a progres-

sive decrease in plasma IgA after SIV infection, asso-

ciated with a lack of IgA plasma cells within GC of

PP and isolated lymphoid follicles while functional

GC can still give rise to IgG plasma cells. Whereas

the densities of total plasma cells increased in the LP,

the relative proportion of IgA plasma cells decreased.

Altogether, these findings suggest that SIV is unable

to initiate a T-dependent IgA response during the

acute phase of SIV infection despite prolonged sur-

vival of follicular CD4+ T-cells.

Results
Increased B-cell homing to the intestinal mucosa during

the acute phase of infection

Both changes in levels of plasma viral load and CD4+ T-cell

count followed similar kinetics and range in all macaques.

By 11–12 dpi, plasma viral load peaked with a median value

of 7.36 log10 SIV RNA copies/ml before decreasing to 5.78

log10 SIV RNA copies/ml on 28 dpi (Figure 1A). As com-

pared to its value before infection, the median blood CD4+

T-cell count reached its lowest value on 11–12 dpi (76.9%

decrease, p=0.0004), coincident with the peak in viral load

(Figure 1B). In agreement with our previous observations

[32], SIV-infection rapidly induced B-cell accumulation in

the intestinal mucosa as compared to controls (Figure 1C,

1D). However, the intensity of B-cell infiltration was vari-

able among SIV-infected animals and even at different sites

of the intestinal mucosa within one animal (Figure 1E and

1F). The median number of B-cell areas per μm2 of total

duodenal mucosa increased by 1.2-fold and 1.8-fold on 14

and 28 dpi, respectively (Figure 1E) whereas it increased by

1.1-fold and 1-fold in the terminal ileum, respectively

(Figure 1F). Despite high numbers of isolated B-cell follicles

in terminal ileum of SIV-infected animals, the concomitant

increase in mucosal thickness lowers the frequency value.

(Figure 1D, right panel). The development of GC within B-

cell follicles constitutes an independent marker of B-cell ac-

tivation. Within the intestinal mucosa of SIV-infected ani-

mals, B-cell follicles rapidly developed GC, with 39% of

duodenal follicles containing GC as compared to 3% in

controls. Whereas an average of 21% ileal B-cell areas con-

tained GC in controls, 34% and 44% of them contained GC

at 14 and 28 dpi, respectively.

These data evidence a consistent B-cell activation in in-

testinal mucosa during acute SIV infection, with an early

development of GC in intestinal B-cell follicles, which is in-

dicative of the initiation of TD B-cell response. However,

SIV-specific antibodies are only detectable in plasma from

21 dpi on in these animals [29].

Preferential increase in IgG plasma cells within GC during

acute SIV infection

Because CD20 expression is rapidly lost during terminal B-

cell differentiation, human plasma cells and their immediate

precursors are generally detected using CD19, CD38 and

CD138 mAb. While CD19 expression progressively

decreases, CD38 expression begins to be upregulated on

human plasmablasts and CD138 expression characterizes

late stages of plasma cell maturation [33]. The detection of

macaque B-cells engaged into terminal differentiation is

limited by the lack of suitable reagents: human CD19 and

human CD138 mAb possess limited and no cross-reactivity,
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Figure 1 (See legend on next page.)

Chaoul et al. Retrovirology 2012, 9:43 Page 3 of 13

http://www.retrovirology.com/content/9/1/43



respectively, while human CD38 mAb are unable to dis-

criminate plasma cells from other simian B-cells subsets

(data not shown). We thus evaluated changes in plasma

cells by immunohistochemistry using alternative markers:

IRF4/MUM-1 and cytoplasmic Ig. High IRF4/MUM-1 pro-

tein expression is a hallmark of normal plasma cell differen-

tiation and a major marker of myeloma cells [34].

We found rare IgA plasma cells in GC of the duo-

denal mucosa of both control and SIV-infected maca-

ques. In contrast, total (stained by IRF4 mAb) and

IgG plasma cells per GC were 1.1- and 1.4-fold more

numerous in SIV-infected macaques on 28 dpi than

in controls (Figure 2A). In terminal ileum, the median

number of total plasma cells increased by 1.9- and

3.1-fold on 14 and 28 dpi, respectively. This increase

was essentially due to increased numbers of IgG

plasma cells per GC, with a 3.8- and 7.2-fold increase

on 14 and 28 dpi, respectively (Figure 2C). Therefore,

SIV-infection preferentially promotes an IgG response

within GC of the small intestine as in spleen and

mesenteric lymph nodes [32].

SIV infection modifies the ratio of IgA versus IgM or IgG

plasma cells within the LP

Comparison between median values of each group

showed that densities in total plasma cells in the duo-

denal LP were 1.6- and 2.6-fold higher on 14 and 28 dpi,

respectively, than in controls (Figure 3A). However, a

variable increase in the density of each class-specific

plasma cells occurred on 14 and 28 dpi: 2.6- and 5.9-fold

increase for IgM plasma cells, 1.4- and 2.1-fold increase

for IgA, and 1.4- and 1.6-fold increase for IgG, respect-

ively (Figure 3B). Therefore, higher proportions of IgM

plasma cells were observed on 28 dpi (36% vs. 16% in

controls, 2.2-fold) at the expense of IgG (13% vs. 21% in

controls) and IgA (52% vs. 63% in controls) plasma cells

(Additional file 1: Figure S1A).

In the terminal ileum, the density of total plasma cells

also increased in the LP by 1.7- and 4.9-fold on 14 and 28

dpi as compared to controls (Figure 3C). As also compared

to controls, the density of IgA plasma cells increased by

1.4- and 3.1-fold on 14 and 28 dpi, that of IgG by 2.5- and

15-fold and that of IgM by 2.2- and 8.3-fold, respectively.

These changes resulted in higher proportions of IgG

plasma cells at 28 dpi (21.5% vs. 7%) at the expense of IgA

plasma cells (43% vs. 66%) (Additional file 1: Figure S1B).

These data show that SIV-infection favors the generation of

IgM (duodenum) or IgG (ileum) rather than IgA plasma

cells in the LP of the small intestine.

Taken altogether these data suggest a biased isotype

class switching or an impaired survival of IgA plasma cells

in the intestinal mucosa of acutely SIV-infected macaques.

Differential survival of CD4+ CD45RO+ T-cells in GC,

follicular T-cell zones and LP

We next examined T-cell changes in the LP and inductive

sites (PP and ILF) of the small intestine of SIV-infected

macaques. In the duodenum of control animals, we

observed numerous CD4+ (Figure 4B) and CD45RO+ T-

cells (recognized by the OPD4 clone) (Figure 4C,D) distrib-

uted throughout the LP as well as in follicular T-cell zones.

As compared to control macaques, CD45RO+ T-cell dens-

ity was 80% lower in the follicular T-cell zones at 14 dpi

(Figure 4F). The well-defined line of CD4+ and CD45RO+

T-cells, visible at the interface between mucosa and muscu-

laris mucosae in controls (Figure 4B, C, left panels, arrow)

was no more detectable in SIV-infected macaques, except

near and above B-cell follicles (Figure 4C, arrow); indeed

CD45RO+ T-cell density was decreased by 78% and 88% in

muscularis mucosae at 14 and 28 dpi, respectively

(Figure 4G). In contrast, the frequency of CD45RO+ T-cells

within the GC of duodenal B-cell follicles did not decrease

before 28 dpi (44% decrease) (Figure 4E). As shown by

CD23 and Ki67 staining, the polarization of GC was pre-

served until 28 dpi (Additional file 2: Figure S2).

In the terminal ileum, the median CD45RO+ T-cells

density decreased by 59% and 73% respectively at 14 and

28 dpi in follicular T-cell zones, and by 84% in muscularis

mucosae at 14 dpi, as compared to controls (data not

shown). Concomitantly, a 1.8-fold increase in CD45RO+ T-

cells was observed within the GC of ileal B-cell follicles on

14 dpi. Thus, in contrast to follicular T-cell zones and

muscularis mucosae where the depletion in CD4+ T-cells

rapidly progressed from 14 dpi on, CD4+ CD45RO+ T-cells

accumulated within GC of mucosal B-cell follicles at 14

dpi.

(See figure on previous page.)

Figure 1 Increased number of B-cell areas in the intestinal mucosa in acutely SIV-infected macaques. (A) For each of the 13 SIV-infected

macaques, viral load was measured in plasma before infection (Pre; filled circles) and every 3 dpi (open circles). Results are expressed as Log10

copies/mL and bars represent median values. (B) CD4+ T-cells were quantified in whole blood collected from each macaque before infection and

every 3 dpi. For each animal, CD4+ T-cell counts before infection (filled circles; n=13) and at 11-12 dpi (open circles, n=13) are shown. Results are

expressed as cells/μL and bars represent median values. *** p=0.0004 (Wilcoxon test) (C-D) Staining by CD20 mAb of sections from duodenum

(C) and terminal ileum (D) of one representative non-infected macaque (Ctl, n=3) and macaques infected for 14 (14 dpi, n=5) or 28 days (28 dpi,

n=3). Magnification x25 for all panels (E-F) The number of CD20+ B-cell areas per section was divided by the surface of the total mucosa. Results

are expressed as B-cell areas x 10-7/μm2. Each symbol corresponds to one animal. Bars represent median values for each group.
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Figure 2 Acute SIV infection induces a dominant IgG/M over IgA response in GC. (A) Duodenal sections from controls (Ctl left panels) and

macaques infected for 28 days (28 dpi, right panels) were stained with IRF4 mAb, IgA, IgG and IgM polyclonal Ab. Staining of one representative

section for each group of macaques is shown. Magnification x200 and x1000 for enlarged images. (B-C) Each symbol represents the mean

number of IgA, IgG and IgM plasma cells per GC in duodenum (B) and terminal ileum (C) in one macaque. Bars represent median values for each

group.
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Distinct kinetics of apoptosis in GC, follicular T-cell zones

and LP

Because increased apoptosis might contribute to the

paucity of IgA plasma cells, we examined the expression of

the cleaved caspase-3, a key mediator of apoptosis shared

by membrane- and mitochondrial-mediated pathways. In

the duodenal mucosa, no cleaved caspase-3+ cells were

found within GC or follicular T-cell zones of control

macaques (data not shown). In the follicular T-cell zone,

the median density increased by 6.5-fold between 14 and

28 dpi (Figure 5A-F, 5 G) whereas the median number of

cleaved caspase-3+ cells is 10.5 and 3.2 cells/GC at 14 and

28 dpi, respectively (Figure 5H). In the terminal ileum, the

median density of apoptotic cells increased by 11-fold in

follicular T-cell zones and by only 1.7-fold in GC at 14 dpi,

as compared to controls (data not shown). These results

indicate that apoptosis progresses with different kinetics in

the inductive and effector mucosal compartments of SIV-

infected animals.

Decrease in plasma IgA despite increased BAFF

production

In contrast to increased plasma IgG and IgM levels

observed in these macaques prior to 14 dpi [32], plasma

IgA levels progressively decreased from 18% on 14 dpi to

46% on 28 dpi as compared to baseline values before in-

fection (Figure 6A). Considering that BAFF and APRIL

are important IgA inducing factors [13,35-37], we mea-

sured both of these cytokines in plasma. The median con-

centration of plasma APRIL, which was 22 ng/ml before

infection, varied between 13 and 18 ng/ml after SIV infec-

tion (Figure 6B). In contrast, we observed a sharp increase

in plasma BAFF that peaked at 11–12 dpi (1,347 pg/ml

versus 298 pg/ml before infection, 4.5-fold increase), and

remained elevated at 13–15 dpi (918 pg/ml, 3.1-fold in-

crease) and decreased toward baseline values thereafter

(Figure 6C). Throughout the acute phase of infection,

BAFF levels correlated with plasma viral load (p< 0.0001)

(Figure 6D) and inversely with circulating CD4+ T-cell

counts (rho=−0.596, p< 0.0001) but not with plasma IgA

(data not shown).

In an attempt to correlate increased plasma BAFF

levels with its local production in lymphoid tissues,

we compared BAFF expression in the intestinal mu-

cosa of acutely SIV-infected and control macaques

using Buffy2 mAb and immunohistochemical ap-

proach. Both isolated cells and stromal cell network

associated with B-cell follicles, and GC were strongly

stained by Buffy2 mAb (Figure 6E). The stromal net-

work in T-cell areas immediately adjacent to B-cell

follicles was also BAFF+. Our present results thus re-

veal increased BAFF production in intestinal mucosa

even if additional experiments in SIV-infected maca-

ques are needed to identify BAFF-producing cells in

Figure 3 Acute SIV infection induces an increase in total

plasma cells in the intestinal LP with a dominant IgG/M over

IgA response. (A) Duodenal sections from controls (Ctl left panels)

and macaques infected for 28 days (28 dpi, right panels) were

stained with IRF4 mAb, IgA, IgG and IgM polyclonal Ab. Staining of

one representative section for each group of macaques is shown.

Magnification x200 and x1000 for enlarged images. (B, C) Each

symbol corresponds to the mean number of IgA, IgG and IgM

plasma cells in LP of duodenum (B) and terminal ileum (C) from one

macaque. Bars represent median values for each group. * p values

<0.05 (Mann–Whitney, one tailed).
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this microenvironment during SIV infection as well as

to quantify the magnitude of BAFF overproduction in

specific tissue areas. Thus, plasma IgA progressively

decreases during acute SIV infection despite increased

systemic and mucosal production of BAFF.

Discussion
Dysfunctions in circulating B-cells have been extensively

described in chronically, and to a lesser extent, in primary

HIV-infected patients [38-40]; but only very few studies

have been devoted to mucosal B-cells during primary HIV

infection [41]. This situation contrasts with the pivotal role

of the intestinal mucosa as a major site of IgA response in

healthy individuals as well as a site of intense and early

virus replication, heavy damages to CD4+ T-cell subsets

and chronic inflammation in HIV-infected individuals.

Consistent with early inflammation described in pathogenic

SIV/HIV infection, we observed overproduction of BAFF

and infiltration of the intestinal mucosa by isolated lymph-

oid follicles, which progressively organized into secondary

follicles containing well-developed GC (32 and this work).

This increase in B-cell areas is consistent with increased

proportions of B-cells within the ileal LP of primary HIV-

infected patients reported by Levesque et al. [41]. In

addition to PP, isolated lymphoid follicles constitute import-

ant sites for the IgA response against bacteria and are also

associated with chronic inflammation in several disorders

[42,43]. As previously observed in mesenteric lymph nodes

of the same animals [32], a dominant IgG over IgA re-

sponse was observed in GC of both PP and isolated

Figure 4 Prolonged survival of CD4+CD45RO+T-cells in GC as compared to follicular T-cell zones and lamina propria. (A-D) Duodenal

sections from controls (Ctl) and macaques infected at 14dpi and 28dpi were stained with CD20 mAb (A), CD4 mAb (B), CD45RO mAb (C-D). In A

to D, data from one representative macaque per group are shown. Original magnification x100 for panels A to C, x200 for panel D. (E-G) Each

symbol corresponds to the mean density of CD45RO+ cells per μm2 of duodenal muscularis mucosae (MM, G), of follicular T-cell zone (F) and to

the mean number of CD45R0+ cells per GC (E) per macaque. Bars represent median values for each group. * p values <0.05 (Mann–Whitney).
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lymphoid follicles. The sustained generation of IgG plasma-

blasts in these GC that display a preserved polarization

([32] and Additional file 2: Figure S2) is in favor of

functional GC, which nevertheless have lost the capacity to

support T-dependent IgA response. In SIV-infected maca-

ques, normal expression of Bcl6 and Ki67 by GC B-cells

Figure 5 Apoptosis progresses more rapidly in LP than in GC. (A-F) Duodenal sections from one representative macaque at 14 dpi and 28

dpi were stained with anti-cleaved caspase-3 Ab (A-F). Inserts from left panels are shown in middle (B and E; showing GC) and right panels (C

and F; showing follicular T-cell zones). Original magnification x100 in left panels and x400 in middle and right panels. (G-H) Each symbol

corresponds to the mean density of cleaved caspase3+ cells per μm2 of follicular T-cell Zone (G) and to the mean number of cleaved caspase-3+

cells per GC (H) per macaque. Bars represent median values for each group. *p value< 0.05 (Mann–Whitney).
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(Additional file 2: Figure S2) suggests that decreased pro-

duction of IL21 by follicular helper T-cells is likely not re-

sponsible for the lack of IgA plasma cells. The expression

of these factors is under the control of IL21-IL21R interac-

tions [5,44]. Because most systemic IgA are of T-dependent

origin, the marked decrease in plasma IgA levels is

consistent with the absence of IgA plasmablasts within GC.

However, the precise mechanism underlying their absence

within functional GC remains to be further investigated.

As compared to their accelerated death in LP and follicu-

lar T-cell zones, CD4+ CD45RO+ T-cells were present

within GC until 28 dpi, suggesting a prolonged survival

Figure 6 Decreased plasma IgA levels despite a strong increase in BAFF levels. (A) Plasma IgA levels were measured in SIV-infected

macaques before infection (Pre; filled diamonds) and every 7 dpi (open circles). Results are expressed in mg/mL and bars represent median levels.

Significant differences between groups are shown (*p< 0.05). (B-C) APRIL and BAFF levels were measured in plasma from SIV-infected macaques,

before (Pre: filled diamonds) and every 3 dpi (open circles). Results are expressed in pg/mL (BAFF) and ng/mL (APRIL), and bars represent median

levels. Significant differences between groups are shown (*p< 0.05, **p< 0.01). (D) Correlation between BAFF levels and plasma viral load (Log10

pVL) is shown. (E) Ileum sections from control macaques (upper panel) and macaques infected for 14 days (lower panel) were stained with anti-

CD20 (B-cells, left panels) or anti-BAFF (Buffy2, middle and right panels) mAb. Original magnification: x200 for CD20, x100 and x400 for Buffy2.
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within this special environment. This observation could be

related to the low CCR5 expression on follicular helper T-

cells, which might protect them from SIV infection [45]. A

less dramatic loss of CD4+ T-cells in PP than in LP has

been previously reported in SIV-infected monkeys [2,46].

Moreover, Zhang et al. have shown that early GC disrup-

tion (20 dpi) occurs preferentially after SIV infection of In-

dian rhesus monkeys, a model of rapid disease progression

[47]. Aside from the results of Levesque et al. showing GC

fragmentation in primary HIV-infected patients [39], invo-

lution of GC is more frequent during chronic and advanced

phases of the disease when CXCR4 variants are present

[31,48]. However, treatment of HIV-infected patients with

CCR5 antagonists has shown that small populations of X4

variants are more frequently present during primary HIV

infection than previously suspected [49]. When present,

these variants might contribute to the infection of follicular

helper T-cells expressing CXCR4 and, hence, to their apop-

tosis [45].

Because of the presence of follicular helper T-cells and

appropriate GC organization, other mechanisms could ac-

count for the lack of T-dependent IgA response within GC.

Among other possibilities, a decreased production of active

TGFβ1 or retinoic acids associated with impaired activation

of intestinal dendritic cells might reduce the IgA response

[50,51]. Interestingly, differential kinetics of TGFβ1 produc-

tion and responsiveness to TGFβ1 distinguish pathogenic

from non-pathogenic SIV infections [52,53]. The frequency

of TGFβ-positive cells also increases in the peripheral or

mesenteric lymph nodes of SIVmac-infected rhesus maca-

ques but not in those of African green monkeys or sooty

mangabeys [54,55]. Even in acutely SIVmac-infected maca-

ques where TGFβ+ cells accumulate in paracortical T-cell

zones of lymph nodes with a peak at 11-16dpi, these cells

were absent from GC of B-cell follicles. Whether the lack

of TGFβ+ cells reflects impaired T-cell production in SIV-

infected animals or normal low levels of TGF within GC

remains to be clarified. In addition, the absence of newly

generated IgA plasmablasts at the benefit of IgG and IgM

ones as well as the rapid loss of CD4+ T-cells within the LP,

likely participates to decrease the proportions of IgA

plasma cells in this effector site.

Conclusion

Our data point to a generalized default in IgA response,

already detectable during the acute phase of infection.

The understanding of mechanisms causing this impaired

IgA response during HIV/SIV infection is crucial in order

to improve the mucosal virus-specific response and con-

trol microbial translocation. Considering the importance

of mucosal defenses in determining the host-pathogen

balanced relationship [56-58], it remains to be established

whether the early default in the T-dependent IgA response

similarly occurs after infection by mucosal routes which

represent the more frequent routes of HIV infection.

Methods
Animals and ethics statement

Mauritian adult male Cynomolgus macaques (Macaca

fascicularis), weighing 4 to 6 kg, were housed each in

single cages within level 3 biosafety facilities. Animals

were housed and cared for in accordance with the Euro-

pean Guidelines for Animal Care (“Journal officiel des

Communautés Européennes” L358, 18 décembre 1986).

A regional Animal Care and Use Committee: “Comité

Régional d’Ethique sur l’expérimentation animale Ile-de-

France Sud”, reviewed and approved all protocols, with

the goal of improving animal welfare and limiting un-

necessary suffering. The animals were sedated with Keta-

mine chlorydrate (Rhone-Merieux, Lyon, France) before

virus injection, blood sample collection or euthanasia.

The animals were inoculated intravenously with 50

AID50 SIVmac251 and were euthanized at 14 (five ani-

mals), 21 (five animals) and 28 (three animals) days

post-infection (dpi). Blood samples were collected before

infection and every 3 dpi thereafter until euthanasia.

Plasma samples were kept at −80°C until use. Changes

in plasma viral load, CD4+ T-cell counts, circulating and

tissue-specific B-cell subsets of these SIV-infected maca-

ques have been previously reported [32]. After euthan-

asia, duodenal and terminal ileum tissue samples

(corresponding to a five cm section before the caecum)

were formalin-fixed and paraffin-embedded. Control tis-

sues were collected from three non-infected animals.

Quantification of immunoglobulin A and cytokines

Plasma BAFF and APRIL levels were respectively quanti-

fied using the Quantikine® ELISA kit for human BAFF/

BLyS (R&D systems, Abingdon, UK) and APRIL human

ELISA from Bender Medsystems (Tebu-Bio, Le Perray

en Yvelines, France) according to the manufacturer’s

instructions. Plasma IgA concentrations were deter-

mined using a monkey IgA ELISA kit (Alpha diagnostic

Intl Inc., San Antonio, Tx). Each sample was run in du-

plicate and results expressed as mean concentration (pg/

mL for BAFF, ng/mL for APRIL and mg/ml for IgA) ±

SD for each animal and at each time point.

Immunohistochemistry (IHC) and image analysis

All paraffin-embedded tissues were cut into (3 μm) sec-

tions, perpendicularly to the intestinal wall so that each

intestinal compartment could be examined. After antigen

retrieval in sodium citrate (pH6) (CD20, Ki67, Buffy2),

EDTA (pH 9) (CD3) or EDTA (pH 8) (other Ab), sections

were then labeled with optimized concentrations of

monoclonal or polyclonal antibodies against: CD20 (L26),

IRF4 (MUM-1P), IgA (rabbit F(ab’)2, IgG (rabbit F(ab’)2,
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IgM (rabbit F(ab’)2, CD45R0 (OPD4), and CD68 (clone

KP1) (all from Dako, Glosturp, Danemark), CD4 (1 F6)

and CD23 (1B12) (from Novocastra, Newcastle, UK), Ki67

(MIB5, Beckman Coulter, Fullerton), CD3 (SP34-2, Becton

Dickinson, Franklin Lakes, NJ) and cleaved caspase-3

(rabbit serum, Cell Signaling Technology Inc., Danvers,

MA). Polyclonal Ig and mouse isotype controls were from

Dako or R&D systems. Antibody binding was visualized

with the Novolink anti-rabbit/mouse secondary Ab

Polymer kit (Novocastra Laboratories, Newcastle upon

Tyne, UK) according to the manufacturer’s instructions.

Binding of Buffy2 mAb (Enzo life Sciences, Villeurbanne,

France) was visualized by the EnVision™ +Dual Link Kit

from Dako. Nuclei were counter-stained with

Hematoxylin QS (Vector Laboratories, Burlingame, CA).

Digital images of tissue sections were captured without

manipulation using a Zeiss Microscope (Axiophot 2)

coupled to a Microfire camera (Optronics, CA) and using

the MorphoLite software (Explora Nova, La Rochelle,

France).

Image analysis was performed with the Mercator 4.42

software (Explora Nova) on tissue sections from three non-

infected animals as controls and from SIV-infected animals

euthanized at either 14 or 28 dpi. Epithelium was outlined

by hand and excluded in each field. Area from muscularis

mucosae to tips of villi was referred to as “total mucosa”

whereas CD3+ T-cell areas surrounding B-cell areas, includ-

ing isolated lymphoid follicles and B-cell follicles in PP,

were referred to as “follicular T-cell zones” throughout the

manuscript. The LP was defined as total mucosa minus fol-

licular T-cell zones and B-cell areas. The number of B-cell

areas was determined by counting CD20+ areas in total

mucosa at 100X magnification, corresponding to surface

areas of 9,467 to 308,392 (duodenum) and 8,000 to 12,409

(ileum) μm2. Data are expressed as the average number of

B-cell areas per μm2 of total mucosa. Immunoreactive cells

were counted in all GC present in every section at 100X

magnification. By using the Novolink anti-rabbit/mouse

secondary Ab Polymer kit, we experienced limited difficul-

ties in discriminating Ig-producing cells from the reticular

background possibly observed in GC or sub-epithelial

areas. Accordingly, only cells with a clear cytoplasmic stain-

ing were taken into account for quantification. Data are

expressed as mean (±SD) number of positive cells per GC.

Immunoreactive cells were counted in follicular T-cell

zones, muscularis mucosae (MM) or LP by analyzing as

many fields as possible at 100X magnification. Surface areas

of 7,900 to 112,172 (duodenum) and 6,167 to 161,140

(ileum) μm2 for follicular T-cell zones; 1,182 to 71,742

(duodenum) and 29,000 to 51,500 (ileum) μm2 for muscu-

laris mucosae; 147,000 to 900,000 (duodenum) and 235,000

to 750,000 (Ileum) μm2 for LP were analyzed. Data are

expressed as the mean density of immunoreactive cells

(number of positive cells (±SD)/μm2).

Statistical analyses

Non-parametric Wilcoxon‘s test or Mann-Whitney’s test

(two-tailed unless otherwise indicated) and correlations

(Spearman’s rank test) were assessed using the GraphPad

Prism 5 software (La Jolla, CA). p values< 0.05 were con-

sidered as significant.

Additional files

Additional file 1: Figure S1. Acute SIV-Infection changes the density

of IgA, IgG and igM plasma cells in the intestinal LP. The relative

proportions of IgA, IgG and IgM plasma cells in the LP of duodenum (A)

or ileum (B) were calculated, for each group of macaques, as the ratio

between the median numbers of positive cells for one isotype to the

median number of total plasma cells X100.

Additional file 2: Figure S2. Preserved polarization of GC in SIV-

infected macaques. (A-D) Duodenum sections from controls (Ctl; left

panel) and macaques infected for 14 dpi (middle panel) and 28 dpi (right

panel) were stained with CD20 (A), CD23 (B), Ki67 (C) and CD68 (D) Ab.

Stained sections from one representative macaque per group are shown.

Original magnification: x100 for all panels. Because T-dependent response

is strongly dependent on GC, we analyzed the GC organization after SIV

infection. CD23 mAb strongly stains mature FDC network of the light

zone, while Ki67 Ab stains proliferating B-cells present in the dark zone

and helper T-cells in the light zone. ILF without GC in the duodenal

mucosa of controls were stained by CD20 mAb (A) but not by Ki67 mAb

(C). In the absence of typical GC-like structures, CD23 mAb consistently

stained the network of stromal cells in these ILF (B). After SIV-infection,

GC progressively developed in B-cell follicles with numerous Ki67+ cells

on 14 dpi and a strong staining of a patchy FDC network. On 28 dpi, GCs

were clearly hyperplasic but still correctly polarized as shown by Ki67

staining (C). The increase in Ki67+ cells (B-cells and helper T-cells) within

the GC in SIV-infected macaques was concomitant with T-cell activation

in the LP and T-cell zones. Whereas rare CD68+ macrophages were

present within B-cell follicles in controls, they were consistently present

in GC at 14 and 28 dpi. We observed similar changes for CD23 and Ki67

staining in terminal ileum (data not shown).
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