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Vascular System Modeling in Parallel Environment -

Distributed and Shared Memory Approaches

Krzysztof Jurczuk*, Marek Kretowski, and Johanne Bezy-Wendling

Abstract—The paper presents two approaches in parallel modeling of

vascular system development in internal organs. In the first approach,

new parts of tissue are distributed among processors and each processor

is responsible for perfusing its assigned parts of tissue to all vascular trees.

Communication between processors is accomplished by passing messages

and therefore this algorithm is perfectly suited for distributed memory

architectures. The second approach is designed for shared memory

machines. It parallelizes the perfusion process during which individual

processing units perform calculations concerning different vascular trees.

The experimental results, performed on a computing cluster and multi-

core machines, show that both algorithms provide a significant speedup.

Index Terms—computational modeling, vascular system, parallel com-

puting, distributed memory algorithms, shared memory algorithms.

I. INTRODUCTION

In this paper, we deal with vascular system modeling which can

promote understanding of complex vascular processes (e.g. angiogen-

esis) and their influence on pathology development [1]. In our case,

we focus on the vasculature modeling towards an image generation.

Many diseases are directly related to changes in vessels structures

and a lot of these modifications can be visible in medical images,

especially when a contrast agent is administrated.

In our previous studies, we proposed a two-level physiological

model [3] which is able to reflect both morphology and functions of

vascular networks in clinical images. The solution is a combination

of a macroscopic model (vascular network growth and pathological

anomalies) and a microvascular model (blood flow simulation in

capillaries and contrast agent diffusion processes). Moreover, we

coupled the model with imaging simulators (CT [2] and MR [4]).

Hence, the whole solution constitutes a good way for a better

understanding of medical images by linking image descriptors with

physiological perturbations and markers of pathological processes.

The structure of simulated vascular network is obtained in the

sequential algorithm of vascular development caused by a progressive

increasing number of cells. Although we applied many code opti-

mizations, the simulation is still time expensive process. Following

the recent technological advances in parallel computers [5], we

propose two approaches able to simulate the vascular development

in a parallel environment. The first one is designed to distributed

memory architectures, like computing clusters that are able to provide

high computational performance but are also quite expensive. On the

other hand, the second approach is strictly suited to shared memory

environments, like multi-core/multi-processor machines that become

affordable and consequently more attainable even for home users.

Nevertheless, the main disadvantage of shared memory computers is

the lack of scalability between memory and processing units.
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The common aim of these two approaches is to accelerate the

complex vascular growth simulation. As a result, we will be able to

introduce more sophisticated details into the model, to test multiple

sets of parameters corresponding to different behaviors of the system

or to perform simulations with more complex configurations (e.q.

more vessels or smaller vessels). Moreover, our intention is to bring

the model closer to reality in which analogous processes of vascular

development are performed inherently in a parallel way [6].

Many other vascular systems have been proposed, e.g. a fractal

model [7], Constrained Constructive Optimization (CCO) model

[8] or macroscopic [9] and microscopic models [10] developed by

Szczerba et al. However, as far as we know, all the previous solutions,

have been using only sequential approaches to develop vascular

systems.

In Section II the main components of the vascular model are

described. In Section III we present two parallel approaches of the

vascular development. An experimental validation is performed in

Section IV. Conclusions and future works are sketched in Section V.

II. MODEL DESCRIPTION

The macroscopic part of the discussed model consists of two

main elements: the tissue and the vascular network. The tissue is

represented by a set of Macroscopic Functional Units (MFU) that

are distributed inside the specified shape [2]. The vascular network

is composed of vessels that provide a blood supply for the tissue.

The microvascular part of the model is hidden in the MFUs and

is responsible for the propagation of an MRI contrast agents in the

tissue. The most important and original part of the work presented

in this paper concerns the parallel algorithm of vascular development

on the macroscopic level. Therefore, the main features of this part

of the model are detailed here. For a detailed survey of the complete

model, we refer the reader to our previous papers, e.g. [2], [3], [4].

The model expresses the specificity of the liver, although most of

its features are not linked with any specific organ. The liver is strongly

vascularized and stands out from other vital organs by the unique

organization of its vascular network that consists of three vascular

trees [11]: hepatic arteries, portal veins and hepatic veins. In the

model [3], each vascular tree is composed of vessels that can divide

creating bifurcations. Each vessel segment (part of the vessel between

two successive bifurcations) is represented by an ideal, rigid tube

with a fixed radius, wall thickness, length and position. The model

distinguishes vessels larger than capillaries, while the capillaries

themselves are hidden in the MFUs. Based on a morphometrical

investigation dealing with bigger vessels, e.g. conducted by Zamir

[12], each vascular tree forms a binary tree. As a result, vessel

intersections (anastomosis), which occur particularly among vessels

with very small radii or in pathological situations, are not taken into

account. Blood is transferred from hepatic arteries and portal veins

to hepatic veins through MFUs.

The vessels’ parameters (e.g. pressure, radius) are calculated ac-

cording to two basic physical laws. Firstly, at each bifurcation the

law of matter conservation must be observed, i.e. the quantities of

blood entering and leaving a bifurcation have to be equal. Second

constraint deals with the decreasing vessel radii in the vascular tree,

creating a relationship between the radius of a vessel and radii of its

two descendants. Moreover, blood is considered as a Newtonian fluid

(with constant viscosity) [13] and its flow is modeled as a laminar

flow induced by the pressure difference between the two extremities

of a vessel, Poiseuille’s law is in effect.

An MFU is a small, fixed size part of tissue and has been assigned

a class that determines most of its structural and functional properties

(e.g. size, probability of mitosis and necrosis) and also physiological

features (e.g. blood pressures, blood flow rate) [2]. In order to
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introduce a natural variability, certain parameters (like blood flow

rate) are described by given statistical distributions. Several classes

of MFUs can be defined. The MFU class can be changed over time,

which makes it possible to simulate the evolution of a disease (e.g.

from benign nodule to malignant tumor).

An adult organ is obtained in a vascular development process. The

simulation starts with an organ whose size is a fraction of the adult

one. In discrete time moments (called cycles), the organ enlarges

its size (growth phase) until it reaches its full, mature form. The

relative positions of MFUs remain unchanged but distances between

them are increased, leading to the appearance of empty spaces. These

spaces are filled with new MFUs in consecutive subcycles. In each

subcycle, an MFU can divide and give birth to a new MFU of the

same class (mitosis process) or die (necrosis process). During the

growth phase (mitosis supremacy over necrosis [14]) the increasing

needs of the growing tissue induce the development of a vascular

network (new vessels appear) that is responsible for blood delivery.

In each subcycle, the processes of mitosis and necrosis are repeated,

while a new cycle starts only when the current organ shape is totally

filled with MFUs.

New MFUs that appear during the mitosis are initially not perfused

by the existing vascular system. For each new MFU a fixed number

of the closest/candidate vessels (in each tree) is found. Then each

candidate vessel creates a new bifurcation that temporarily perfuses

the MFU. The spatial position of the bifurcation point is controlled by

local minimization of additional blood volume needed for the MFU

perfusion. Only one vessel from each tree can finally be designated

to perfuse the new MFU. Therefore, the algorithm creates all possible

combinations of candidate vessels (a single combination consists

of one vessel from each tree). Firstly, the algorithm rejects those

combinations that could introduce intersections between vessels (from

the same tree or from two different trees, e.g. between arteries and

veins). Finally, the combination with the lowest sum of volumes is

chosen to permanently perfuse the MFU.

After the reproduction (i.e. mitosis and perfusion processes), comes

a degeneration phase. At this step of the algorithm, some of the MFUs

can die (necrosis process) and then all the vessels supplying these

MFUs retract and disappear (retraction process). Next, the algorithm

goes back to the reproduction phase again.

III. PARALLEL VASCULAR MODELING

In the sequential algorithm of vascular growth, all new MFUs are

perfused one by one. For each new MFU several temporary bifur-

cations have to be created and tested. It requires many calculations

to fulfill all constraints (i.e. physical and physiological laws). As

a result, the perfusion process is the time dominant operation in

the organ growth simulation. Based on profiling results (execution

times of specific methods), we estimated that it generally consumes

around 70-95% of the total CPU time needed to develop an adult

organ (time estimation of other processes: mitosis phase around 2-

13%, degeneration phase around 3-19%). Therefore, in both parallel

approaches, presented below, we concentrate mainly on the perfusion

phase.

A. Distributed Memory Approach

At the beginning, the general idea of the approach is described.

Then we present in more detail a parallel perfusion algorithm and

mechanisms used to ensure an optimal load balancing.

The solution is based on a message passing paradigm and, in

consequence, interactions between processors are accomplished by

sending and receiving messages [16]. Its general diagram is presented

in Fig. 1. Each processor/node during the whole simulation has its

reproduction

sequential

mitosis 

parallel

perfusion

degeneration

sequential

necrosis 

parallel

retraction

parallel shape growth

trees and tissue

broadcasting
begin

[new subcycle]

[new cycle]

end

[adult organ]

Fig. 1. The general diagram of parallel vascular growth algorithm that is
based on a message passing paradigm (distributed memory approach).

Fig. 2. The diagram of parallel perfusion process. Slave nodes attempt to find
optimal bifurcations in a parallel way, while the master node is responsible
for making decision about permanent perfusions and broadcasting changes.

own copy of vascular trees and tissue. Therefore, at the beginning,

the master/managing processor broadcasts the whole initial organ to

ensure that all the nodes possess the same starting information. After

that, cycles and subcycles are iterated. Each subcycle starts with a

sequential mitosis during which a list of new MFUs is created. Next,

the parallel perfusion is carried out. In comparison to its sequential

version, here the managing node does not make any attempt to find

candidate vessels and bifurcation points but instead it spreads these

tasks over slave/computing processors [15].

After the reproduction process, the degeneration phase follows. At

the managing node, the sequential necrosis is carried out and next,

the master processor broadcasts to all other processors information

about the MFUs that have to be removed. The entire algorithm of

retraction is performed at each node. The profiling results showed

that the time needed for that part of the algorithm can be neglected,

as it is very short in comparison to the perfusion time.

After the degeneration process, if a new subcycle is needed (current

organ shape is not totally filled with MFUs), the process starts again

with the mitosis. In the other case, the organ shape is enlarged. At

each processor the same operations are carried out concurrently and

only after they are all completed, the algorithm returns to the mitosis

process. The algorithm ends when the organ reaches its adult size.

1) Parallel Perfusion Algorithm: After the sequential mitosis, the

master node spreads new MFUs over slave nodes. When a compu-

tational node receives the message with several MFUs, it attempts

to find the optimal bifurcation points to perfuse these new tissue

elements (Fig. 2). Each time, when the search ends successfully, the

computational node does not perfuse permanently the new MFU, but

sends the parameters of the optimal bifurcation to the managing node.

Next, if there are any queued message with permanent changes in

vascular trees sent by the managing node, the calculating node applies

these changes and continues to perform its remaining tasks.

The master node is responsible for managing the perfusion pro-
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cess. When it receives a message with an optimal bifurcation of

one of the new MFUs, it makes a decision about the permanent

perfusion. Because of communication latency and independent work

of slave processors, vascular networks at individuals nodes (both

at computational ones and managing one) can be slightly different

(trees’ nonuniformity). Therefore, the master processor searches, in

its vasculature, for the vessels that are proposed by the computational

node to perfuse the considered MFU. If the processor cannot find

at least one of these vessels, then the MFU is rejected. Such a

situation simply means that such a vessel (or vessels) was earlier

used to perfuse another tissue element and was replaced by new

vascular structures (local modification due to the creation of a new

bifurcation). The rejected MFU leaves an empty space in the tissue

for other new MFUs that can appear during the next subcycles.

But in the other case, the MFU is permanently connected to the

vascular system. Subsequently, the managing node broadcasts all

organ changes (related with the new MFU) to the slave processors

and waits for next messages.

2) Load Balancing: The amount of work required to find can-

didate vessels and optimal bifurcation points can vary for different

MFUs. Moreover, it is impossible to approximate the time needed

to perform each task before the work distribution. As a result,

due to the spreading all new MFUs, immediately after the mitosis

process, some of the slave processors can be idle after performing all

their jobs, while others have tasks queuing for execution. Therefore,

an algorithm that aims to assure the optimal load balancing [17]

(fair distribution of computations) between calculating nodes is

introduced. In this algorithm, all jobs are not necessarily divided

immediately after the mitosis process. Instead, the master node may

keep a fixed quantity of new MFUs that are assigned to slave nodes

only on demand (operation 6 in Fig. 2). When a slave node finishes its

assigned tasks, it sends to the master node a message with a request

to get more job. Such a solution is able to detect and handle load

imbalances dynamically.

Almost all messages are passed in a non-blocking fashion and

therefore processors do not lose time waiting. Nevertheless, such

a solution requires more effort from the managing node to decide

about permanent perfusions. First of all, the managing node has to

collect information about the changes in vascular trees that are sent

to individual slave nodes. When a slave node introduces and then

confirms the changes in vascular trees, this information has to be

refreshed (the managing node marks these changes as delivered and

applied).

In order to provide a still more efficient solution, a load balancing

of the master processor was also taken into account. When this node

is idle, it can also perform calculations related to finding parameters

of optimal bifurcations (i.e. the same as slave nodes).

B. Shared Memory Approach

The second approach we propose is based on the assumption that

all processors operate independently but share the same memory

resources. As a result, there is no need to take care of data com-

munication between processors, in contrast to the aforementioned

solution.

In this solution, we spread calculations over processors during

the perfusion process. The remaining algorithm phases (i.e. mitosis,

degeneration and shape growth) are carried out sequentially by one

processor. Fig. 3 presents the general scheme of parallelization.

There are three algorithm blocks (i.e. search for optimal bifurcations,

connection and disconnection in the case of crossing vessels) during

which individual processing units are responsible for calculations

concerning one of the three vascular trees (i.e. hepatic arteries, portal

Fig. 3. Flowchart of the parallel perfusion algorithm of vascular growth
designed for shared memory environments. Computations are performed in
a parallel way in three algorithm blocks: search for optimal bifurcations,
connection and disconnection.

veins or hepatic veins). There is also a possibility to assign more

than one vascular tree to one processing unit, for example when the

number of processing units is smaller than the number of vascular

trees.

After the sequential mitosis, the vascular system tries to perfuse

each new MFU iteratively. At the beginning, the parallel search for

optimal bifurcations is carried out (operation 1 in Fig. 3). A single

processor is responsible successively for: searching for the candidate

vessels in the assigned vascular tree, creating the optimal temporary

bifurcations with each found candidate vessel and recalculating

vessels’ characteristics. If at least one of the processing units does not

find any candidate vessel to perfuse the new tissue element (because

of crossing vessels in its own tree), the other processors are informed

about this and they abandon their tasks. It means that in at least

one vascular tree there is no possibility to connect the new MFU.

Afterwards, if there are more new MFUs to perfuse, the next one is

considered.

On the contrary (if in each vascular tree at least one candidate

vessel is found), the algorithm creates all possible combinations of

candidate vessels (a single combination consists of one vessel from

each tree). Next, the combinations are sorted according to increasing

volume and processed. The MFU is connected in a parallel way to all

vascular trees (operation 2 in Fig. 3) based on the information from

the first tested combination. Then, possible intersections between the

perfusing vessels are searched. If none of them is detected, the MFU

is marked as permanently perfused. However, if any intersection is

found, the MFU is disconnected concurrently from each vascular

tree (operation 3 in Fig. 3) and the following combination (with

the volume just superior) is taken into account. When all MFUs are

processed, the degeneration phase begins.
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(a) (b)

Fig. 4. Visualization of the simulation results - adult liver with about 50000
MFUs and 300000 vessel segments: (a) portal veins, (b) main hepatic arteries,
portal veins and hepatic veins within liver shape.

IV. EXPERIMENTAL VALIDATION

We checked the behavior of the algorithms starting from small size

configurations (about 1000 MFUs) and ending with large configu-

rations (about 50000 MFUs and consequently about 300000 vessel

segments). Typical physiological parameters of the hepatic vascular

network were used [3]. The performance of parallel implementations

was mainly evaluated using the speedup (ratio of the time necessary

to solve a problem sequentially to the time required by its parallel

version [17]). Fig. 4 shows a visualization of one of the simulated

hepatic vascular networks.

A. Distributed Memory Approach

The solution was implemented in the MVAPICH C++ version 0.9.5

which is the MPI [16] implementation over Infiniband network. For

the performance analysis we used the Multi-Processing Environment

(MPE) library and the graphical visualization tool Jumpshot-4 [16].

The experiments were performed on a cluster of sixteen SMP servers

(two 64-bit Xeon 3.2GHz CPUs, 2MB L2 cache, 2GB of RAM)

running Linux 2.6 and connected by an 10Gb/s Infiniband network.

The GCC 3.4.6 compiler was used.

Fig. 5(a) presents the obtained mean speedup. It is clearly visible

that the parallel algorithm significantly decreases the computation

time. In practice, it means that the typical time needed to simulate

an organ with 50000 MFUs and consequently 300000 vessel segments

can be reduced from 21 hours (with a single processor machine) to

2 hours (with 16 processors).

Fig. 5(b) shows how the percentage of kept MFUs (that are sent on

demand) influences the simulation time. If not all MFUs are spread

immediately after the mitosis process, the algorithm can dynamically

increase the load of idle processors by sending the remaining tasks.

However, we can see that it is difficult to choose one common value

(percentage of MFUs) that gives the best gain in time for a different

number of processors. On the other hand, it is visible that values

higher than 90% can increase the simulation time. Finally, we suggest

that any value within the range from 30% to 70% is acceptable.

Moreover, based on the results presented in Fig. 5(c), it is clearly

visible that in the case of small number of processors (i.e. smaller

than 4) if the master node, besides managing, performs the same

calculations as slave processors the simulation time can be reduced.

On the other hand, i.e. the number of processors is bigger than 3, we

should not arrange any additional job to the master node.

Furthermore, based on a fundamental formula called Amdahl’s law

[18], the maximum attainable speedup was thoroughly examined.

Considering that the parallelized code consumes around 95% of the

total CPU time during its serial execution (experimentally measured),

the upper bound speedup is equal to approximately 9 with 16

processors. In practice, the obtained value was slightly lower because

of an overhead due to communication and synchronization. Anyway,

in the presented method, we are able to obtain even better speedup

(i.e. about 10, see Fig. 5(a)) due to the introduction of an algorithm

of periodical memory reallocations. It assumes that additionally, at

the beginning of each subcycle, slave nodes rebuild their vascular

structures in order to assure that these structures are represented in

the operating memory by continuous memory blocks. Obviously these

operations take some time but the performance analysis showed that

exactly in the same time the mitosis process is being carried out at the

master node. This mechanism accelerates the code execution related

to the optimal bifurcation search algorithm.

B. Shared Memory Approach

The solution was implemented in C++ and the OpenMP Appli-

cation Program Interface [19] that supports multi-platform shared-

memory parallel programming. The experiments were carried out on

two available multi-core computers. The hardware specifications and

results are summarized in Table I. It can be noticed that very good

speedups are obtained. However, we see that the second machine

provides a slightly lower acceleration despite the fact that both

computers consist of very similar hardware and work on the same

operating systems. We speculate that this difference can be caused

by using two different compilers. It is often emphasized that Intel

compilers are especially tuned for its own hardware (e.g. Xeon

processors), i.e. that they include advanced optimization features and

provide highly optimized performance libraries for creating multi-

threaded applications [20].

TABLE I
MEAN, MINIMUM AND MAXIMUM VALUES OF SPEEDUP OF SHARED

MEMORY ALGORITHM ON TWO MULTI-CORE COMPUTERS

Intel Xeon Quad-Core Intel Xeon Quad-Core
X5355, 2.66 GHz X3220, 2.40 GHz

8GB RAM 4GB RAM
Intel C++ Compiler 10.1 GCC 4.3.2

number of used speedup
processor cores mean min max mean min max

2 1.47 1.38 1.50 1.35 1.32 1.40

3 2.57 2.26 3.12 2.30 2.20 2.43

Moreover, it is worth noting that, a speedup greater than the num-

ber of processors (called superlinear speedup [17]) can sometimes be

observed (see maximum speedup value in Table I). It is due to the fact

that the amount of work performed by serial and parallel algorithms

can differ. In the parallel solution, when at least one of the processors

is not able to find any candidate vessel to perfuse a new MFU in its

own vascular tree, the other processors stop searching in their own

vascular structures. On the other hand, in the serial algorithm, all

vascular trees are checked step by step and, in the worst case, the

tree with no candidate vessel for the new MFU can be the last to be

verified.

V. CONCLUSION AND FUTURE WORKS

We have developed two algorithms of vascular modeling in a

parallel environment: distributed and shared memory approaches. It

is experimentally shown that both algorithms are able to significantly

accelerate simulations. Although the shared memory solution allows

us to gain a better efficiency (ratio between speedup and correspond-

ing number of processors [17], e.g. in the case of a superlinear

speedup), the algorithm implemented on a computing cluster is able

to achieve a greater speedup, since it is not limited by the number

of vascular trees. Considering the two strategies, we have access to a

modeling framework able to increase the performance of the vascular

development simulation on high-performance computing clusters as

well as on low-cost multi-core/multi-processor commodity hardware.
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(a) (b) (c)

Fig. 5. Performance of the distributed memory approach algorithm: (a) mean speedup, (b) influence of load balancing related to a fixed quantity of MFUs
that are kept by the master node and sent only on demand, (c) influence of load balancing related to additional tasks that are assigned to the master processor.

In addition, one can treat the presented solutions as the first step

to build the organ model in which physiological processes can be

simulated both sequentially and concurrently. We suggest that such

an approach can reflect the reality more accurately and consequently

provide more information about real complex system behaviors.

The future work will deal with an hybrid solution able to take ad-

vantage of parallel machines that employ both shared and distributed

memory architectures (mixed MPI-OpenMP implementation).
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