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Abstract. We propose an iterative two-step method to compute a dif-
feomorphic non-rigid transformation between images of anatomical struc-
tures with rigid parts, without any user intervention or prior knowledge
on the image intensities. First we compute spatially sparse, locally op-
timal rigid transformations between the two images using a new block
matching strategy and an efficient numerical optimiser (BOBYQA). Then
we derive a dense, regularised velocity field based on these local trans-
formations using matrix logarithms and M-smoothing. These two steps
are iterated until convergence and the final diffeomorphic transformation
is defined as the exponential of the accumulated velocity field. We show
our algorithm to outperform the state-of-the-art log-domain diffeomor-
phic demons method on dynamic cervical MRI data.

1 Introduction

In medical image analysis, one is often confronted with the problem of registering
anatomical structures containing both hard, rigid (typically, bones) and soft,
non-rigid (most other tissues) parts. Such problems are met for instance when
following-up spinal cord lesions in MRI for the diagnosis of multiple sclerosis [1],
or when assessing cervical injuries using dynamic/kinematic MR imaging with
positional changes [2]. Many methods have been developed for both fully global
rigid registration and fully local non-rigid registration separately [3], but the
literature on hybrid methods, allowing for adequate registration of the structures
depending on the stiffness of their components, is still quite sparse.

The earliest work we know of is that of Little et al. [4], who showed how
to incorporate rigid structures into a deformation field, using radial basis func-
tions; this was later improved by others to make the field invertible and even
diffeomorphic [5–7]. However, these methods require the user to specify which
structures are rigid, which led to the development of semi-automated methods in
which rigidity can be locally favoured/enforced through a regularisation term in
the criterion to be minimised [8]. This idea was later improved to allow for this
term to be adaptively tuned to the structures to register, through prior segmen-
tation of the rigid parts or design of a stiffness map (typically computed from



the image intensities; e.g. bones have high intensities in CT) [9–11]. Instead of
segmenting rigid parts, it was also proposed to define several anchors, to which
is attached an unknown polyaffine transformation, which can be subsequently
estimated using a modified EM-ICP algorithm [12].

In this paper, we propose an iterative two-step method to compute a diffeo-
morphic non-rigid transformation between images of structures with rigid parts,
without any user intervention or prior knowledge on the image intensities (to
compute rigid parts or anchors). First we compute spatially sparse, locally opti-
mal rigid transformations between the two images by adopting a new (as opposed
to classical, translation-based) block matching strategy, made possible by the use
of an efficient numerical optimiser (BOBYQA) (Sec. 2.1). The rationale behind
this original strategy is our hope to recover both large rotations and subvoxel
displacements. Then we derive a dense, regularised velocity field based on these
local transformations using matrix logarithms and M-smoothing (Sec. 2.2). The
floating image is then resampled and the two steps are iterated until conver-
gence; the final diffeomorphic transformation is defined as the exponential of the
accumulated velocity field. We finally compare our algorithm with the state-of-
the-art log-domain diffeomorphic demons method [13] on dynamic cervical and
multiple sclerosis MR images (Sec. 3).

2 Material and Methods

To compute a diffeomorphism T between a reference image I and a floating image
J , we iterate between two steps: computation of a sparse set of locally optimal
rigid transformations using block matching between I and J ◦ T l (Sec. 2.1)
and computation of a dense velocity field δLT l computed from these locally
estimated transformations (Sec. 2.2). Given that the transformation T is initially
set to the identity (T 0 = Id), and that the initial velocity field is set to LT 0 =
log T 0 = 0, the velocity field is then updated as LT l+1 = LT l + δLT l. This
two-step algorithm stops at the iteration l when δLT l is close to 0, and the final
diffeomorphism is computed as T = T l = exp(LT l). The complete algorithm is
outlined in Sec. 2.3. For the sake of clarity, we detail the two steps using the
simpler notations I, J and δLT (Sec. 2.1 and 2.2).

2.1 Computing a sparse set of locally optimal rigid transformations

Classical block matching algorithm. In this approach, that we do not follow,
one first defines a set of blocks in each image, before matching each block in the
reference image I with the most similar block in the floating image J . Similarity
is typically computed using a measure on the voxel intensities, such as the sum of
squared differences or the squared correlation coefficient in monomodal problems,
or the mutual information or the correlation ratio in multimodal problems. The
most common approach to optimise the similarity measure (at least in medical
image analysis) is to perform an exhaustive search of the block with the highest
similarity in J , within a given neighbourhood of each block in I.



This strategy implicitly assumes that the local motion between the images
can be well recovered by a discrete translation (i.e. defined on the discrete grid
of the image). Subvoxel displacements and large rotations are thus likely to be
missed. It is all the more true when registering piecewise rigid structures, be-
cause in this case there exists no single, global rigid movement, that could be
corrected before non-rigid registration.

Modified block matching algorithm. Recent advances in nonlinear optimisa-
tion allow for testing another strategy. We first define a set of blocks in I (as in the
standard strategy), and then we propose to directly compute the rigid transfor-
mation best superposing each of these blocks with J , using a similarity measure
on the voxel intensities. As opposed to the standard, discrete translation-based
strategy, the computation of the similarity measure for a given block in I and
a given tested transformation implies resampling to build the block in J . Given
that the solution space is no longer finite, this leads to a potentially much more
computationally expensive algorithm.

We propose to use the recent BOBYQA algorithm [14] to implement this idea.
In essence, BOBYQA is a derivative-free, trust-region method which uses succes-
sive approximations of the similarity measure by quadratic functions, whose max-
ima can be computed analytically. It is very similar to the classical NEWUOA
algorithm except that bounds must be specified on the variables. We thus end up
with a set of blockwise-estimated optimal rigid transformations between I and
J . In practice, however, we do not estimate a transformation for the blocks in
I having a low variance σ2. The set of estimated transformations (R1, . . . , Rm)
is thus spatially sparse, due to these missing transformations, and also due to
the resolution of the grid of blocks in I, which is different from that of I. In
addition, we weigh each estimated transformation Ri with a weight wi set equal
to the similarity measure; here we use the squared correlation coefficient, to be
insensitive to local intensity changes, thus 0 ≤ wi ≤ 1.

2.2 Estimating a dense velocity field

The set of estimated transformations (R1, . . . , Rm) is spatially sparse, but is
also noisy and likely to contain outliers (due to the noise in the images to be
registered and the potential errors in local registrations). How to estimate a
dense (n = card(I)) and smooth velocity field δLT from (R1, . . . , Rm)? We
propose to use the logarithms of these m transformations, defined in the space
of 4× 4 real matrices (M4(R)) restricted to those whose last row contains only
zeros, and to estimate n intermediate matrices in the same space (that we name
logS1, . . . , logSn by analogy) as the minimisers of a criterion C:

(logS1, . . . , logSn) = argmin
log S1,...,log Sn
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where:



– ρ : R → R
+ is a robust error norm,

– ||.|| is the Frobenius norm in M4(R), and |.| is the Euclidean norm in R
3,

– vj is the coordinate of the central voxel of the block where Rj was estimated,
– vi is the coordinate of the voxel where Si is to be computed,
– Vi is a neighbourhood around the position vi; note that the sum over j ∈ Vi

must read: “the sum over all the points vj where a rigid transformation Rj

was estimated, and which are inside Vi”,
– wj is the weight defined in Sec. 2.1,
– d(.) : R3 → R

+ is a (spatial) error norm.

It must be clear that we do not estimate Si and then its logarithm; we do esti-
mate logSi directly; we use this notation here only as a convention for the sake of
simplicity. Solving this minimisation problem is known as local M-smoothing [15],
due to the use of a robust error norm and of spatial neighbourhoods to design C;
C can be minimised using gradient descent, where each transformation can be es-
timated independently of the others. Using a particular adaptive, data-dependent
step size leads to an easy-to-interpret update formula for each logSi [15]:

logSk+1
i =

∑

j∈Vi
wjρ

′(|| logSk
i − logRj ||

2)d(|vi − vj |
2) logRj

∑

j∈Vi
wjρ′(|| logSk

i − logRj ||2)d(|vi − vj |2)

It can be seen from this formula that ρ′ acts as a tonal kernel, while d acts
as a spatial kernel. After convergence, each finally estimated logSi is a linear
combination of the logarithms of the rigid transformations Rj ; following Arsigny
et al. [5], we define the final dense velocity field δLT as δLT (vi) = log(Si).vi,
∀i = 1, . . . , n. In practice, we define ρ as the Welsch function, which leads to
ρ′(a2) = exp(−a2/2λ2), and we define d as d(b2) = exp(−b2/2θ2); this leads
to two similar expressions for the two kernels (with different bandwidths). Vi is
spherical with radius 2θ (to achieve an approximate 95% confidence interval for
a Gaussian law). To initialise the gradient descent algorithm, S0

i is computed as
the solution of the update formula by setting ρ′(a2) = 1 (i.e. no tonal kernel).

2.3 Complete algorithm

The final estimated transformation is a diffeomorphism [5]. We perform all
the update calculations on the velocity field, whose exponential is required only
once per iteration to resample the floating image. This is the same approxi-
mation as that done by Vercauteren et al., who showed experimentally that
exp(LT l−1)◦ exp(δLT ) could be approximated by exp(LT l−1+ δLT ) for a small
enough velocity field δLT [13].

2.4 Implementation details

For the block matching: size of the blocks: 7 voxels; grid step size: 3 voxels;
minimal intensity variance in the blocks: 1/4 of the maximum squared intensity;
search radiuses within BOBYQA: 2 voxels (translation) and 5 degrees (rotation).



Algorithm

1: Initialize T to identity: T 0
← Id = exp(LT 0) and the velocity field to 0: LT 0

← 0
2: for each pyramid level of the multiresolution scheme, do
3: repeat
4: Estimate local rigid transformations using block matching (Sec. 2.1):

R = (R1, . . . , Rm)← block-matching(I, J ◦ T l−1)
5: Interpolate a dense velocity field using M-smoothing (Sec. 2.2):

δLT ← M-smooth(R)
6: Increment the velocity field: LT l = LT l−1 + δLT

7: Regularise (elastic-like) the velocity field: LT l
← Gν ∗ LT

l

8: Compute T l = exp(LT l) to resample J

9: until δLT is sufficiently small

For the M-smoothing: kernel bandwidths: λ2 = medj 6=h || logRj − logRh||
2/2

(tonal), θ = 4 voxels (spatial); ν = 4 voxels in the elastic-like regularisation. We
use a 3-level multiresolution strategy, and the resampling of the floating image is
done using trilinear interpolation. Run-time of the algorithm (dual core Xeon 3.0
GHz PC): about 6 min (vs 2 min for the log-domain diffeomorphic demons [13]).

3 Validation and Results

We propose to assess our algorithm quantitatively on ten patients with traumatic
cervical cord injury, who got dynamic cervical MRI (T2-w, size 384× 384× 14,
voxel size 0.8 × 0.8 × 3 mm3) with two different positions each: either flex-
ion/neutral, or extension/neutral [2]. For each patient, we manually defined land-
marks on the cervical/thoracic vertebrae C1-C3-C6-T1 (and T4 when visible),
the pontomedullary junction, and the gnathion (lower border of the mandible)
on each of the two MRI. We considered the neutral position as the reference
image in the extension/neutral setting, and the flexion as the reference image
in the flexion/neutral setting. For a given patient, the registration accuracy was
evaluated as the root mean square error (RMSE) computed over the homologous
landmarks after registration using four different methods: global rigid registra-
tion (M1) [16], log-domain diffeomorphic demons (M2) [13], our algorithm (M3),
and M2 initialised using M3 (M4); both M2 and M3 are initialised using M1.
We also assessed our algorithm visually on two patients with MS lesions in the
spinal cord, and two other patients with tumours in the spinal cord, with two
time points each (T1-w, size 256× 256× 64, voxel size 1× 1× 1 mm3).

The box-and-whisker plot in Fig. 1 computed from the ten patients shows our
algorithm (M3) to significantly outperform both M1 (paired t-test: p = 3×10−4)
and M2 (paired t-test: p = 2×10−3), with much smaller error and much smaller
error dispersal. M3 is also slightly better than M4 (paired t-test: p = 5× 10−2).
This suggests that the log-domain diffeomorphic demons performs worse than
our algorithm even when properly initialised (using M3 instead of M1). The
results of M1, M2 and M3 on one of the ten patients are shown in Fig. 2, and
that of M1 and M3 are shown on one of the MS patients in Fig. 3.



Fig. 1. Quantitative evaluation
of registration accuracy. Box-and-
whisker plot of registration errors
(unit: millimetres) for the 4 compared
methods (M1 to M4). The errors and
the error dispersal are much smaller
for M3 compared to M1 and M2; M4

is also slightly worse than M3, which
suggests that M4 actually degrades
the results compared to M3 when ini-
tialised with M3.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Registration results on a patient with flexion/neutral positions. (a)
reference image; (d,b,c) floating image registered to the reference image with M1, M2,
M3 respectively; (e,f) same as (b,c) with deformation grids overlaid. The intersection
between the green and red lines shows the large error of M2 on the mandible; on the
contrary, M3 correctly matches this point. The ability of M3 to recover the flexion is
further illustrated by the deformation grid: the deformation visually appears as near-
rigid on the lower head and face, while it shows extension near the back of the neck
and contraction near the front of the neck; on the contrary, the deformation grid shows
that M2 outputs near rigid movement everywhere.

4 Conclusion & Perspectives

It appears that our strategy for non-rigid registration, based on the computation
of locally optimal rigid transformations in the first place, allows us to recover
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(h)

Fig. 3. Registration results on a patient with MS lesions in the spinal cord.
(a) patient image at time point t0; (b) patient image at time point t1 registered with
M1 and (e) with M3; (d,g) zoom on (b,e); (h) zoom on (a); (c,f) zoom on the difference
(registered minus reference) image. Note that in this case M2 (not displayed) performs
as well as M3. These snapshots, and in particular the zoomed difference images, visually
show that M3 gives a better result than a simple global rigid registration.

displacements and deformations of piecewise rigid structures (as seen e.g. in
dynamic cervical MRI) much better than standard methods which are implic-
itly based on locally optimal translations, such as the log-domain diffeomorphic
demons algorithm. This original strategy was made possible by (i) the use of an
up-to-date very efficient optimiser and (ii) the design of a specific regularising
procedure on the (sparse) set of locally estimated rigid transformations, based on
robust estimation techniques. A future line of research could be to combine our
regularisation technique with those previously proposed in this context [9–11].
Our intuition is also that our algorithm could perform very well in more gen-
eral problems, without necessarily rigid structures involved, and on other image
modalities; we will evaluate this in a near future.
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