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ABSTRACT 31 

18F-FDG PET measurement of standardized uptake values (SUV) is increasingly used for 32 

monitoring therapy response or predicting outcome. Alternative parameters computed 33 

through textural analysis were recently proposed to quantify the tumor tracer uptake 34 

heterogeneity as significant predictors of response. The primary objective of this study was 35 

the evaluation of the reproducibility of these heterogeneity measurements. Methods: 36 

Double-baseline 18F-FDG PET scans of 16 patients acquired within a period of 4 days prior to 37 

any treatment were considered. A Bland-Altman analysis was carried out on six parameters 38 

based on histogram measurements and 17 heterogeneity parameters based on textural 39 

features obtained after discretization with values between 8 and 128. Results: SUVmax and 40 

SUVmean reproducibility were similar to previously reported studies with a mean percentage 41 

difference of 4.7±19.5% and 5.5±21.2% respectively. By comparison better reproducibility 42 

was measured for some of the textural features describing tumor tracer local heterogeneity, 43 

such as entropy and homogeneity with a mean percentage difference of -2±5.4% and 44 

1.8±11.5% respectively. Several of the tumor regional heterogeneity parameters such as the 45 

variability in the intensity and size of homogeneous tumor activity distribution regions had 46 

similar reproducibility to the SUV measurements with 95% confidence intervals of -22.5% to 47 

3.1% and -1.1% to 23.5% respectively. These parameters were largely insensitive to the 48 

discretization range values. Conclusion: Several of the parameters derived from textural 49 

analysis describing tumor tracer heterogeneity at local and regional scales had similar or 50 

better reproducibility as simple SUV measurements. These reproducibility results suggest 51 

that these FDG PET image derived parameters which have already been shown to have a 52 

predictive and prognostic value in certain cancer models, may be used within the context of 53 

therapy response monitoring or predicting patient outcome. 54 

 55 
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INTRODUCTION 58 

18F-FDG PET imaging is well established in clinical practice for diagnosis and staging. On the 59 

other hand there is increasing interest in the use of this imaging modality within the context of 60 

therapy response assessment or patient follow-up. For such applications, standardized 61 

uptake value (SUVs) measurements are used, with the maximum of tumor activity 62 

concentration (SUVmax) being the most popular since it is the easiest to obtain. The use of the 63 

mean obtained in an 1cm3 sphere centered on the voxel of maximum activity concentration 64 

(SUVpeak (1)), has been proposed as an alternative since it should be more robust to noise 65 

compared to SUVmax, remaining at the same time easy to derive. Additional PET image 66 

derived parameters allowing a more complete lesion characterization include the mean SUV 67 

(SUVmean), the metabolically active tumor volume (MATV, defined as the tumor volume that 68 

can be seen and delineated on a PET image) and the total lesion glycolysis (TLG, defined as 69 

the product of MATV and its associated SUVmean), although they all require an accurate 70 

delineation of the functional tumor volume. Different studies have in the past explored the 71 

role of such PET image derived parameters for assessing response to therapy (2-6). More 72 

recently tracer uptake heterogeneity characterization based on textural analysis extracted 73 

from PET images has been also proposed, allowing an improved predictive and prognostic 74 

value to be derived from baseline PET scans (7,8).  75 

Most frequently monitoring response to therapy involves a comparison of such PET image 76 

derived parameters between a baseline PET scan and a second scan carried out early or 77 

late during treatment, or after the end of treatment. In this case the variation of the 78 

parameters between the two scans is used to characterize response (1). Whether 79 

considering the % difference of PET image derived parameters between successive scans or 80 

the absolute values on a baseline scan the definition of thresholds in order to identify 81 

response or progressive disease requires, amongst others, an evaluation of the physiological 82 

reproducibility that characterizes them. Such evaluations are performed on double baseline 83 

scans acquired before any treatment within a few days interval from each other. 84 
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Until now only few studies have investigated the physiological reproducibility of such 85 

measurements, almost exclusively focusing on SUVs (9-11), and more recently on the MATV 86 

computed using different segmentation algorithms (12,13). Other authors have demonstrated 87 

the sensitivity of several textural feature parameters to PET acquisition and reconstruction 88 

settings (14), demonstrating the need for standardization in order for such image derived 89 

parameters to be used in therapy response assessment studies. However, the physiological 90 

reproducibility of these promising parameters extracted from the analysis of tumor activity 91 

distributions has never been investigated. The objective of our study was therefore to 92 

evaluate the reproducibility of textural features quantifying in a local, regional and global 93 

fashion the tumor tracer uptake heterogeneities, thereby identifying the potential of these 94 

parameters to be used for therapy response monitoring purposes. A comparison with the 95 

physiological reproducibility of SUVs using the same patient datasets was also performed 96 

since they are the most used parameters in current clinical practice and in order to facilitate a 97 

direct comparison with previous reproducibility studies. 98 

 99 

MATERIALS AND METHODS 100 

Patients 101 

16 patients with newly diagnosed esophageal cancer were enrolled in this study. All of these 102 

patients underwent two 18F-FDG PET baseline scans before initiating any treatment. The two 103 

scans were obtained within 2-7 days (median 4.2 days). PET images were acquired on a 104 

PET/CT scanner (Gemini; Philips), with 2-min acquisitions per bed position, 60 min after the 105 

injection of 6MBq/kg of 18F-FDG. Data were reconstructed using a 3D row-action 106 

maximization-likelihood algorithm (RAMLA (15)) with standard clinical protocol parameters (2 107 

iterations, relaxations parameter of 0.05, and 5mm full width at half maximum 3D Gaussian 108 

post-filtering). This analysis was carried out after obtaining the approval of the local 109 

Institutional Ethics Review Board. 110 
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 111 

Tumor Analysis 112 

The primary lesions of each patient were delineated with the Fuzzy Locally Adaptive 113 

Bayesian (FLAB) algorithm which has been previously demonstrated to provide reproducible 114 

MATV automatic delineations (mean difference between baseline scans of 5±13%) (16). 115 

SUVmax and mean SUV within the delineated tumor (SUVmean) were extracted from the 116 

primary tumor in each of the two baseline PET images for each patient. In addition, a number 117 

of tumor heterogeneity parameters shown in table 1, whose value for prognosis and 118 

prediction of outcome and treatment response on FDG PET images has been previously 119 

investigated (7,8), were calculated based on the delineated 3D functional volumes.  120 

 121 

Textural Analysis 122 

We define texture as a spatial arrangement of a predefined number of voxels allowing the 123 

extraction of complex image properties and we define a textural feature as a measurement 124 

computed using a texture matrix (8). Given that these features quantify the spatial 125 

relationship between voxels and their relative intensities, they can be associated to tracer 126 

heterogeneity patterns within the functional volume of the tumor at different scales, namely 127 

local and regional (using texture matrices) or global (using image-voxel-intensity histograms). 128 

The first type of matrices is used to quantify local heterogeneity as they allow 129 

characterization of the intensity variations between consecutive voxels. On the other hand, 130 

the second type of matrices allows characterization of arrangements of larger homogeneous 131 

areas (groups of voxels) within the tumors therefore providing information on tumor regional 132 

heterogeneity. 133 

Local heterogeneity parameters were derived using the co-occurrences matrices (17) and 134 

were computed by considering a 26-connexity (i.e. neighboring voxels in all 13 directions in 135 
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three dimensions) and a 1-distance (i.e. no gap) relationship between consecutive voxels. 136 

On these matrices, 6 different parameters characterizing the local heterogeneity were 137 

calculated by averaging the values on the 13 directions for each feature. The other type of 138 

texture matrices is called intensity size-zone matrix (8, 18) and is constructed in two steps. 139 

First, homogenous areas are identified within the tumor and a matrix linking the size of each 140 

of these homogeneous areas to its intensity is constructed. 11 features characterizing the 141 

regional heterogeneity were calculated from this matrix. For example, parameters can 142 

quantifying the presence of large areas with high intensity (HILAE) or small areas with a low 143 

intensity (LISAE).  144 

Other features characterizing regional heterogeneity include the variability in the size (SZV) 145 

and the intensity (IV) of identified homogeneous tumor zones, as well as the ratio between 146 

the number of homogeneous tumor zones and the overall tumor size (known as the zone-147 

percentage (ZP)). Regional heterogeneity formulae were summarized in table 2 and the 148 

mathematical definition of all local features used in this study have been previously 149 

summarized in Haralick et al (17). A complete list of texture matrices and their associated 150 

features used in this work are included in table 1. 151 

Building texture matrices on which the textural features are computed require a discretization 152 

of the voxel values within the previously delineated MATV on a specific range of values. This 153 

range has to be chosen as a power of two due to algorithmic constraints and in this study the 154 

features were extracted by considering downsampling to ranges of 8, 16, 32, 64 and 128 155 

distinct values. Figure 1 illustrates on a transaxial tumor slice the resulting resampled MATV 156 

for each of these discretization ranges. This necessary downsampling step on the one hand 157 

reduces image noise while on the other normalizes the tumor voxel intensities across 158 

patients, subsequently facilitating the comparison of the extracted textural features. In a 159 

previous study (8) there were no statistically significant differences shown in the extracted 160 

textural feature values as a result of varying the number of discrete values in this resampling 161 

normalization process. 64 discrete values were considered sufficient for a range of SUVs 162 



7 

 

between 4 and 20. In the present study the influence of this parameter in the physiological 163 

reproducibility of the textural feature parameters was also assessed.  164 

 165 

Statistical Analysis 166 

The reproducibility of the quantitative values (q) for each parameter under investigation was 167 

assessed by calculating the mean percentage difference relative to the mean of both 168 

baseline scans using the following formula: 169 

∆ � ��������������/
 . 100                           ��. 1 170 

This analysis was performed for all parameters and in the case of the textural features for all 171 

discretization values (from 8 to 128). A Kolmogorov-Smirnov test was first performed to verify 172 

the normality of the distribution of ∆. Bland-Altman analysis (19) was subsequently used to 173 

evaluate the differences for the image derived parameters considered. The mean and 174 

standard deviation (SD) and the associated 95% confidence intervals (CI) were obtained. 175 

Lower and upper reproducibility limits (LRL and URL), defining the reference range of 176 

spontaneous changes, were calculated as ±1.96 × SD provided that the distribution were not 177 

statistically different than a normal one. Intraclass correlation coefficients (ICC) were in 178 

addition calculated providing an evaluation of the reliability of measurements, whereas their 179 

reproducibility was estimated based on their precision (half the width of 95%CI * 100 %). The 180 

differences in the calculated reproducibility of the textural feature parameters as a function of 181 

the discretization values used in the normalization step was assessed using a paired student 182 

t-test. P values of less than 0.05 were considered statistically significant. 183 

 184 

RESULTS 185 
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For all considered features, ∆ showed no significant differences from a normal distribution 186 

according to the Kolmogorov-Smirnov test. Consequently, Bland-Altman analysis was 187 

performed on all parameters. All of the reproducibility results using the Bland-Altman 188 

analysis, including LRL and URL (and associated 95% CI), are provided in table 3 for both 189 

intensity histogram parameters and textural features, whereas the ICCs and associated 95% 190 

CI and precision are summarized in table 4. As figure 2A and Table 3 show SUV 191 

measurements exhibited reproducibility levels in line with previously published studies. A 192 

mean difference of 5±20% and associated LRL and URL of -34% and +43% were found for 193 

SUVmax, and 6±21% mean difference, with -36% LRL and +47% URL for SUVmean. ICC was 194 

0.94 (95% CI: 0.82-0.98; precision ±8%) and 0.92 (95% CI: 0.78-0.97; precision ±10%) for 195 

SUVmax and SUVmean respectively. Amongst other global tumor heterogeneity characterization 196 

parameters derived using the intensity histogram, kurtosis was found to have similar 197 

reproducibility as SUVmax and SUVmean but a lower ICC (0.80 with 95% CI between 0.44-0.93; 198 

precision ±25%; figure 2B). COV (Mean/SD) was characterized by reproducibility limits 199 

ranging between -43% and 51% and an ICC of 0.82 (95%CI: 0.49-0.94; precision ±23%). 200 

Standard deviation, skewness and minimum intensity had the highest reproducibility limits 201 

ranging between -45 and 60%. 202 

Among the local heterogeneity parameters calculated on co-occurrence matrices, the 203 

entropy, homogeneity and dissimilarity were characterized by reproducibility limits below 204 

30% and an ICC precision below ±16%, the most reproducible being the entropy, with LRL of 205 

-13% and URL of 9% (figure 2C). The other local features (2nd angular moment, contrast and 206 

correlation) were characterized by lower reproducibility, with LRL and URL varying between -207 

40.9% and 62.7%, which is comparable with the reproducibility achieved for some of the 208 

histogram based parameters such as skewness (LRL-URL between -54.2% and 53.6%) or 209 

minimum intensity (LRL-URL between -45.6% and 58.2%). Both the intensity and the size 210 

variability of uniform zones identified within the tumor, representing a measure of regional 211 

tumor heterogeneity and previously shown as significant predictors of response to therapy, 212 
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have shown a better physiological reproducibility with LRL and URL of-56.7% to 37.3% and -213 

34.1% to 56.5% respectively (figure 2D). The respective ICCs for these measurements were 214 

0.97 (95%CI: 0.93-0.99; precision ±3%) and 0.97 (95%CI: 0.91-0.99; precision ±4%). More 215 

specifically the SD of the mean percentage difference was 23.1% and 24% for the textural 216 

feature parameters related to the size and intensity variability of tumor uniform zones 217 

compared to 19.5% and 21.2% in the case of the SUVmax and SUVmean respectively. Other 218 

regional heterogeneity features were not reproducible, as for example small area emphasis 219 

(LRL and URL of -113% and +100%), low-intensity emphasis (LRL and URL of -112% to 220 

+104%) and low-intensity small area emphasis (LRL and URL of -140% to +125%). 221 

As illustrated in figure 3A, all of the textural parameters describing local tumor heterogeneity 222 

were found to be insensitive to the chosen discretization values. Within this context no 223 

statistically significant differences were found for the range of discretization values used (8 to 224 

128) with a mean SD of 5% and 15% for 8 and 128 discretization values respectively. 225 

Several of the regional heterogeneity parameters calculated on intensity size-zone matrices 226 

were sensitive to the chosen discretization value, with statistically significant differences and 227 

SD values twice as high or low with varying discretization, as shown in figure 3B. The large 228 

area emphasis feature, for instance, was characterized by a mean difference of 29±79% and 229 

4±30% using 8 and 64 values respectively. On the other hand, the intensity and size 230 

variability of uniform tumor areas as well as the high intensity emphasis zones where largely 231 

independent (SD differences <20%) of the discretization values with non-statistically 232 

significant differences. 233 

 234 

DISCUSSION 235 

Predicting and monitoring therapy response with PET imaging is one of the rising 236 

applications of this modality. Characterizing intra-tumor heterogeneity of the radiotracer 237 

uptake has been identified as a clinically relevant task and requires semi-automatic 238 
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validated, accurate, robust and reproducible tools (20). We have recently introduced the use 239 

of textural features for the characterization of tumor heterogeneity within the context of 240 

predicting tumor response to therapy using FDG PET imaging (8). It is clearly not 241 

straightforward to associate each of these heterogeneity features with one specific 242 

physiological process within the tumor, particularly in the case of FDG imaging. However, 243 

since all these different parameters represent measurements of tumor local and regional 244 

tracer uptake heterogeneity, a reasonable assumption is that their quantitation can be related 245 

to underlying physiological processes, such as vascularization, perfusion, tumor 246 

aggressiveness, or hypoxia (21, 22). All of these processes have been identified as 247 

potentially contributing to the way the FDG uptake is spatially distributed within a tumor 248 

volume.  249 

A possible clinical significance of tumor uptake heterogeneity patterns can be related to the 250 

efficiency of a given treatment regime. One example is in the case of combined chemo-251 

radiotherapy, where the delivery of a uniform radiation dose to a target tumor volume 252 

independently of the actual tracer distribution within the tumor may be responsible for 253 

possibly explaining failure of treatment (8, 20) Finer characterization of the heterogeneity as 254 

obtained through textural features could therefore help identifying potential responders or 255 

non responders before initiating treatment or early during treatment by characterizing the 256 

evolution of uptake heterogeneity during treatment.  257 

As the features are calculated within a delineated MATV, it is important to reduce the 258 

potential variability that could arise from the reproducibility of the tumor volume delineation 259 

step. There is indeed a large variability in the reproducibility results observed depending on 260 

the segmentation algorithm used. It has been demonstrated that threshold-based delineation 261 

may lead to poorly reproducible delineated MATV on double baseline scans (12,13). On the 262 

other hand, the use of more sophisticated and robust segmentation algorithms (such as 263 

FLAB) has been demonstrated to lead to satisfactory results with similar reproducibility as 264 
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SUVmax (±30%) (13). This delineation method was therefore used in this study in order to 265 

minimize the impact of MATV delineation to the textural features reproducibility.  266 

The parameters extracted from the intensity histogram characterize the distribution of the 267 

voxel intensities without taking into consideration spatial relationships between the voxels. 268 

For this reason, the features extracted from the histogram can be denoted as global. The 269 

maximum intensity of the histogram, corresponding to the SUVmax, had the best 270 

reproducibility along with kurtosis and mean SUV with a SD of the mean percentage 271 

difference of 19.5%, 18% and 21.2% with an ICC of 0.94, 0.80 and 0.92 respectively. These 272 

reproducibility results are similar to these reported on previous reproducibility studies 273 

concerning the SUVs measurements. The reproducibility for the other tumor global features, 274 

namely the minimum intensity, standard deviation and skewness, was worse with LRL and 275 

URL at -54% to 58%, which may compromise their potential for clinical use in order to 276 

characterize tumor response or progression. 277 

The local heterogeneity features derived from co-occurrence matrices provide far more 278 

complex information than the intensity histogram as they are focusing on the relationship 279 

between voxels and theirs neighbors at a local scale. Despite this characteristic of being very 280 

specific and local parameters, some of these features (entropy, local homogeneity) exhibited 281 

even better reproducibility than the SUVmax. These tumor local heterogeneity features were 282 

previously identified amongst other tumor heterogeneity characteristics as being capable of 283 

classifying esophageal cancer patients with high specificity and sensitivity regarding 284 

response to combined radiochemotherapy. On the other hand, other local heterogeneity 285 

features such as contrast, 2nd angular moment or correlation were characterized by larger 286 

reproducibility limits between -40% and 63% (ICC ≥ 0.94). Finally most of the local 287 

heterogeneity parameters were found to be robust versus changes in the discretization 288 

value. 289 
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Regarding regional heterogeneity features, several parameters (SAE, LAE, LIE, LISAE, 290 

LILAE, HILAE and ZP) were found to be sensitive to the choice of the discretization value. 291 

Some of them (particularly SAE, LIE and LISAE) were also found to have poor 292 

reproducibility. All of these parameters are focusing on the smaller homogenous and lower 293 

intensity regions, which on the one hand are expected to be less reproducible and on the 294 

other hand not of the highest interest in terms of characterizing regional tumor FDG uptake 295 

heterogeneities. Other regional heterogeneity parameters such as the features characterizing 296 

large homogeneous and high intensity tumor regions (LAE, HIE, HILAE) may be more 297 

interesting for predicting response to therapy. The high intensity areas, corresponding to high 298 

radiotracer uptake regions, are associated to the more aggressive tumor parts. On the other 299 

hand, the large homogeneous areas represent more robust tumor characteristics since they 300 

are less likely to result from statistical noise or partial volume effects. Among these regional 301 

heterogeneity parameters, only the high intensity regions feature exhibit a reproducibility 302 

similar to the SUVmax (LRL -36% to URL +44%, ICC 0.82), and therefore sufficient to be 303 

considered as a parameter of interest for characterizing patient response.  304 

Finally, the parameters corresponding to the variability in the size or intensity (SZV and IV 305 

respectively) of the homogeneous areas are also good indicators of the regional tumor 306 

heterogeneity having already shown potential for patient differentiation in terms of response 307 

to therapy. These parameters highlight the repartition of the intensity values or region sizes 308 

within the tumor (high tumor heterogeneity corresponding to high variability of the radiotracer 309 

distribution, corresponding in turn to high intensity variability). A good reproducibility with a 310 

SD of the mean percentage difference of 24% and an ICC of 0.97 (compared to 19.5% for 311 

the SUVmax) was measured for these regional heterogeneity features.  312 

Our study suggests that a careful selection of the parameters to quantify local and regional 313 

heterogeneity may provide both a complete and reproducible characterization of the tracer 314 

uptake spatial heterogeneity within tumors in FDG PET images. It should be emphasized that 315 

these parameters exhibiting the highest reproducibility in this study were also the ones that 316 
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were found to be significant predictors of patient response in a previous study (local 317 

homogeneity and entropy, intensity variability and size-zone variability) (8). 318 

One of the limitations of the current study is the small sample of patients, which is however of 319 

the same size and in line with previously published reproducibility studies (9-11). On the 320 

other hand, although our reproducibility results were established on FDG PET images of 321 

esophageal cancer lesions, these lesions displayed a large range of sizes and tracer uptake 322 

heterogeneity patterns. These results obviously require confirmation for other cancer models 323 

and/or radiotracers. Partial volume effects (PVE) were not specifically investigated in this 324 

work, although since tumors were all larger than 10cm3 and in the same body region, PVE is 325 

expected to have a low impact on an inter-patient basis for this dataset as far as the 326 

reproducibility evaluation is concerned. On the other hand, PVE correction can be expected 327 

to have a potentially more important role on the absolute quantification of the heterogeneity 328 

parameters, and therefore the impact of partial volume effects correction within this context 329 

will be the focus of further investigations. 330 

Finally, in this study we assumed that a satisfactory reproducibility range for textural features 331 

could be considered as ~±30-40% (SD of 15-20%) upper and lower limits. This was chosen 332 

accordingly to what was previously defined as reproducibility limits for the use of SUV and 333 

tumor metabolic volume measurements. This means that in order to be used for response 334 

monitoring purposes, a given parameter has to exhibit higher changes during treatment than 335 

its reproducibility range observed in double baseline scans. However, no study has yet to 336 

investigate the evolution of textural features on sequential PET scans and the correlation of 337 

these changes with therapy response. Such a study will provide an estimation of the range of 338 

changes for these parameters between a pre- and post- or early into treatment scans. This 339 

range of values, in comparison with the reproducibility limits of the same parameters as 340 

established in the present study, would allow evaluating the potential of using these 341 

heterogeneity measures within the context of assessing response to therapy with serial FDG 342 

PET scans.  343 
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CONCLUSIONS 344 

The physiological reproducibility varied significantly among the various tumor heterogeneity 345 

features under investigation, only a few of them being identified as reproducible. Based on 346 

our results, heterogeneity parameters that should be preferentially considered for tumor 347 

heterogeneity characterization since they are the most reproducible include entropy, 348 

homogeneity and dissimilarity for local characterization, and variability in the size and 349 

intensity of homogeneous tumor areas for regional characterization.  350 

 351 

  352 
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Figure captions 415 

 416 

Figure 1: Illustration of one of the tumors considered in this study (sagittal slice) for varying 417 

discretization values (from 8 to 128 distinct values). 418 

Figure 2: Bland-Altman plots of intensity histogram parameters: SUVmax (A) and kurtosis (B); 419 

as well as textural features heterogeneity parameters: entropy (C) and size-zone variability 420 

(D). Lines show combined mean, 95%CI, as well as upper and lower reproducibility limits 421 

Figure 3: Plots showing the standard deviation of the mean percentage difference as a 422 

function of the discretization value for parameters derived from co-occurrences matrices 423 

(entropy, dissimilarity, contrast) (A) and intensity size-zone matrices (LISAE: Low-intensity 424 

small-area emphasis, SZV: Size-zone variability, ZP: zone percentage) (B).  425 

  426 
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Texture type, scale and associated features 441 

Type Feature Scale 

Features based on intensity 
histogram 

Minimum intensity 

Global 

Maximum intensity (SUVmax) 

Mean intensity (SUVmean) 

Variance 

SD 

Skewness 
Kurtosis 
Mean/SD 

Features based on 
intensity-size-zone matrix 

Small-area emphasis (SAE) 

Regional 

Large-area emphasis (LAE) 

Intensity variability (IV) 

Size-zone variability (SZV) 

Zone percentage (ZP) 

Low-intensity emphasis (LIE) 

High-intensity emphasis (HIE) 

Low-intensity small-area emphasis (LISAE) 

High-intensity small-area emphasis (HISAE) 

Low-intensity large-area emphasis (LILAE) 

High-intensity large-area emphasis (HILAE) 

Features based on co-
occurrence matrices 

Second angular moment 

Local 

Contrast (inertia) 

Entropy 

Correlation 

Homogeneity 

Dissimilarity 

 442 

Table 1 443 

444 
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Regional Heterogeneity features formulae 445 
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Ω : number of homogeneous areas within the tumor 

z : intensity size-zone matrix 

M : used discretization value 

N : size of the largest homogeneous area within the tumor 

z(i,j) represents the number of areas with an intensity I and a size j 

 

 446 

 447 

Table 2 448 
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 450 

Reproducibility results for all considered image derived parameters, including SUVs and 451 

textural features (calculated using a downsampling range of 64 values). 452 

Texture Feature Mean±SD 95% CI LRL 
95% CI for 
LRL URL 

95% CI for 
URL 

Global 

Minimum intensity 6.3 ± 26.5 -7.8  to 20.4 -45.6 -70.2 to -20.9 58.2 33.6 to 82.8 

Maximum intensity (SUVmax) 4.7 ± 19.5 -5.7 to 15.0 -33.5 -51.7  to -15.4 42.9 24.7 to 61.0 

Mean intensity (SUVmean) 5.5 ± 21.2 -5.8 to 16.8 -36.1 -55.8 to 16.4 47.1 27.3 to 66.8 

SD 1.2 ± 23.2 -11.1 to 13.6 -44.18 -65.7 to -22.6 46.6 25.1 to 68.2 

Skewness -0.3 ± 27.5 -15.0 to 14.3 -54.2 -79.8 to -28.6 53.6 28.0 to 79.2 

Kurtosis 2.1 ± 18.0 -7.4 to 11.7 -33.1 -49.8 to -16.4 37.3 20.6 to 54.0 

Mean/SD 4.1 ± 24.1 -8.8 to 16.9 -43.2 -65.6 to -20.7 51.3 28.9 to 73.7 

Local 

2nd ang moment 10.9 ± 26.4 -3.2 to 25.0 -40.9 -65.5 to -16.3 62.7 38.1 to 87.3 

Contrast (intertia) 5.4 ± 24.0 -18.1 to 7.4 -52.3 -74.6 to -30.0 41.6 19.3 to 63.9 

Entropy -2.0 ± 5.4 -4.9 to 0.9 -12.6 -17.7 to -7.6 8.7 3.6 to 13.8 

Correlation -0.6 ± 27.7 -15.3 to 14.1 -54.8 -15.3 to 14.1 53.6 27.9 to 79.3 

Homogeneity 1.8 ± 11.5 -4.4 to 7.9 -20.8 -31.5 to -10.1 24.4 13.6 to 35.1 

Dissimilarity -2.1 ± 13.0 -9.0 to 4.9 -27.6 -39.7 to -15.5 23.5 11.4 to 35.6 

Regional 

Small Area Emphasis (SAE) -6.0 ± 54.3 -35.0 to 22.9 -112.5 -163.0 to -62.0 100.4 49.9 to 150.9 

Large Area Emphasis (LAE) 3.6 ± 30.0 -12.4 to 19.6 -55.2 -83.1 to -27.3 62.4 34.5 to 90.3 

Intensity Variability (IV) -9.7 ± 24.0 -22.5 to 3.1 -56.7 -79.0 to -34.4 37.3 15.0 to 59.6 

Size-Zone Variability (SZV) 11.2 ± 23.1 -1.1 to 23.5 -34.1 -55.6 to -12.6 56.5 35.0 to 78.0 

Zone Percentage (ZP) -2.7 ± 16.9 -11.7 to 6.2 -35.8 -51.5 to -20.1 30.3 14.6 to 46.0 

Low-Intensity Emphasis (LIE) -4.0 ± 55.3 -33.5 to 25.4 -112.4 -163.9 to -61.0 104.4 
525.9 to 
155.8 

High-Intensity Emphasis (HIE) 3.9 ± 20.4 -7.0 to 14.8 -36.1 -55.1 to -17.1 44.0 24.9 to 63.0 

Low-Intensity Small Area Emphasis (LISAE) - 7.0 ± 67.6 -43.1 to 29.0 -139.5 -202.4 to -76.6 125.4 62.5 to 188.3 
High-Intensity Small Area Emphasis 
(HISAE) 1.0 ± 31.2 -15.6 to 17.6 -60.1 -89.1 to -31.1 62.0 33.0 to 91.0 

Low-Intensity Large Area Emphasis (LILAE) 1.8 ± 28.9 -13.6 to 17.2 -54.9 -81.8 to 28.0 58.5 31.6 to 85.4 
High-Intensity Large Area Emphasis 
(HILAE) 3.5 ± 35.8 -15.6 to 22.6 -66.7 -100.1 to -33.4 73.7 40.4 to 107.1 

 453 

Table 3 454 
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Reliability of measurements using ICCs (calculated using a downsampling range of 64 456 

values). 457 

Texture Feature ICC 95% CI Precision 

Global 

Minimum intensity 0.99 0.92 to 0.99 ± 4% 

Maximum intensity (SUVmax) 0.94 0.82 to 0.98 ± 8% 

Mean intensity (SUVmean) 0.92 0.78 to 0.97 ± 10% 

SD 0.99 0.96 to 0.99 ± 2% 

Skewness 0.82 0.49 to 0.94 ± 23% 

Kurtosis 0.80 0.44 to 0.93 ± 25% 

Mean/SD 0.82 0.49 to 0.94 ± 23% 

Local 

2nd ang moment 0.95 0.85 to 0.98 ± 7% 

contrast (inertia) 0.94 0.82 to 0.98 ± 8% 

Entropy 0.98 0.93 to 0.99 ± 3% 

correlation 0.98 0.94 to 0.99 ± 3% 

homogeneity 0.88 0.64 to 0.96 ± 16% 

dissimilarity 0.93 0.81 to 0.98 ± 9% 

 
Regional 

Small Area Emphasis (SAE) 0.61 -0.11 to 0.86 ± 38% 

Large Area Emphasis (LAE) 0.89 0.70 to 0.96 ± 13% 

Intensity Variability (IV) 0.97 0.93 to 0.99 ± 3% 

Size-Zone Variability (SZV) 0.97 0.91 to 0.99 ± 4% 

Zone Percentage (ZP) 0.84 0.55 to 0.95 ± 20% 

Low-Intensity Emphasis (LIE) 0.68 0.08 to 0.89 ± 41% 

High-Intensity Emphasis (HIE) 0.82 0.48 to 0.94 ± 23% 

 
Low-Intensity Small Area Emphasis 
(LISAE) 0.59 -16 to 0.86 ± 35% 

 
High-Intensity Small Area Emphasis 
(HISAE) 0.83 0.52 to 0.94 ± 21% 

 
Low-Intensity Large Area Emphasis  
(LILAE) 0.93 0.80 to 0.98 ± 9% 

 
High-Intensity Large Area Emphasis 
(HILAE) 0.78 0.36 to 0.92 ± 28% 

 458 

Table 4 459 

 460 


