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Abstract

Background: An Individual Patient Data (IPD) meta-analysis is often considered the gold-standard for synthesising
survival data from clinical trials. An IPD meta-analysis can be achieved by either a two-stage or a one-stage
approach, depending on whether the trials are analysed separately or simultaneously. A range of one-stage
hierarchical Cox models have been previously proposed, but these are known to be computationally intensive and
are not currently available in all standard statistical software. We describe an alternative approach using Poisson
based Generalised Linear Models (GLMs).

Methods: We illustrate, through application and simulation, the Poisson approach both classically and in a
Bayesian framework, in two-stage and one-stage approaches. We outline the benefits of our one-stage approach
through extension to modelling treatment-covariate interactions and non-proportional hazards. Ten trials of
hypertension treatment, with all-cause death the outcome of interest, are used to apply and assess the approach.

Results: We show that the Poisson approach obtains almost identical estimates to the Cox model, is additionally
computationally efficient and directly estimates the baseline hazard. Some downward bias is observed in classical
estimates of the heterogeneity in the treatment effect, with improved performance from the Bayesian approach.

Conclusion: Our approach provides a highly flexible and computationally efficient framework, available in all
standard statistical software, to the investigation of not only heterogeneity, but the presence of non-proportional
hazards and treatment effect modifiers.

Background
Meta-analysis methods are used to integrate quantitative

findings from a set of related research studies with the

aim of providing more reliable and accurate estimates of

a treatment effect [1]. Traditionally a meta-analysis

requires aggregate data (AD), extracted from publications

or received directly from study authors. Summary statis-

tics (e.g. log hazard ratios) are then synthesised using a

fixed or random effects meta-analysis [2], where random

effects can account for between study heterogeneity in

the treatment effect. Meta-regression models [3] attempt

to explain this excess heterogeneity with study-level

covariates. However, the use of AD to conduct a meta-

analysis has inherent problems, for example, hazard

ratios are not always explicitly given in publications,

leading to the development of alternative techniques to

extract appropriate summary statistics [4]. Despite this,

even when using the methods of Parmar et al., it can still

be difficult to extract hazard ratios, as shown by Riley

et al. [5].

An approach often considered the gold-standard alter-

native to an AD meta-analysis is a meta-analysis of indi-

vidual patient data (IPD), which utilises the raw data

from each study. IPD meta-analyses have been shown to

be most common when analyzing time-to-event data [6].

The benefits of conducting an IPD meta-analysis with

time-to-event data include: follow-up time can be longer

and more up to date, analyses can be standardised across

studies, model assumptions can be checked e.g. propor-

tional hazards, and confounders can be adjusted for.

However, IPD can be difficult to obtain, and a variety of

methods have been developed to undertake meta-ana-

lyses from the published literature of time-to-event data.

An early proposal by Dear [7] showed how to jointly
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synthesise survival proportions reported at multiple

times, by utilising their correlation and combining them

in a multivariate meta-analysis using generalised least

squares. Dear investigated only fixed effects, leading the

extension of Arends et al. to incorporate random effects

[8]. Techniques to extract summary statistics from pub-

lished studies have also been demonstated [4] for the use

in standard AD meta-analyses. Fiocco et al. recently used

a Poisson correlated gamma-frailty approach to combine

survival curves under heterogeniety, allowing the investi-

gation of both between-study variance and within and

between-arm correlations [9]. A frailty approach has also

been implemented by Feng et al. incorporating crossed

random effects using penalized quasi-likelihood under a

Poisson likelihood [10]. Further extensions of AD meta-

analyses include assessment of the proportional hazards

assumption [9,11]

IPD meta-analyses of time-to-event data can use either a

two-stage or one-stage approach. The most commonly

used, the two-stage, is achieved by first fitting individual

survival models to each trial. The chosen estimates of

effect are then combined in a standard meta-analysis fra-

mework, now equivalent to an AD meta-analysis. In a

one-stage IPD meta-analysis, patient data from all studies

are analysed simultaneously within a hierarchical frame-

work. This draws parallels with the analysis of IPD from

multi-centre clinical trials, accommodating clustering

within treatment centres; however, in a multi-centre trial

the treatment effect is not often random, whereas in a

meta-analysis it often is. This is because in a multi-centre

trial we can achieve greater consistency in inclusion/exclu-

sion criteria and other aspects of trial protocol, indicating

that a fixed treatment effect is likely to be more appropri-

ate. Senn discusses these issues in more detail [12], but we

emphasise that, although random-effects models are rarely

used to analyse multi-centre trials, they could also adopt

the methods we present here. Indeed, published trial ana-

lysis guidelines do state: “mixed models may be used to

explore heterogeneity of the treatment effect. These mod-

els consider centre and treatment-by-centre effects to be

random, and are especially relevant when the number of

sites is large” [13]. A range of hierarchical survival models

within the Cox framework have been developed [14-17],

which can effectively account for heterogeneity in treat-

ment effect and baseline risk. However, these methods can

have a high computational burden and/or rely on user-

written programs, not currently available in standard sta-

tistical software [16]. Furthermore, these models do not

investigate the validity of the assumption of proportional

hazards. These reasons serve as motivation to consider

alternative approaches, such as the percentile ratio [18] as

a target of inference in this setting, developed predomi-

nantly for when the proportional hazards assumption

appears violated.

The aim of this paper is to explore the use of Poisson

regression, and the generalised mixed model extensions,

to incorporate random effects to perform one- and two-

stage IPD meta-analyses of time-to-event outcomes, as

an alternative to hierarchical Cox models, and to extend

the models to incorporate non-proportional hazards and

treatment-effect modifiers.

Methods
The Poisson approach to survival analysis

Poisson regression is used in the modelling of count data

and contingency tables; however, the extension to model-

ling survival data via a piecewise exponential model [19]

serves as an alternative approach to the widely used Cox

model. It has been shown how the Cox model can be

fitted using a Poisson GLM due to the shared form of the

contribution to the partial log-likelihood, by splitting fol-

low-up time into as many intervals as there are events

[20]. However, this method can be computationally

intensive. Alternatively, we can choose a smaller number

of time intervals with fixed length, where patients are at

risk of experiencing events within these [21], to closely

approximate the Cox model. We also obtain direct esti-

mates of the baseline hazard rate. Fine splitting of the

timescale has been used to allow the use of splines and

fractional polynomials to model the baseline hazard con-

tinuously [21,22].

A standard approach when choosing interval lengths is

to use yearly splits [23]. The narrower the time interval,

the more computationally intensive these methods will

be; however, methods to compensate for this are available

and described below. The shape of the underlying hazard

function plays a crucial role in choosing the number of

intervals necessary to successfully capture its variation. In

this paper, quarter year, half year and yearly splits are

compared.

Undertaking a one-stage IPD meta-analysis within a

Poisson framework is beneficial due to the highly devel-

oped area of GLMs. Random effects GLMs are available

within all commonly used statistical software packages

(e.g. Stata, SAS and R), allowing models to be applied

without the need for specialist software.

Model fitting in a single trial

Consider the analysis of time-to-event data from a single

trial, investigating the effect of a treatment. For the ith

patient, let xi denote treatment group, coded 0/1 to

denote control/treatment. A standard Cox proportional

hazards model can be applied (and estimated by maxi-

mising the partial likelihood [24]):

hi(t) = h0(t)exp(β1xi) (1)

where h0(t) is the unspecified baseline hazard rate and

b1 the log hazard ratio (i.e. the treatment effect) for the
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treatment group compared to the control group. By

splitting follow-up time into k = 1,...,K intervals and

assuming a constant hazard within each interval we can

apply the Poisson model:

dik ∼ Poisson(μik)

log(μik) = β1xi + λk + log(yik)
(2)

where dik is the event indicator, taking the value of 0

or 1 (censored or event), representing a Poisson process

for each patient during each time interval. Note that dik
will not follow a Poisson distribution per se, but by

doing so we recover the correct form of the likelihood

for a piecewise exponential model. b1 is once again the

log hazard ratio for the treatment group compared to

the control group. lk is the baseline hazard rate during

the kth time interval. Time at risk, yik, is included as a

log offset in the linear predictor. If we split follow-up

time at each unique event time and apply the Poisson

model, we would obtain an identical estimate of the

treatment effect, b1, to that from a Cox model.

Two-stage IPD meta-analyses models for survival data

The two-stage approach can be thought of as more tra-

ditional, with individual survival models applied to each

trial, and appropriate summary statistics extracted to

allow AD meta-analysis techniques to be applied.

We extract from the jth trial: the log hazard ratio for

the treatment group compared to the control group,

β̂1j , and its variance V(β̂1j) , using either Cox or Pois-

son models, which can then be combined in a standard

AD meta-analysis. Such AD meta-analysis models

include a fixed effect model, where we assume all trials

are estimating the same true treatment effect, applied

for example using the inverse variance weighted method

[1]. Alternatively, a random effect model can be applied

where we assume that each estimate of the treatment

effect comes from a distribution of treatment effects,

with mean b1 and variance τ
2. Following a random effect

meta-analysis, a prediction interval can be calculated for

the predicted treatment effect in an individual study, to

help show the potential impact of between-trial hetero-

geneity [25,26].

One-stage IPD meta-analyses models for survival data

We now describe one-stage IPD meta-analyses models

using the framework of proportional hazards models.

The following models, if fitted using the Cox propor-

tional hazards model, correspond to those developed by

Tudur-Smith et. al. [14], which are estimated by maxi-

mising the penalized partial likelihood to find the best

linear unbiased predictors, from which the REML esti-

mators of the variance components were found [27].

Model A: Fixed treatment effect with proportional trial

effects

For the ith patient, i = 1,...,nj, in the jth trial, j = 1,...,J, the

hazard function at time t can be written as:

hij(t) = h0(t)exp
(

β0j + β1x1ij

)

(3)

where h0(t) is the baseline hazard function in the

reference trial (say j = 1, so b01 constrained to be zero).

b0j is the proportional effect on the baseline hazard

function due to the jth trial, now j = 2,..., J. xij is coded

-0.5/0.5 to denote control/treatment group and b1 is the

log hazard ratio for the treatment group compared to

the control group, assumed equal across all trials. Model

A makes the restrictive assumption that the hazard

functions in all trials are proportional to a common

baseline function.

The treatment group coding of -0.5/0.5 is used in all

one-stage models presented in this paper. Using this

coding of the treatment group indicator, we assume

equal variability in the log hazard rate across trials for

both treatment groups. If we chose the 0/1 coding, this

imposes the restrictive assumption that the variability in

the log hazard rate of the treatment group coded 0, is

zero [14,28].

Model B: Fixed treatment effect with baseline hazard

stratified by trial

In reality, the assumption that the hazard functions in

all trials are proportional is likely to be inappropriate.

By allowing separate baseline hazard functions for each

trial we can relax this assumption, whilst still assuming

proportional hazards between treatment groups within

each trial. Allowing separate baseline hazards, we have:

hij(t) = h0j(t)exp(β1x1ij) (4)

where h0j(t) is the baseline hazard function in the jth

trial. As in Model A, b1 represents the log hazard ratio

for the treatment group compared to the control group,

assumed constant across trials. No allowance for

between study variation in the treatment effect is made

in Models A and B.

Model C: Random treatment effect with proportional trial

effects

Models which allow for between-trial heterogeneity in

the treatment effect are now considered. The following

formulations assume an underlying mean treatment

effect, coming from a population of treatment effects.

The hazard function for the ith patient in the jth trial

can be written as:

hij(t) = h0(t)exp
(

β0j + β1jx1ij

)

β1j = β1 + b1j

b1j ∼ N(0, τ 2)

(5)
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where h0(t) is the baseline hazard function in the

reference trial (say j = 1, so b01 constrained to be zero).

b0j is the proportional effect on the baseline hazard

function due to the jth trial, now j = 2,...,J. b1 is now

interpreted as the mean log hazard ratio for a popula-

tion of treatment effects, with b1j the deviation of the

log hazard ratio in the jth trial from the population

mean. This assumes that the b1j’s come from a Normal

distribution with mean zero and variance τ
2. This for-

mulation produces a measure of the between-trial het-

erogeneity in the treatment effect, τ2.

Model D: Random treatment effect with baseline hazard

stratified by trial

Finally, separate baseline hazards are allowed, with a

random treatment effect:

hij(t) = h0j(t)exp
(

β1jx1ij

)

β1j = β1 + b1j

b1j ∼ N(0, τ 2)

(6)

where h0j(t) is interpreted as in Model B, with b1, bij
and τ

2 defined in Model C. Model D, as in Model B,

assumes proportional hazards across treatment groups

only within trials.

Models A to D, within a hierarchical Cox framework,

were applied by Tudur-Smith et al. [14] to IPD data

from 5 trials comparing 2 anti-epileptic drugs with

time-to-event outcome first seizure. A total of 1225

patients were analysed. To illustrate the computational

burden of hierarchical Cox models, the application of

Model C took 29 hours to achieve convergence, whilst

the application of Model D took 53 minutes to achieve

convergence.

The Poisson approach to one-stage IPD meta-analysis

models of survival data

We now introduce Poisson based GLM formulations of

the models shown above. Techniques to increase the

computational efficiency of the models are described in

Section titled “Model fitting” below.

One-stage IPD Poisson generalised linear survival models

Models A and C: Fixed/random treatment effect with

proportional trial effects. For time intervals, k = 1,...,K,

we now have:

h0k(t) = λk (7)

where lk represents the constant hazard rate in the kth

interval for the control group, in the reference trial.

Models B and D: Fixed/random treatment effect with

baseline hazard stratified by trial. Models B and D are

similarly altered. For trials, j = 1,...,J, and time intervals,

k = 1,...,K, we can write the baseline hazard function as:

h0jk(t) = λjk (8)

where ljk represents the constant hazard rate in the jth

trial during the kth time interval.

Model fitting

We present Model A in the form of a Poisson GLM:

dijk ∼ Poisson(μijk)

log(μijk) = β0j + β1xij + λk + log(yijk)
(9)

where dijk is the event indicator, taking the value of 0

or 1 (censored or event), representing a Poisson process

for each patient in each trial during each time interval.

b0j and b1 are as in Model A, with lk once again the

hazard rate in the control group of the reference trial.

Time at risk, yijk, is included as a log offset in the linear

predictor. The extension to separate trial effects can be

achieved by simply replacing the linear b0j and lk terms

with the interaction of them, i.e. Model B.

Fixed effect Models A and B can be implemented

using any GLM software package, such as glm within

Stata [29]. Models C and D, with random treatment

effects, can be implemented using a multilevel mixed

effects Poisson regression package, such as Stata’s

xtmepoisson.
It is widely known that within a mixed effects frame-

work, maximum likelihood performs poorly when esti-

mating variance parameters when there are a small

number of studies [28]. This provides motivation for

considering a Bayesian approach to the models dis-

cussed above, described and undertaken in the simula-

tion study and results sections below.

If we have N independent Poisson distributed random

variables, each with mean l, then the sum of these N

distributions is itself a Poisson distributed random vari-

able with mean Nl. Given this condition, it is possible

to ‘collapse’ each split dataset across covariate patterns

(for example, separately collapse the dataset for males

and females) [30]. A Poisson GLM model can then be

fitted to the collapsed dataset, giving identical parameter

estimates to a Poisson GLM fitted to the non-collapsed

dataset. This process dramatically reduces computation

time when datasets are large; however, is only valid

when categorical covariates are used. It is not possible

to collapse across covariate patterns when including

truly continuous covariates.

When handling sparse event data, the situation may

arise when no events occur within a split time interval.

In this case, when applying the models described in this

section, we obtain nuisance estimates of the baseline

hazard rate for any time interval in which no events

occur. This can be remedied by the merging of time

intervals.
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Simulation study

To fully assess the performance of these methods a

simulation study was devised. Data is simulated consist-

ing of a random treatment effect and proportional trial

effects. We investigate the impact of the number of stu-

dies and time interval length by simulating either 5, 10

or 30 trials, and applying Poisson one-stage models with

time intervals of length 0.25, 0.5 or 1 year. Each trial is

simulated under the following steps:

1. Generate 2000 patients; 50% assigned to treat-

ment, 50% to control.

2. Simulate a random treatment effect (on the log

scale) with mean, a = -0.4, and inherent between-

trial heterogeneity, τ = 0.2. Therefore b1 ~ N

(-0.4,0.22), indicating a 33.0% (95% CI: 0.8%, 54.7%)

reduction in the event rate due to treatment.

3. Generate a fixed trial effect, b0 ~ N(0,0.52), again

on the log scale.

4. Generate survival times from a Weibull distribu-

tion using a formulation proposed by Bender et al.

[31]. Scale and shape parameters were defined as l =

0.042 and g = 1.2, respectively. These values are based

on fitting a Weibull survival model to the SHEP trial.

All observations are censored after 5 years. This pro-

duces a 74.8% and 82.4% survival proportion after

5 years in the control and treatment groups,

respectively.

This results in 9 scenarios, in which 1000 repetitions

were simulated. For each simulated dataset, Model C

was applied both classically using xtmepoisson within

Stata, whilst WinBUGS, through the use of winbugs-
fromstata[32], was used to apply the equivalent Baye-

sian model. Each Bayesian model was applied with a

burn-in of 1000 and sample of 5000. This was deemed

adequate to achieve convergence through extensive test-

ing of the simulations. Vague priors were assigned to all

parameters under the Bayesian approach. The treatment

group indicator was coded -0.5/0.5.

Extensions to the one-stage approach

Treatment effect modifiers

It is becoming increasingly accepted that variation in

treatment effects, as a source of heterogeneity, can only

be sufficiently detected and explained when IPD are

available [33]. IPD allows one to examine covariates and

within-trial interactions at the patient-level. In contrast,

meta-regression of only AD allows one to examine study-

level covariates and interactions across-trials, and this

has been shown to have low power to detect true interac-

tions between patient covariates and treatment effect

[34], and may also be subject to ecological bias and study

level confounding [35].

The discrimination between within-trial and across-

trial treatment-covariate interactions is a current issue

in IPD meta-analysis [35,36], which requires further

work within the survival analysis field. Below we present

a simple one-stage model which produces a weighted

average of the within- and across-trial interactions,

though in our applied example the within-trial interac-

tion dominates.

Fixed treatment effect with separate trial effects Let

wij be a patient-level covariate, e.g. overweight status

(coded 0/1 for no/yes, see Table 1) for the ith patient in

the jth trial. Extending Model B to incorporate a treat-

ment-covariate interaction gives:

hijk(t) = λjkexp(β1xij + μwij + γ xijwij) (10)

where ljk is the baseline hazard rate during the kth

time interval in the jth trial, b1 now represents the treat-

ment effect when wij = 0, μ is the change in the log

hazard rate of the control group for a one-unit increase

in wij and g is the change in the treatment effect for a

one-unit increase in wij.

Table 1 Summary statistics for the IPD meta-analysis investigating effectiveness of anti-hypertension drugs

Trial Total number of patients All-Cause Deaths Percent Overweight (%)

Control Treatment Control Treatment Control Treatment

ATMH 754 785 13 9 64.24 65.69

COOP 199 150 22 20 51.25 56.00

EWPH 82 90 25 24 62.20 63.33

HDFP 2371 2427 82 81 74.02 71.86

MRC1 3445 3546 63 67 67.52 69.57

MRC2 1337 1314 156 138 61.11 60.81

SHEP 2371 2365 229 210 67.95 68.84

STOP 131 137 7 4 58.78 63.50

SYCH 1121 1239 77 56 39.77 38.66

SYSE 2285 2380 126 115 68.39 68.31
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Non-proportional hazards for the treatment effect

It has been shown that the benefits of a treatment can be

deemed greater during the initial period of follow-up time

in certain contexts [37]. In this situation, an assumption of

proportional hazards for the treatment effect will be vio-

lated. In other words, a beneficial treatment effect may

diminish with time. We describe a simple approach of

investigating the presence of non-proportional hazards in

the treatment effect, which can be extended to any covari-

ate within the model.

Fixed treatment effect with separate trial effects

Extending Model B, we first dichotomise follow-up time

at time ts, and define a variable, zijk, which takes the

value 0 if t <ts or 1 if t ≥ ts.

hijk(t) = λjkexp
(

β1xij + φxijzijk

)

(11)

β̂1 now represents the log hazard ratio for the treat-

ment group compared to the control group when t <ts,

with φ̂ the change in the log hazard ratio when t ≥ ts,

relative to when t <ts. The estimated log hazard ratio for

the treatment group compared to the control group

when t ≥ ts is therefore a linear combination; β̂1 +φ̂ .

The inclusion of non-proportional hazards can be inves-

tigated using the likelihood ratio test, comparing with

Model B.

This can be extended by further splitting of follow-up

time; however, the time variable, zijk, would generally be

assumed to have fewer intervals than those used to

model the baseline hazard rate. Extension to include a

time-varying treatment effect in Models A, C and D is

easily conducted.

The hypertension data

The example dataset used to illustrate the models in this

paper comes from an IPD meta-analysis investigating

the effects of anti-hypertension drugs in lowering systo-

lic and diastolic blood pressure as determinants of cardi-

ovascular outcomes [38]. Randomised controlled trials

(RCTs) were selected on the availability of IPD and the

comparison of an active treatment to a placebo or con-

trol. This resulted in the inclusion of 10 trials consisting

of 28,581 patients. Meta-analysis is important to sum-

marise the average treatment effect, and any heterogene-

ity in the treatment effect, across these different trials,

and it enables a broader assessment of the effects of

hypertension treatments than is possible in a single trial

alone.

Summary statistics for the time-to-event outcome all-

cause death and an overweight covariate are presented

in Table 1. Overweight status is a binary covariate,

coded 0/1 for no/yes, dichotomising Body-Mass Index

(BMI) at 25 kg/m2. Detailed summary statistics can be

found in the original meta-analysis [38].

Results
Single trial application

Comparing approaches, we apply a proportional hazards

model investigating the effect of the treatment. The

SHEP trial is used as an example, with outcome all-

cause death. Estimated hazard ratios for the treatment

effect are presented in Table 2. We observe complete

agreement in estimates and 95% confidence intervals

across models, showing a non-statistically significant

reduction of 8.7% (95% CI: -10.1%, 24.3%) in the hazard

of death for patients in the anti-hypertension treatment

group compared to those in the control group.

Two-stage IPD meta-analyses models for survival data

We now apply two-stage random effects meta-analyses

models to the hypertension data. In the first step we

compare the Cox and Poisson models to obtain the esti-

mates of the treatment effect in each trial, β̂1j and asso-

ciated variance V(β̂1j) . The second step is then

conducted using the random effects AD meta-analysis

model of DerSimonian and Laird [2].

Table 3 shows the estimates of the pooled hazard

ratio. All 4 models produce consistent estimates of the

pooled treatment effect, showing a 12% (95% CI: 2.6%,

20.4%) reduction in the hazard of death for patients in

the active anti-hypertension treatment group compared

to those in the control. No evidence of heterogeneity

was found (τ̂ 2 = 0) , indicating in this case a fixed effect

model would suffice and would yield identical estimates.

Forest plots from the two-stage meta-analyses using Cox

models and Poisson models with 0.5 year splits are

shown in Figures 1 and 2, respectively, illustrating the

consistent estimates of the treatment effect at both the

trial and meta-analysis level.

One-stage IPD meta-analyses models for survival data

We now apply each of the models described in the

methods section “One-stage IPD meta-analyses models

for survival data” to the hypertension data, using the

Poisson method both classically and under a Bayesian

approach. Further comparison of Models A(fixed treat-

ment and fixed proportional trial effects) and B (fixed

treatment and baseline stratified by trial) are made using

Cox proportional hazards models, under a classical

approach. Under Bayesian Models A, B, C and D all

Table 2 Estimates of treatment effect in the SHEP trial

Method Hazard ratio 95% CI

Cox 0.913 0.757 1.101

Poisson (1) 0.913 0.757 1.101

Poisson (0.5) 0.913 0.757 1.101

Poisson (0.25) 0.913 0.757 1.101
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parameters are assigned a vague prior of N(0,10002),

excluding the heterogeneity parameter in Models C and

D, where τ ~ N(0,1) with τ > 0. A burn-in of 1000 was

used, with 100,000 samples and thinning at every 20th

sample to remove autocorrelation.

Estimates of the treatment effect and 95% confidence/

credible interval are seen in Table 4. Comparing esti-

mates obtained under classical Cox formulations of

Models A and B with equivalent Poisson models, we

observe almost identical estimates of the treatment

effect and 95% confidence intervals for each time inter-

val length. For example, under all 4 classical one-stage

IPD meta-analysis models with fixed treatment effect

and proportional trial effects, we observe a 12.3% (95%

CI: 3.0%, 20.7%) reduction in the hazard of death for

patients in the active anti-hypertension treatment group

compared to those in the control group. Consistent esti-

mates of the treatment effect are obtained across all 3

choices of time interval.

Each mixed effects model also produces an estimate of

heterogeneity in the treatment effect, seen in Table 5.

Stark contrasts in estimates of τ can be seen between

classical and Bayesian approaches to both Models C and

D. For example, under a classical one-stage Poisson

model (with time intervals of 1 year) with random treat-

ment effect, stratified by trial, we obtain an estimate of

heterogeneity of τ = 5.92E-09 (95% CI: 0, .), compared

NOTE: Weights are from random effects analysis

Overall  (I−squared = 0.0%, p = 0.557)

SHEP

ID

EWPH

MRC2

SYCH

SYSE

MRC1

ATMH

Study

COOP

HDFP

STOP

0.88 (0.80, 0.97)

0.91 (0.76, 1.10)

ratio (95% CI)

0.85 (0.49, 1.49)

0.89 (0.71, 1.13)

0.61 (0.43, 0.85)

0.87 (0.67, 1.11)

1.04 (0.74, 1.46)

0.64 (0.27, 1.49)

Hazard

1.11 (0.61, 2.04)

0.96 (0.71, 1.31)

0.52 (0.15, 1.77)

100.00

28.90

Weight

3.23

19.32

8.55

15.86

8.57

1.40

%

2.76

10.75

0.67

0.88 (0.80, 0.97)

0.91 (0.76, 1.10)

ratio (95% CI)

0.85 (0.49, 1.49)

0.89 (0.71, 1.13)

0.61 (0.43, 0.85)

0.87 (0.67, 1.11)

1.04 (0.74, 1.46)

0.64 (0.27, 1.49)

Hazard

1.11 (0.61, 2.04)

0.96 (0.71, 1.31)

0.52 (0.15, 1.77)

100.00

28.90

Weight

3.23

19.32

8.55

15.86

8.57

1.40

%

2.76

10.75

0.67

Favours treatment  Favours control 

1.1 .25 .5 1 2 4

Hazard ratios from Cox models

Random effects Meta−Analysis of Hazard Ratios

Figure 1 Two-stage meta-analyses with outcome all-cause death. Cox models are used in the first step.

Table 3 Results from two-stage random effects meta-

analyses.

Model Pooled Hazard Ratio 95% CI
τ̂

2

Cox 0.880 0.796 0.974 0

Poisson (0.25) 0.881 0.796 0.974 0

Poisson (0.5) 0.880 0.796 0.974 0

Poisson (1) 0.880 0.796 0.973 0

Outcome is all-cause death
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NOTE: Weights are from random effects analysis

Overall  (I−squared = 0.0%, p = 0.571)
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0.88 (0.80, 0.97)
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0.91 (0.76, 1.10)

0.55 (0.16, 1.88)

0.87 (0.67, 1.11)

1.11 (0.60, 2.03)

ratio (95% CI)

1.04 (0.74, 1.46)

0.60 (0.43, 0.85)

0.89 (0.71, 1.13)

0.96 (0.71, 1.31)

0.85 (0.49, 1.49)
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100.00

1.40
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0.67

15.86

2.76
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19.32
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%
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0.89 (0.71, 1.13)

0.96 (0.71, 1.31)

0.85 (0.49, 1.49)
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100.00

1.40

28.90

0.67

15.86
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8.57

8.55

19.32

10.75

3.23

%

Favours treatment  Favours control 

1.1 .25 .5 1 2 4

Poisson GLMs, interval length = 0.5 years

Random effects Meta−Analysis of Hazard Ratios

Figure 2 Two-stage meta-analyses with outcome all-cause death. Poisson GLMs are used in the first step.

Table 4 Estimates of the treatment effect from applying Models A to D both classically and under a Bayesian

approach

Framework Model Treatment
effect

Trial effect Cox Poisson (1) Poisson (0.5) Poisson (0.25)

Hazard
ratio

95% CI Hazard
ratio

95% CI Hazard
ratio

95% CI Hazard
ratio

95% CI

Classical A Fixed Proportional 0.877 0.793 0.970 0.877 0.793 0.970 0.877 0.793 0.970 0.877 0.793 0.970

B Fixed Stratified 0.880 0.795 0.973 0.879 0.795 0.973 0.880 0.796 0.973 0.880 0.796 0.973

C Random Proportional - - - 0.877 0.793 0.970 0.877 0.793 0.970 0.877 0.793 0.970

D Random Stratified - - - 0.879 0.795 0.973 0.880 0.796 0.973 0.880 0.796 0.973

Bayesian A Fixed Proportional - - - 0.877 0.796 0.971 0.878 0.792 0.969 0.876 0.792 0.970

B Fixed Stratified - - - 0.880 0.796 0.971 0.879 0.793 0.975 0.879 0.794 0.971

C Random Proportional - - - 0.874 0.756 0.994 0.871 0.747 0.994 0.873 0.748 0.998

D Random Stratified - - - 0.876 0.755 0.996 0.876 0.755 1.002 0.873 0.760 1.000
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to the equivalent Bayesian models estimate of τ = 0.081

(95% Cred. Int.: 0.004, 0.310). The classical model has

estimated τ to be essentially zero, and consequently

failed to construct a 95% confidence interval.

To illustrate the computational efficiency of the

method, using interval lengths of 1 year; application of

Models C and D to collapsed data under a classical

approach took 4.6 seconds and 60 seconds, respectively,

to achieve convergence. Under a Bayesian approach the

equivalent models took 64 seconds and 63 seconds,

respectively, to complete the sampling.

Example code to fit Model C both classically within

Stata, and under a Bayesian approach in WinBUGS [39]

can be found in the Appendix.

Simulation results

Results from the simulation study, detailing mean esti-

mates and coverages of the treatment effect and hetero-

geneity can be found in Tables 6 and 7, respectively.

From Table 6, the treatment effect estimates appear con-

sistent across classical and Bayesian frameworks for each

model. A scatter plot matrix can be seen in Figure 3,

further illustrating agreement between classical and Baye-

sian estimates. Coverage improves as the number of trials

increase; however, within the classical models coverage is

much less informative due to the moderate downward

biases seen in the estimates of heterogeneity in Table 7.

There is clear evidence that, irrespective of the number

of trials or interval length, the classical mixed effects

models consistently underestimate the true underlying

heterogeneity of τ = 0.2. Estimates from the Bayesian

models are generally less biased. Figure 4 shows a scatter

plot matrix comparing classical and Bayesian estimates of

τ, illustrating the classical approach consistently produ-

cing lower estimates of τ, compared to the Bayesian

approach.

We also conducted the simulations described above

using a treatment group coding of 0/1. The estimates of

heterogeneity from the classical model had much larger

downward bias. For example, when using 0.5 year inter-

vals, estimates of τ for 5, 10 and 30 studies were 0.112,

0.138 and 0.165, respectively when using the 0/1 treat-

ment coding, compared with 0.147, 0.176 and 0.193

seen in Table 7 for the -0.5/0.5 coding. Estimates under

a Bayesian approach remained consistent with those

seen in Table 7.

We extended the simulation study to include applica-

tion of Model D (random treatment effect with baseline

hazard stratified by trial) to data simulated as described

above. Unfortunately, due to excessive computation time,

it proved infeasible to conduct the simulation study on

all 9 scenarios. For example, a single run of the scenario

including 10 trials with 0.25 year splits takes approxi-

mately 32 minutes. However, the 5 trial scenarios were

completed and showed entirely consistent results to

those described above. The computational difficulties are

Table 5 Estimates of heterogeneity from applying Models C and D both classically and under a Bayesian approach

Framework Model Treatment effect Trial effect Poisson (1) Poisson (0.5) Poisson (0.25)

τ 95% CI τ 95% CI τ 95% CI

Classical C Random Proportional 5.83E-10 0 . 2.01E-09 0 . 5.60E-09 0 .

D Random Stratified 5.92E-09 0 . 1.10E-11 0 . 4.90E-08 0 .

Bayesian C Random Proportional 0.082 0.004 0.310 0.085 0.004 0.319 0.081 0.004 0.321

D Random Stratified 0.081 0.004 0.310 0.080 0.004 0.299 0.077 0.003 0.306

Table 6 Results of simulation study.

Split time Model 5 Studies 10 Studies 30 Studies

0.25 Classical -0.402 -0.394 -0.396

84.9% 91.4% 92.7%

Bayesian -0.403 -0.396 -0.397

97.2% 96.2% 95.2%

0.5 Classical -0.401 -0.392 -0.396

84.8% 90.6% 92.7%

Bayesian -0.403 -0.393 -0.397

97.3% 96.0% 94.7%

1 Classical -0.401 -0.392 -0.396

84.8% 90.7% 92.7%

Bayesian -0.402 -0.393 -0.396

97.5% 95.6% 94.9%

Bayesian estimates are means of median values. Classical estimates are mean

values. True value, a = -0.4. Coverage in italics

Table 7 Results of simulation study.

Split time Model 5 Studies 10 Studies 30 Studies

0.25 Classical 0.147 0.177 0.193

- - 95.0%

Bayesian 0.230 0.213 0.205

95.2% 95.7% 94.3%

0.5 Classical 0.147 0.176 0.193

- - 95.0%

Bayesian 0.230 0.212 0.205

95.2% 94.4% 94.2%

1 Classical 0.147 0.176 0.193

- - 95.0%

Bayesian 0.231 0.212 0.207

95.1% 94.2% 93.9%

Bayesian estimates are means of median values. Classical estimates are mean

values. True value, τ = 0.2. Coverage in italics
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Figure 3 Scatter plot matrix comparing classical and Bayesian estimates of treatment effect. True value, a = -0.4.
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Figure 4 Scatter plot matrix comparing classical and Bayesian estimates of between-study standard deviation. True value, τ = 0.2.
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exclusively due to the classical approach, as each Baye-

sian model takes only seconds to execute the required

number of MCMC samples.

One-stage approach extensions

Treatment effect modifier

We apply Model (10), both classically and in a Bayesian

framework, to the hypertension data to examine whether

treatment effect is modified by being overweight (as

defined by a BMI value ≥ 25). Note we dichotomise BMI

to illustrate the methodology here, but in practice continu-

ous variables are better analysed on their continuous scale.

All parameters in the Bayesian approach use the vague

prior N(0,10002). Results are shown in Table 8. We

observe almost identical estimates across classical models

for each of the parameters of interest. When a patient is

not overweight, all classical models predict a treatment

effect reducing the mortality rate by approximately 14.2%

(95% CI: -0.1%, 26.4.4%, 21.6%) in the hazard of death for

overweight patients in the active anti-hypertension treat-

ment group compared to those in the control. Being over-

weight is estimated to produce a 27.4% (95% CI: 16.5%,

37.0%) reduction in the mortality rate, with treatment

group held constant. The equivalent Bayesian models pro-

duce almost identical estimates of effect compared to the

classical models. Using the approach of Riley et al. [36] we

also separated within-study and between-study interac-

tions but it did not change these findings.

Non-proportional hazards

We now apply Model (11) to the hypertension data, let-

ting ts = 1. Results are presented in Table 9. From the

classical models, a statistically significant (at the 5% level)

34.3% (95% CI: 16.2%, 48.5%) reduction in the hazard of

death for patients in the active anti-hypertension treat-

ment group compared to those in the control is observed

in the first year of follow-up. The treatment effect after

the first year is calculated by exp (b1 + j). This produces

a non-significant reduction of 6.4% (95% CI: -4.5%,

16.2%) in the hazard of death for patients in the active

anti-hypertension treatment group compared to those in

the control, showing evidence of a diminishing treatment

effect. Figure 5 illustrates this change by plotting the pie-

cewise constant hazard rate in each treatment arm for

the COOP trial. Extension to incorporate a random treat-

ment effect is also possible.

Discussion
The importance of having IPD available has been estab-

lished, allowing a full exploration of between-study hetero-

geneity [34] and the verification of model assumptions. By

obtaining IPD, computational issues may become apparent

with the sheer size of patient data being analysed when

incorporating random effects. This issue is clearly high-

lighted when using other large datasets within the hier-

archical Cox framework [14]. However, it should be noted

that a variety of techniques have been developed to

Table 8 One-stage IPD meta-analyses investigating the interaction between treatment and overweight status

Framework Covariate Cox Poisson (1) Poisson (0.5) Poisson (0.25)

Hazard
Ratio

95% CI Hazard
Ratio

95% CI Hazard
Ratio

95% CI Hazard
Ratio

95% CI

Classical Treatment when wij = 0,

exp(β̂1)

0.858 0.736 1.001 0.858 0.736 1.001 0.858 0.736 1.001 0.859 0.736 1.001

Overweight, exp(β̂1) 0.726 0.630 0.835 0.725 0.630 0.835 0.726 0.630 0.835 0.726 0.630 0.835

Treatment when wij = 1,

exp(β̂1 +γ̂ )

0.896 0.784 1.024 0.896 0.784 1.023 0.896 0.784 1.024 0.896 0.784 1.024

Bayesian Treatment when wij = 0,

exp(β̂1)

- - - 0.857 0.734 0.993 0.860 0.736 1.000 0.859 0.733 0.999

Overweight, exp(μ̂) - - - 0.725 0.634 0.836 0.726 0.632 0.838 0.725 0.631 0.840

Treatment when wij = 1,

exp(β̂1 +γ̂ )

- - - 0.896 0.781 1.022 0.896 0.787 1.023 0.897 0.785 1.025

Table 9 One-stage IPD meta-analyses investigating a non-proportional treatment effect

Framework Covariate Poisson (1) Poisson (0.5) Poisson (0.25)

Hazard Ratio 95% CI Hazard Ratio 95% CI Hazard Ratio 95% CI

Classical Treatment when t < 1, exp(β̂1) 0.657 0.515 0.839 0.657 0.515 0.838 0.657 0.515 0.838

Treatment when t ≥ 1, exp(β̂1 +φ̂) 0.935 0.837 1.045 0.936 0.838 1.045 0.936 0.838 1.045

Bayesian Treatment when t < 1, exp(β̂1) 0.657 0.521 0.839 0.656 0.508 0.837 0.657 0.521 0.845

Treatment when t ≥ 1, exp(β̂1 +φ̂) 0.934 0.833 1.049 0.936 0.841 1.045 0.935 0.835 1.042
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investigate heterogeneity and non-proportional hazards,

for example, when combining aggregate level data from

published studies [4,7-9,11].

In this paper, our aim was to illustrate an effective

alternative to hierarchical Cox models, minimising com-

putational issues and providing further interpretational

benefits. Through minimal splitting of follow-up time,

reliable estimates of effect can be obtained. Choice of

interval lengths will depend on the underlying shape of

the hazard function; however, the hazard ratio may be

insensitive to the baseline, as illustrated by consistent

estimates of the treatment effect across the 3 choices of

interval length used in this paper. By combining the Pois-

son approach with the collapsing technique described

above, we can dramatically reduce computation time.

When analysing data with rare events, such models may

be further advantageous through the need of less inter-

vals. Differential follow-up times between trials can also

be accounted for through this approach. Our approach

provides direct estimates of the baseline hazard rate

which is clinically important. These estimates allow the

calculation of risk differences, or number needed to treat

[40]. However, a limitation of our approach is that the

collapsing technique described cannot be used with truly

continuous covariates, such as age measured in days.

Investigation of random treatment effect models showed

a marked underestimation of heterogeneity under the

classical approach. This may in fact be explained by the

tendency of maximum likelihood to underestimate var-

iance parameters [28]. Under the Bayesian approach we

observed improved performance, with comparatively

lower absolute biases; however, it must be noted that,

given the nature of the MCMC algorithm, the Bayesian

approach will always provide a positive estimate of

between study heterogeneity. A recent simulation study

emphasised the need for care when choosing non-

informative priors on variance parameters [41], which has

specific relevance when investigating heterogeneity in the

treatment effect, as in Models C and D. An alternative

estimation procedure, such as h-likelihood [42], could be

investigated.

It must be noted that if purely interested in a pooled

treatment effect, then there is no advantage in pursuing

a one-stage over a two-stage approach; however, investi-

gation of treatment effect modifiers and modelling

assumptions should be conducted simultaneously, which

can only be done effectively through a one-stage

approach. Although previous work has provided effec-

tive methods to investigate heterogeneity in the meta-

analysis setting [14-17], we feel our approach provides a

highly simplistic alternative which can incorporate the

investigation of non-proportional hazards in covariate

effects, and that of treatment-effect modifiers, both of

which should be considered in any IPD meta-analysis.

In our analysis of the hypertension dataset, we

observed a 27.4% (95% CI: 16.55, 37.0%) reduction in

the mortality rate when a patient is overweight com-

pared to a non-overweight patient, with treatment group

held constant. Although this is a surprising result, it is

one that has been identified previously [43]. Previous

work by one of the authors of this article has also

observed this relationship between BMI and mortality;

however, further identified that the true factor lowering

risk is height, i.e. lower risk is seen for overweight

patients because they tend to be taller [44].

The approach detailed in this paper has the further

benefit of allowing adjustment for confounders to be

implemented simply. This becomes important when

analysing IPD from observational studies, where the

need to adjust for confounders is often paramount [45].

The flexibility of the Poisson approach described may

be extended through the use of splines to model not

only the baseline hazard, but also any time-dependent

effects [21]. This would result in more plausible predic-

tions, allowing a continuous function estimate of both.

Finally, we recognise that the IPD approach does not

necessarily solve all the problems for meta-analysis [46];

in particular, IPD may not be available from all the stu-

dies requested. In this situation a sensitivity analysis may

be needed to examine whether IPD meta-analysis conclu-

sions remain robust when aggregate data from non-IPD

studies are additionally included as far as possible [35].

Conclusion
For an IPD meta-analysis of survival data, our approach

provides a highly flexible and computationally efficient

framework. The methods are available in all standard

statistical software, allowing the investigation of not

only heterogeneity, but the presence of non-proportional

hazards and treatment effect modifiers.

1
0

5
8
0

5
0

3
0

2
0

H
a
z
a
rd

 R
a
te

 (
p
e
r 

1
0
0
0
 p

y
’s

)

0 1 1.5 2 2.5 3 3.5 4 4.5 50.5

Follow−up Time (yrs)

Control

Treatment

Estimated hazard rate for the COOP trial

Figure 5 Estimated hazard rate in the COOP trial allowing for
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Appendix
A.1. Model C: Random treatment effect with proportional

trial effects

Classical model within Stata:

. *load data

. use hyperdata, clear

. *stset the data

. stset fudy, failure(death = 1) id
(idnr) exit(time 5)
. *create time intervals by splitting at
every year
. stsplit sp, every(1)
. egen spgrp = group(sp)
. *generate offset
. qui gen y = _t-_t0
. *collapse across covariate patterns
. collapse (min) start = _t0 (max) end =
_t (count) n = _d (sum) y _d, by(spgrp
treat trial)
. *fit mixed effects Poisson model with
random treatment effect
. xtmepoisson _d i.treat i.trial ibn.
spgrp, exposure(y) nocons irr || trial:
treat, nocons

Bayesian model within WinBUGS:

model{
for (i in 1:N){

d[i] ~ dpois(mu[i]) #likelihood
log(mu[i]) < - alpha[trial[i]]*
(treat[i]-0.5) + beta[trial[i]] +
gamma[spgrp[i]] + log(y[i])

}
beta [1] < - 0
### Priors ###

for (s in 1:J){
alpha[s] ~ dnorm(a,tau)

}
a ~ dnorm(0,1.0E-6)
tau < - 1/var
var < - pow(sd,2)
sd ~ dnorm(0,1)I(0,)
#Trial id:
for (p in 2:J){

beta[p] ~ dnorm(0.0,1.0E-6)
}
#Intervals:
for (q in 1:ints){

gamma[q] ~ dnorm(0.0,1.0E-6)
}

### Hazard ratio due to the treatment
effect:
expalpha < - exp(a)

}
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