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Abstract. Diffusion magnetic resonance imaging has been used exten-
sively to probe the white matter in vivo. Typically, the raw diffusion
images are used to reconstruct a diffusion tensor image (DTI). The in-
capacity of DTI to represent crossing fibers leaded to the development
of more sophisticated diffusion models. Among them, multi-fiber models
represent each fiber bundle independently, allowing the direct extrac-
tion of diffusion features for population analysis. However, no method
exists to properly register multi-fiber models, seriously limiting their use
in group comparisons. This paper presents a registration and atlas con-
struction method for multi-fiber models. The validity of the registration
is demonstrated on a dataset of 45 subjects, including both healthy and
unhealthy subjects. Morphometry analysis and tract-based statistics are
then carried out, proving that multi-fiber models registration is better at
detecting white matter local differences than single tensor registration.
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1 Introduction

Diffusion magnetic resonance imaging offers the ability to investigate in vivo the
white matter microstructure. The representation of the signal by diffusion tensor
images (DTI) has proven useful for population analysis in two ways [1]. First,
scalar features extracted from DTI, such as the fractional anisotropy (FA), may
indicate the presence of brain diseases. Second, the use of DTI in registration
improves the detection of morphometric differences, compared to scalar images.

The single tensor diffusion model has, however, proven inaccurate for two
main reasons. First, it cannot represent the signal arising from multiple fibers
with heterogeneous orientations in one voxel. Second, it does not account for
the non-monoexponential decay observed when imaging at high b-values. Novel
models addressing one or both of these issues have been introduced [2] : Q-
ball imaging, spherical deconvolution, 4th order tensors, DOT, and others. Most
of them focus on describing the general shape of the diffusion at each voxel.



In contrast, mixture models represent each fiber bundle independently, keeping
the interpretability of single fiber models while accounting for crossing fibers.
Therefore, scalar quantities such as the fractional anisotropy (FA) can still be
computed for each fiber independently. This property makes them very attractive
for population analysis.

While the literature on the registration of complex diffusion models is growing
(e.g., [3,4]), no method has been developed to register mixture models. This lack
of a registration method limits the use of mixture models in population analysis
despite their attractiveness. This issue has been previously reported, and has
incited researches to register the raw diffusion weighted images instead [5].

The remaining of this paper is organized as follows. Section 2 introduces
the diffusion mixture models. Section 3 presents a method to compute weighted
average of mixture models. Section 4 develops a similarity metric for diffusion
mixture images. Section 5 presents the integration of the developed methods in
a registration algorithm and analyzes its complexity. Section 6 presents experi-
mental results on a dataset of 45 subjects. Finally, Section 7 concludes.

2 Diffusion Mixtures

The basic idea behind multi-fiber models is to fit a single fiber model to each of
the fiber bundles present in the voxel. If Si(x) is a suitable model to represent
the diffusion process in a single fiber, then,

S(x) =

N
∑

i=1

fiSi(x) (1)

is a multi-fiber model for N crossing fibers with relative volumetric occupancy
given by fi. The assumption behind these models is that the exchange of water
molecules between populations of fibers is negligible during the diffusion time [2].

The simplest multi-fiber model is the multi-tensor model in which Si =

S0e
−bgT Dig. More complex multi-fiber models have later been introduced [6]. Po-

tentially, any single fiber model can be extended to a multi-fiber model by means
of mixtures. One such model, the biexponential decay model [2], represents each
fiber bundle by a Gaussian mixture to capture the non-monoexponential decay
of the signal. The corresponding multi-fiber model would be a mixture of Gaus-
sian mixtures which is itself a Gaussian mixture. A natural parameterization
of diffusion Gaussian mixtures is the set of pairs (fraction, covariance matrix),
that we write: {(f1,Σ1), ..., (fN ,ΣN )}. Alternatively, to connect with the tensor
formalism, the inverse of the covariance matrix, Di = Σ−1

i , can be used.

3 Weighted Combination of Mixtures

Computing weighted combinations of voxel values is at the basics of interpola-
tion (the value in one location is the weighted combination of the values in the



neighborhood), smoothing (the value at a grid voxel is replaced by a weighted
combination of the values in a neighborhood) and atlas construction (the value
at one voxel is the average of the values in the aligned subjects’).

Gaussian mixture simplification (GMS) was introduced to efficiently compute
weighted combinations of diffusion mixture [7]. In this section, we underline the
important aspects of this method. The idea behind GMS is that computing
weighted combinations of mixtures would be trivial if the number of compo-
nents of the result could be arbitrarily large. Indeed, the linear combination of
K mixture models with N components is a mixture models with M = KN

components:

MC =

K
∑

k=1

wkMk =

K
∑

k=1

wk

N
∑

j=1

fk
j Sk

j (x) ≡

M
∑

i=1

giSi(x). (2)

We refer to this mixture as the complete mixture. GMS optimizes the parameters
of a simplified mixture MS =

∑N

j=1 hjRj(x) with N < M components that
best approximates MC . The energy function to be minimized is the cumulative
differential entropy (the reference to the location x is omitted for clarity):

D(MC ,MS) =
N

∑

j=1

∑

i:πi=j

giD(Si||Rj) =
N

∑

j=1

∑

i:πi=j

gi

∫

Si(g) log
Si(g)

Rj(g)
dg, (3)

where g is the gradient vector and where latent variables πi cluster the com-
ponents of the complete mixture Si in N clusters each represented by a single
component of the simplified mixture, Rj ; πi = j means that Si is best repre-
sented by Rj . Following the recent developments in probabilistic clustering, an
EM scheme is used to minimize (3). Banerjee et al showed that both the E-step
and the M-step can be solved in closed form for mixtures of exponential distri-
butions [8]. For Gaussian mixtures, the E-step consists in optimizing the latent
variables πi by computing the Burg matrix divergence between the covariance
matrices of each component of MC (ΣS

i ) and each component of MS (ΣR
j ):

πi = arg min
j

B
(

ΣS
i ,ΣR

j

)

= arg min
j

Tr
(

ΣS
i ΣR

j

−1
)

− log
∣

∣

∣
ΣS

i ΣR
j

−1
∣

∣

∣
. (4)

As for the M-step, it sums up to calculating:

ΣR
j =

∑

i:πi=j fiΣ
S
i

∑

i:πi=j fi

and hj =
∑

i:πi=j

fi. (5)

Alternating (4) and (5) until convergence provides the parameters (hj and ΣR
j )

of the resulting mixture. A log-Euclidean version of this interpolation scheme is
obtained by replacing all covariance matrices by their logarithm.

4 Generalized Correlation Coefficient for Mixtures

The correlation coefficient, invariant under linear transformations of the voxel
intensities, is widely used in mono-modal image registration. The inter-subject
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Fig. 1. Comparison of the single tensor and multi-fiber registration in terms of the SSD
between eigenvalues after alignment, for different regularization parameter values [9].
Multi-fiber registration significantly improves the quality of the registration.

variability of diffusivity values motivates the introduction of a generalized corre-
lation coefficient, invariant under these differences. In DTI, this variability has
been reported and partially accounted for in some registration methods [1]. The
correlation coefficient between blocks F and G is defined as the scalar product
of the normalized blocks:

ρ(F,G) =

〈

F − µF

||F − µF ||
,

G − µG

||G − µG||

〉

,

where µF is the mean of the image values in the block. It is invariant if F (and/or
G) is replaced by aF + b. It has been generalized to vector images by redefining
the means µF and µG as the projection of the block onto a constant block T [10]:

F − µF = F − 〈F, T 〉
T

||T ||2
.

The corresponding generalized correlation coefficient is invariant if F is replaced
by aF + bT where T is now any constant vector block. The definition of a scalar
product between two blocks of mixture models seems impractical if not impos-
sible. We therefore further generalize the correlation coefficient by substituting
the inner product by a more general scalar mapping, m(Mf ,Mg):

ρ(Mf ,Mg) = m

(

Mf − m(Mf , T )T

nm(Mf − m(Mf , T )T )
,

Mg − m(Mg, T )T

nm(Mg − m(Mg, T )T )

)

,

where nm(M)2 = m(M,M) is a generalization of the norm. This definition does
not guarantee the invariance property of the metric for any scalar mapping. One
can show that the invariance is preserved as long as the scalar mapping is linear
with respect to the constant block T :

m(aMf + bT , T ) = a m(Mf , T ) + b m(T , T ). (6)

To preserve the interpretability of ρ as a similarity metric, it needs to be sym-
metric, equal to one in case of perfect match and lower than one in any other
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Fig. 2. (top) The two-tensor atlas built by means of the developed registration method
reveals crossing pathways common to all anatomies. (bottom) White matter volume
shrinkage in tuberous sclerosis represented by the p-value maps. Multi-fiber registration
reveals more differences than single tensor registration and DT-REFinD [11]

case. These constraints on ρ translate into the following constraints on m:

m(Mf ,Mg) = m(Mg,Mf ) (7)

nm(aMf ) = a nm(Mf ) (8)

|m(Mf ,Mg)| ≤ nm(Mf )nm(Mg). (9)

The latter is a generalized form of the Cauchy-Schwartz inequality for inner
products. Conditions (6-9), the choice of T and the definitions of the addi-
tion M + T and multiplication by a scalar aM, stand together as a model to
define a correlation coefficients in potentially any space. For DTI, if T is an
isotropic tensor block (T (x) = DI3×3), m is the log-Euclidean scalar product,
and the log-Euclidean algebra is used, then ρ is invariant under linear transfor-
mations of the eigenvalues in the log-domain [12]. For multi-tensor images, we fix
T (x) =

{

( 1
N

, DI3×3), ..., (
1
N

, DI3×3)
}

, and we define the addition of T , and the
multiplication by a scalar component-wise in the log-domain. The scalar mapping
m(Mf ,Mg) is defined by pairing the tensors in each voxel to maximize the linear
combination of pairwise scalar products. Let Mf (x) = {(f1,F 1), ..., (fN ,F N )}
and Mg(x) = {(g1,G1), ..., (gN ,GN )} defined on a domain Ω, we have:

m(Mf ,Mg) =
∑

x∈Ω

max
π

N
∑

i=1

figπ(i)

〈

F i,Gπ(i)

〉

,

where π is a pairing function associating one tensor of Mg to each tensor of
Mf . This scalar mapping satisfies conditions (6-9). Interestingly, the resulting
generalized correlation coefficient is invariant under any global (within the block)
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Fig. 3. (a) Arcuate fasciculus, a set of fibers involved in language, on which tract
based statistics was performed, (b) The FA profile in TSC patients shows significantly
disrupted white matter fascicules in different clusters, indicated by the stars.

linear transformation of all eigenvalues in the log-domain. This similarity metric
is therefore robust to the inter-subject variability of diffusivities.

5 Implementation and Complexity

The developed methods were integrated in the efficient block matching regis-
tration algorithm described in [9]. The parameters used are the following: 4
pyramid level, 10 iterations per level, block size: 5 × 5 × 5, outlier removal
rate: 20%. The implementation was multi-threaded. On a 8 core workstation,
with 220×220×176 two-fiber images, the entire registration takes 1.5 hour. All
weighted combinations were computed until complete convergence of the soft
clustering. The average number of iterations required for that convergence is 4.

6 Results

The registration was applied to a clinical dataset of 45 subjects, 13 controls
and 32 patients with tuberous sclerosis complex (TSC), a rare genetic disease
associated with impaired white matter integrity. A DTI and a multi-tensor model
with three components (one isotropic and two anisotropic) were reconstructed
for each subject [13].

6.1 Validation

An alternative to the method presented in this paper would be to select one of
the two tensors in each voxel (e.g. the one with the highest FA) and to perform
single tensor registration on this image. Here, we validate that our method works
better than this simple alternative. The quality of the alignment is assessed by
the sum of square differences of each eigenvalue after alignment of control sub-
jects. Indeed, while the diffusivities can significantly differ in diseased brain, they
are approximately equal for healthy subjects. We performed 26 randomly cho-
sen registrations with four levels of regularization, totalizing 104 registrations.
In each voxel, the eigenvalues were averaged between the two anisotropic com-
ponents (weighted by their fractions). Results show that multi-fiber registration
performs significantly better than single tensor registration (Fig. 1).



6.2 Atlas Construction

An atlas was constructed using our registration and alternating three steps:
aligning all subjects to the current atlas (initially a randomly chosen subject),
averaging the aligned subjects (using the weighted combination of mixtures),
applying the mean inverse field to the resulting average [14]. This atlas remark-
ably shows areas where multiple fibers are consistently present in all subjects
(Fig. 2).

6.3 Morphometry

The clinical hypothesis according to which there is substantial white matter
shrinkage in TSC subjects was tested by performing a one-tailed two sample t-
test on the log-Jacobian of the deformation fields [15]. The subject classes were
then randomly permuted 4000 times to assess the null distribution of extreme
t-scores. The entire process was repeated with single tensor images. As a result,
multi-fiber registration reveals more white matter differences (> 3800 significant
voxels) than single tensor (< 1000 voxels) (Fig 2). The entire process was then
repeated with DT-REFinD, a state-of-the art DTI registration algorithm [11],
to test whether the improved detection of differences is truly due to the knowl-
edge brought by multi-fiber models. Again, DT-REFinD did not capture all the
differences detected by multi-fiber registration (< 1300 voxels) (Fig 2).

6.4 Tract-Based Statistics

Some structural subnetworks are believed to be impaired in TSC patients. To
test this hypothesis, we analyzed the FA profile along the median tract of the
arcuate fasciculus, generated on the atlas by a probabilistic tractography al-
gorithm [5](Fig. 3(a)). A one-tailed two-sample t-test was performed at every
location. A threshold t0 was then set to the t-statistics and the length of the con-
tiguous supra-threshold segments were recorded. The null distribution of these
lengths was assessed by randomly permuting the subjects classes 4000 times.
The operation was repeated for a wide range of thresholds (1.5 ≤ t0 ≤ 4.5) to
estimate the robustness of our findings. For t0 = 2.7 (p0 = 0.01), with our multi-
fiber registration, four significant clusters, together representing 15% of the tract
were detected, indicating a strong impairment of this subnetwork in TSC pa-
tients (Fig. 3(b)). These findings were robust to the choice of t0 for any t0 ≤ 3.4.
In contrast, single tensor registration only revealed one cluster representing 5%
of the fiber, which was not robust outside the range 1.9 ≤ t0 ≤ 2.8.

7 Conclusions

This paper introduced a registration and atlas construction method to align
multi-fiber models. A proper interpolation method and a robust similarity metric
were presented. Results in both morphometry and tract-based statistics demon-
strated that multi-fiber registration reveals more group differences than DTI



registration. We therefore believe that this registration method opens new doors
to understanding brain disorders based on multi-fiber models.

Acknowledgments MT thanks the FNRS, BAEF and WBI for their financial sup-
port. This work was supported in part by NIH grants R01 EB008015,R01 LM010033,
R01 EB013248, and P30 HD018655 and by the Boston Children’s Hospital Transla-
tional Research Program.

References

1. Zhang, H., Avants, B., Yushkevich, P., Woo, J., Wang, S., McCluskey, L., Elman,
L., Melhem, E., Gee, J.: High-dimensional spatial normalization of diffusion tensor
images improves the detection of white matter differences: an example study using
amyotrophic lateral sclerosis. IEEE TMI 26(11) (2007) 1585–1597

2. Minati, L., Weglarz, W.: Physical foundations, models, and methods of diffusion
magnetic resonance imaging of the brain: A review. Concepts in Magnetic Reso-
nance Part A 30(5) (2007) 278–307

3. Barmpoutis, A., Vemuri, B., Forder, J.: Registration of high angular resolution
diffusion mri images using 4th order tensors. In Ayache, N., Ourselin, S., Maeder,
A., eds.: MICCAI 2007. Volume 4791 of LNCS. Springer Heidelberg (2007) 908–915

4. Yap, P., Chen, Y., An, H., Yang, Y., Gilmore, J., Lin, W., Shen, D.: Sphere:
Spherical harmonic elastic registration of hardi data. NeuroImage 55(2) (2011)
545–556

5. Bergmann, O., Kindlmann, G., Peled, S., Westin, C.: Two-tensor fiber tractogra-
phy. In: IEEE International Symposium on Biomedical Imaging. (2007) 796–799

6. Assaf, Y., Basser, P.: Composite hindered and restricted model of diffusion
(charmed) mr imaging of the human brain. Neuroimage 27(1) (2005) 48–58

7. Taquet, M., Scherrer, B., Benjamin, C., Prabhu, S., Macq, B., Warfield, S.: Inter-
polating multi-fiber models by gaussian mixture simplification. In: IEEE Interna-
tional Symposium on Biomedical Imaging. (2012)

8. Banerjee, A., Merugu, S., Dhillon, I., Ghosh, J.: Clustering with bregman diver-
gences. The Journal of Machine Learning Research 6 (2005) 1705–1749

9. Commowick, O., Arsigny, V., Isambert, A., Costa, J., Dhermain, F., Bidault, F.,
Bondiau, P., Ayache, N., Malandain, G.: An efficient locally affine framework for
the smooth registration of anatomical structures. MedIA 12(4) (2008) 427–441

10. Ruiz-Alzola, J., Westin, C., Warfield, S., Alberola, C., Maier, S., Kikinis, R.: Non-
rigid registration of 3d tensor medical data. MedIA 6(2) (2002) 143–161

11. Yeo, B., Vercauteren, T., Fillard, P., Peyrat, J., Pennec, X., Golland, P., Ayache,
N., Clatz, O.: Dt-refind: Diffusion tensor registration with exact finite-strain dif-
ferential. IEEE Trans. on Medical Imaging 28(12) (2009) 1914–1928

12. Taquet, M., Macq, B., Warfield, S.: A generalized correlation coefficient: Applica-
tion to dti and multi-fiber dti. In: IEEE MMBIA. (2012) 9–14

13. Scherrer, B., Warfield, S.: Toward an accurate multi-fiber assessment strategy
for clinical practice. In: IEEE International Symposium on Biomedical Imaging.
(2011) 2140–2143

14. Guimond, A., Meunier, J., Thirion, J.: Average brain models: A convergence study.
Computer vision and image understanding 77(2) (2000) 192–210

15. Ashburner, J., Hutton, C., Frackowiak, R., Johnsrude, I., Price, C., Friston, K.:
Identifying global anatomical differences: deformation-based morphometry. Human
Brain Mapping 6(5-6) (1998) 348–357


	Registration and Analysis of White Matter Group Differences with a Multi-Fiber Model

