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SUPPLEMENTAL METHODS 

Mutation analysis 

The proband (III.1) of family 1 was screened for mutations in LMNA encoding lamin 

A/C, ABCC9 encoding SUR2A and SCN5A. All 12 coding exons and intronic 

junctions of LMNA were amplified and scanned using an HRMA/sequencing method 

(conditions available under request) using the Light-Cycler® 480 High Resolution 

Melting Master kit according to the manufacturer’s instructions (Roche Applied 

Science, Meylan, France) and further scanned by HRM analysis. PCR products 

showing divergent HRM profiles were purified and directly sequenced on both 

strands using the BigDye® Terminator v.3.1 Cycle Sequencing Kit (Applied 

Biosystems, Forster City, CA). After purification, sequencing products were applied 

onto an ABI 3730 automatic sequencer (Applied Biosystems). Screening for mutation 

in ABCC9 gene was performed as previously described (1). 

Screening for mutation in SCN5A was performed by a polymerase chain reaction 

amplification of coding regions and flanking intronic sequences (primers sequences 

available under requests) followed by bidirectional sequencing of amplicons using the 

BigDye® Terminator v.3.1 Cycle Sequencing Kit (Applied Biosystems, Forster City, 

CA.  After purification, sequencing products were applied onto on an ABI PRISM 

3730 DNA sequence detection system (Applied Biosystems).  

Exon 6 of SCN5A, which includes the c.665G>A transition, was amplified from 

genomic DNA of family 1 and 2 members with primers CACCCCCTTTCCTCCTCT 

and CCAGGCATATCCCTCTAGCC. The purified PCR product was sequenced using 

BigDye Terminator 3.1 (Applied Biosystems) chemistry. 

For family 3, exon 6 of SCN5A was amplified from genomic DNA of the proband II-3 

and the purified PCR product similarly sequenced. The sequence variant present in 
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all affected family members was further confirmed by digestion with HinfI (New 

England BioLabs, Beverly, MA). HinfI digests the fragment containing c.665G but 

does not digest that with c.665A. 

Six hundred Caucasian control chromosomes from Human Random Control (HRC) 

panels were screened for the presence of the c.665G>A transition using HRM (High 

Resolution Melting) assay on the LightCycler 480 System (Roche) and the same 

primers. 

Haplotype Analysis 

To ascertain whether there is a common disease haplotype for the R222Q mutation 

of the SCN5A gene in the two families with MEPT, and estimate the low limit of the 

most recent common ancestor, 10 microsatellite markers around the SCN5A gene 

(D3S1759, D3S2432, D3S3047, D3S3512, D3S1298, intragenic SCN5A marker, 

D3S3521, D3S3527, D3S3522 and D3S3559) were genotyped in individuals from the 

3 families. Haplotype analysis was performed in 12 members of family 1 (9 affected), 

3 members of family 2 (2 affected) and 3 members of family 3 (3 affected). 

The primer sequences were obtained from Ensembl (www.ensembl.org) except for 

the intragenic marker. Each marker was amplified by PCR and the sense primers 

were 5'-end labeled with fluorescence (R6G and R110-dCTP, Perkin Elmer). 

PCR was performed under the following conditions: denaturation at 94°C for 3 min; 

30 cycles of denaturation at 94°C for 30 sec, annealing at 55°C for 30 sec, and 

extension at 72°C for 1 min; final extension at 72°C for 10 min. Alleles were 

submitted to electrophoresis using an ABI PRISM 3730 DNA analyser, (PE Applied 

Biosystems), with ROX-500 size standard (PE Applied Biosystems). Genotype 

analysis was automated using GeneMapper software, version 4.0 (PE Applied 

Biosystems).  
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We estimated the age of the mutation using the Genin and collaborators method (2), 

based on the length of identity by state segments around the mutation. This method 

identifies the closest markers at which the two affected individuals do not share any 

allele on either side. The likelihood is built on the number of recombination events 

between the mutation and the neighboring genetic markers, with a correction through 

the possibility of mutation. Because we did not have even a single common allele in 

the haplotypic background of families 1 and 2, we created two dummy markers, with 

shared common allele by both affected individuals at a recombination fraction 

θ=0.0001 both upstream and downstream the mutation. Thus, we were aiming at 

finding a lower threshold to the number of generations to the most recent common 

ancestor. We adopted a micro-satellite mutation rate of m=3.10-3 (using the Stepwise 

Mutation Model), as proposed in the literature (3). It is noteworthy that the time to the 

Most Recent Common Ancestor is not necessarily the time to the mutation 

occurrence. Therefore, our number of generations is also a lower bound for the age 

of the allele.  

Site-directed mutagenesis 

Site-directed mutagenesis was performed on pCI-SCN5A (4) using the Quick-

Change site-directed mutagenesis kit (Stratagene) according to the manufacturer’s 

instructions. The construct was completely sequenced to ensure that there was no 

other mutation.  

Cellular electrophysiology 

The African green monkey kidney fibroblast-like cell line (COS-7) was obtained from 

the American Type Culture Collection and cultured as previously described (5). Cells 

were transfected with DNA complexed to JetPEI (Polyplus-tranfection) according to 
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the manufacturer’s instructions. Relative DNA concentrations were 10% pCI-Nav1.5 

(RefSeq NG_008934.1) WT or R222Q, or 5% of each for the heterozygous 

condition), 10% pRC-hβ1 (4) and 80% pEGFP (Clontech). The resulting Nav1.5 

protein is the splice variant containing H 558 and Q1077 amino acids. At eight hours 

post-transfection, the cells were isolated and seeded in plastic Petri dishes at low 

density. At twenty-four hours post-transfection, whole-cell currents were recorded at 

room temperature using the patch-clamp technique. The cells were continuously 

superfused with Tyrode solution containing (in mmol/L): NaCl 145, KCl 4, MgCl2 1, 

CaCl2 1, HEPES 5, glucose 5, pH adjusted to 7.4 with NaOH. Wax-coated pipettes 

(tip resistance: 1.8 to 3 MΩ) were filled with intracellular medium containing (in 

mmol/L): NaCl 10, CsCl 64.5, aspartic acid 70.5, HEPES 5, pH adjusted to 7.2 with 

CsOH. During data recording, the studied cell was locally superfused with 

extracellular medium containing (in mmol/L): NaCl 145, CsCl 4, CaCl2 1, MgCl2 1, 

HEPES 5, glucose 5, pH adjusted to 7.4 with NaOH with 30 µM quinidine or 30 µM 

tetrodotoxin (TTX) when needed. All products were purchased from Sigma, except 

TTX, provided by Tocris Bioscience. Stimulation, data recording through an A/D 

converter (Tecmar TM100 Labmaster, Scientific Solutions; 5 kHz filtering), and 

analysis were performed with Acquis1 software (Bio-Logic). All current 

measurements were normalized using the cell capacitance. Capacitance and series 

resistances were compensated (60-70% compensation) to obtain minimal 

contribution of capacitive transients using an Axopatch 200A amplifier (Axon 

Instruments, Inc). 

Mathematical modeling of ventricular and Purkinje action potentials 

Single-cell models 
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The same strategy was used for both models of the human Purkinje cells (6) and left-

ventricular myocytes (7). The left-ventricular myocytes model was modified from the 

CellMl.org model (April 27, 2010) in order to minimize the stimulation artifact 

(stimulation amplitude: -50 µA/µF; stimulation duration: 0.5 ms; GNa 100 ms/µF).  

The equations corresponding to the Na+ current were iteratively modified to 

reproduce the relative variation of 8 parameters due to the R222Q mutation (i.e. peak 

amplitude at -20 mV, half-activation potential, activation slope, time to peak at -

20 mV, half-inactivation potential, inactivation slope and the kinetics of inactivation at 

-35 mV and recovery from inactivation at -100 mV). The other currents generating the 

action potential were not modified. 

In the Purkinje cell model, the effects of the R222Q mutation were simulated by (i) 

modifying αm and βm to recapitulate the shift in the activation curve and (ii) modifying 

βh to recapitulate the shift in the inactivation with no change in the recovery from 

inactivation. The WT and R222Q Na+ current formulations followed the DiFrancesco 

and Noble model (6) as such: 

WT R222Q 

αh = 20 x exp(-0.125 x (V + 75)) αh = 20 x exp(-0.125*(V + 75)) 

βh = 2000/(320 x exp(-0.1x (V + 75))+1) βh = 2000/(320 x exp(-0.1 x (V + 75 + 10))+1) 

αm = 200 x (V+ 41)/(1-exp(-0.1 x (V + 41))) αm = 200 x (V+ 41+shift)/(1-exp(-0.1 x (V + 41 + shift))) 

βm = 8000 x exp(-0.056 x (V + 66)) βm = 8000 x exp(-0.056 x (V + 66 + shift)) 

 

where “shift” was set to 12 to best fit the shift in the activation curve. This value was 

also used in the multicellular model. But interestingly, in the unicellular model, an 

excessive Na+ window current prevented repolarization and the value had to be 

decreased to 9 to observe an action potential. 
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To mimic the heterozygous condition, the Na+ current resulted from the summation of 

half the WT current and half the R222Q current.  

In the ventricular cell model, the effects of the R222Q mutation were simulated (i) by 

modifying all the forward transitions (α,β,γ,γγ,η) to recapitulate the shift in the 

activation curve and (ii) by decreasing the inactivation/activation coupling factor to 

recapitulate the smaller shift in the inactivation curve with no change in the recovery 

from inactivation kinetics. The WT and R222Q Na+ current formulation followed 

model (7) as such: 

 

WT R222Q 

α = 26 x exp(0.011 x V) η = 26 x exp(0.011 x (V+11)) 

β = 0.036 x exp(-0.090 x V) β = 0.036 x exp(-0.090 x (V+11)) 

γ = 590 x exp(0.110 x V) γ = 590 x exp(0.110 x (V+11)) 

γγ = 2.6 x exp(0.030 x V) γγ = 2.6 x exp(0.030 x (V+11)) 

η = 26 x exp(0.084 x V) η = 26 x exp(0.084 x (V+11)) 

a = 1.4004 a = 1.21 

 

The other transition constants were not changed.  

Both the Purkinje and ventricular Na+ currents were modeled with Model Maker v4.0 

(AP Benson, Wallingford, UK) and with a home-made program running on C++. The 

action potentials (APs) were modeled with a home-made program running on C++. 

Multicellular model 

Both models of the human left-ventricular subepicardial myocytes and Purkinje cells 

were incorporated in a multicellular model. In this model, the propagation of the 

electrical waves in the cardiac tissues was described by a monodomain model (8). 
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The membrane potential is described by a variable V following the partial differential 

equation: 

 

Where t is the time in s, V is the transmembrane potential in mV, Am is the ratio of 

membrane surface per cell volume unit [1e3 cm-1], Cm is the membrane capacitance 

per surface unit [1e-3 mF.cm-2], and D is the average electrical conductivity of the 

tissue [20 mS.cm-1 in Purkinje cells, and 1.3 mS.cm-1 in ventricular cells]. The ionic 

current per surface unit Iion [µA.cm-2] was computed according to the models 

introduced above. The values of D were adjusted to obtain a propagation speed in 

the range of around 180 cm/s in the Purkinje system, and 90 cm/s in the ventricle.  

The numerical simulations were performed on a simplified 2D slice model described 

previously (9). The pacing site was located at the proximal part of the Purkinje fiber 

(see Figure. 5). The ordinary differential equations of the ionic model were integrated 

by a mixed explicit-implicit method, with a 1-µs step. To mimic the quinidine effects, 

INa, Ito and IKr were reduced based on the results of Wu (10;11;12) for INa and IKr, and 

Wang (13) for Ito. For the first test, we chose 10 µM quinidine, the maximal 

therapeutic dose i.e. preserving 50% INa, 30% IKr (12) and 30% Ito (13). Assuming that 

the mimicked doses were in the linear zone of the concentration-dose relationship for 

inhibition of the different ion currents, we also computed the consequences of 

preserving 75% INa and 45% IKr and Ito and of 85% and 50%, respectively. The 

computations were performed on a mesh with 2225 vertices using the cluster from 

the Centre de Calcul Intensif des Pays de Loire.  
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SUPPLEMENTAL RESULTS 

Haplotype analysis 

The alleles of 4 SCN5A flanking markers (D3S3512, D3S1298, D3S3521, D3S3527) 

and of the intragenic SCN5A marker were shared by the affected individuals in each 

family, but differed between the families 1 and 2, and 2 and 3. These results indicate 

that the cosegregating haplotype was different in each of these families, suggesting 

independent mutations origin. Using the method of Genin and collaborators, we 

found at least 126 generations from a hypothetical most recent common ancestor 

(95% confidence interval from 37 to 464 generations) for families 1 and 2. Such an 

ancient common origin does not fit with the fact that the observed mutation allele 

frequency is below 9.10-3 (higher bound confidence interval for no observation in 300 

control individuals). The probands of families 1 and 3 shared at least two frequent 

microsatellite alleles (D3S1298 and D3S3512) but not the rare intragenic one. As a 

conclusion, families 1 and 3 may be at least 28-generation distantly related.  

Computer modeling shows that ventricular cells better tolerate the mutation 

than Purkinje cells. 

To get insights on the R222Q mutation effect on the action potentials (APs) at a 

cellular scale, we carried out computer simulations to evaluate the impact of the 

mutation on the Na+ current in unicellular models of Purkinje and ventricular cells (6-

7). The models modifications operated to mimic the mutation-induced changes in the 

Na+ current have been detailed in the Supplemental Methods section. The relative 

shift in activation and inactivation curves in the heterozygous state, as well as all 

other changes of the biophysical parameters were compared to those experimentally 

measured in heterozygous state. Despite that the transfected cell population may be 
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a mixture of cells expressing mainly WT, R222Q or both Nav1.5 channels, the 

experimental ‘heterozygous’ parameters were successfully reproduced in both the 

Purkinje (Supplemental Figure 5B) and ventricular (Supplemental Figure 5C) cell 

models. Interestingly, when the equations mimicking the heterozygous state of the 

patients were introduced into the ventricular cell model, minor changes in AP 

morphology were observed (Supplemental Figure 6). Conversely, when the 

equations mimicking the heterozygous state were introduced in the Purkinje cell 

model, the effect was drastic: AP could not be induced (not shown). AP could be 

generated only if the shift in the activation curve was reduced (4 instead of 6 mV), in 

order to limit the Na+ current increase (Supplemental Figure 6). But AP morphology 

was still highly affected. This disappeared at higher pacing rates, consistent with 

PVCs disappearing during exercise (Supplemental Figure 6).  
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Supplemental Figure 1. Representative ECGs of family 1. Some patients (A) had 

PVC with RBBB patterns and alternant extreme variations in the axis from right (♣) to 

left (♥), from beat to beat. Recurrent monomorphic non-sustained ventricular 

tachyarrhythmia (NSVT) (B), and slightly polymorphic NSVT were also observed. In 

some patients, PVCs were relatively narrow QRS complexes (C-D), very similar to 

either sinus or junctional complexes with slight variations in the left axis from +60° (*) 

to -30° (**). In some patients (E-F), PVCs had RBBB patterns with various widths 

from relatively narrow (¤) to wide QRS complexes (¤¤). 
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Supplemental Figure 2. Endocardial electroanatomic mapping of the left ventricle. 

Activation mapping of 12 different PVCs in patient III.1 (family 1). A Multi-array 

balloon (NavX system) helped us to pinpoint the precise location of ectopic foci along 

the anterior and posterior regions of the left ventricle corresponding to the extension 

of the left anterior and posterior fascicles.
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 Supplemental Figure 3. Haplotype analysis of chromosome 3 in selected members 

for families 1, 2 and 3. Females are represented by circles and males are 
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represented by squares. Members affected with arrhythmia are indicated with a half-

filled symbol. Members affected with arrhythmia and dilated cardiomyopathy (DCM) 

are indicated in black. Ten microsatellite markers (D3S1759, D3S2432, D3S3047, 

D3S3512, D3S1298, intragenic SCN5A marker, D3S3521, D3S3527, D3S3522 and 

D3S3559) spanning the region of chromosome 3 where the SCN5A gene lies, were 

analyzed. The disease-associated haplotype is indicated by a black frame. The 

disease haplotype in family 2 differed from that in family 1, showing that the R222Q 

mutation has arisen independently in these two families. Common alleles of two 

microsatellites are shared by families 1 and 3 implying a possible most recent 

common ancestor at least 28 generations earlier. 
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Supplemental Figure 4. Experimental effects of R222Q mutation on Nav1.5 channel 

in COS-7 cells. (A) Na+ current time-to-peak values were used to evaluate the 

activation kinetics. Same transfection and voltage protocol as in Figure 4A. Tukey 

test: *, p<0.05 vs WT. (B) Accelerated inactivation in the presence of the R222Q 

mutation. Inactivation time constants were measured by fitting the inactivation phase 

of the Na+ current to a single exponential equation. Tukey test: Heterozygous vs. WT, 

**: p<0.01, ***: p <0.001; R222Q vs WT, †: p<0.05, †††: p<0.001. (C) Recovery from 

inactivation was measured using a twin-pulse protocol (left inset: holding potential: –

100 mV, 100-ms depolarization to -20 mV, back to -100 mV for 0 to 1000-ms delay 

before test pulse to -20 mV, frequency:0.1 Hz). Right inset: same as main graph for 

short delays. 
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Supplemental Figure 5. (A) Superimposed activation and inactivation curves of WT (circles, solid line) and heterozygous 

(triangles, dashed line) channels obtained experimentally. Bottom inset: superimposed Na+ current recordings using the same 

voltage protocol as in figure 4. Scale bars: 2 ms, 1000 pA. Top inset: increase of the predicted voltage window current in the 

presence of the mutation. (B) and (C) Simulated curves of WT (circles, solid line) and heterozygous (triangles, dashed line) 

channels; activation and inactivation in Purkinje cell (B) and (C) ventricular cardiomyocyte models. Bottom insets, simulated Na+ 

currents as in A. Scale bars: 1 ms, 100 pA (B) and 5 ms, 100 pA (C). Top insets, as in A. 
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Supplemental Figure 6. Effects of the R222Q mutation on Purkinje (top) and 

ventricular (bottom) cell action potentials (APs) and Na+ current obtained in the 

single-cell model. Simulated AP (black) and late Na+ current (red) in WT (left) and 

heterozygous (right) conditions at the indicated cycle lengths. Arrows: external 

stimulus. 
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Supplemental movies 

Simulation of the AP propagation from a Purkinje fiber to ventricular tissue 

(dimensions and stimulation shown in Figure 4), in WT (a) and heterozygous (b) 

conditions at cycle length of 1 s (A) and 0.5 s (B). 
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Supplemental Table 1: Effects of R222Q mutation on Nav1.5 biophysical parameters. 

 
current 

density 
 activation   inactivation   

recovery from 

inactivation 
 window current 

 

peak at 

–20 mV 

(pA/pF) 

 
V1/2 

(mV) 

k 

(mV) 
  

V1/2 

(mV) 

k 

(mV) 
 

t1/2 

(ms) 
 

gmax 

(pS/pF) 

Emax 

(mV) 

AUC 

(a.u.) 

WT 
–205.8±29.3 

(36) 
 

–30.6±2.1 

(9) 

5.7±0.3 

(9) 
 

–79.6±0.7 

(10) 

5.6±0.2 

(10) 
 

7.6±0.6 

(6) 
 

15.9±2.6 

(13) 

-42.8±0.5 

(12) 

29.9±3.9 

(13) 

heterozygous 
–196.5±17.6 

(48) 
 

–37.2±1.6* 

(9) 

7.1±0.3** 

(9) 
 

–82.2±1* 

(9) 

5.3±0.1 

(9) 
 

7.9±1.1 

(8) 
 - - - 

R222Q 
–250.4±24.8 

(44) 
 

–42.3±1.0*** 

(11) 

6.5±0.4 

(11) 
 

–84.6±0.7*** 

(8) 

4.8±0.2** 

(8) 
 

8.8±0.9 

(8) 
 

19.1±2.0 

(14) 

-58.6±1.1*** 

(14) 

55.2±7.6** 

(14) 

 

(n): number of cells; *: p<0.05; **: p<0.01; ***: p<0.001 vs. WT; V1/2 and k; voltage for half-activation or -inactivation of the Na+ 

current and slope; t1/2: time to reach 50% recovery of the Na+ current; gmax: maximal TTX-sensitive conductance recorded during a 

depolarizing-voltage ramp as in Supplemental Figure 4; Emax: potential at which the maximum conductance was measured. AUC: 

area under curve calculated on current density/membrane potential relationship; a.u.: arbitrary unit. 
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Supplemental Table 2: Effects of quinidine on WT and R222Q Nav1.5 currents. 

  current density  window current 

  
peak at –20 mV 

(pA/pF) 
 Imax (pA/pF) 

WT 

control 
–136.0±28.5 

(12) 

 
–1.87±0.42 

(7) 

30 µM quinidine –76.7±15.2***  –0.74±0.16* 

R222Q 

control 
–123.3±20.1 

(10) 

 
–2.54±0.41 

(6) 

30 µM quinidine –63.9±10.5***  –1.17±0.12** 

 

(n): number of cells; paired t-test: *: p<0.05; **: p<0.01; ***: p<0.001 vs. control; window current: TTX-sensitive (30 µM) current 

elicited by a depolarizing-voltage ramp; Imax: current density measured when the TTX-sensitive conductance is maximal (i.e. at -43 

mV and -59 mV for WT and R222Q, respectively). 
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